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ABSTRACT

A recursive algorithm previously developed for the A-state Potts model is generalised to
the Z(\) model. The relations used are based on an expression we derive for the pair
correlation function in terms of mod-\ flows, which represents an extension of a similar
result for the partition function previously obtained by Biggs. The use of flows enables us
to prove and extend the formulae which appear in the break—collapse method of Mariz
and coworkers. It is argued that the use of fixed—flow bonds rather than the precollapsed

bonds used by the latter authors leads to a more efficient algorithm.

Key-words: Z(N) model; Subgraph break—collapse;method; Graph
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1. INTRODUCTION

The Z()\) model contains as particular cases many statistical models of well known
theoretical and experimental relevance (e.g. bond percolation, random resistor networks,
spin 1/2 Ising, h-state Potts, discrete spin cubic, clock and classical XY models). During
recent years, this model has been the subject of a considerable number of studies in both
lattice gauge theory and statistical mechanics {Wu and Wang 1976, Elitzur et al 1979,
Savit 1980, Cardy 1980, Alcaraz and Koberle 1980, 1981, Alcaraz and Tsallis 1982, Mariz
et al 1985, Tsallis and Souletie 1986).

The Z()) model is identical to the Ising and three-state Potts model for A\=2 and 3
respectively. For N > 4, the Z()) model has a richer critical behaviour involving two or
more interaction parameters. Several methods have been used to calculate its phase
diagram which has three or more phases. One of these techniques, the break-collapse
method (BCM), was described for A = 4 (the symmetric Ashkin~Teller model) by Mariz,
Tsallis and Fulco (1985), herein referred to as MTF, for » = 6 by Mariz et al (1988),
and for a general value of A by Mariz and Tsallis (private communication). This method
is an extension of the BCM for the Potts model (Tsallis and Levy 1981, Tsallis 1988) and
it allows the exact calculation of the partition function and correlation functions of clusters
which are used in renormalisation group procedures, The latter have been successfully
used in the calculation of critical frontiers and critical exponents of the Z()\) model (MTF,
Tsallis and Souletie 1986, de Souza 1988, Mariz 1988, Mariz et al 1988). In the case of
Z(4), both pure (isotropic or anisotropic) and random ferromagnetic (or antiferromagnetic)
models on the square and cubic lattices have been considered, For Z(6), existing
calculations are restricted to the ferromagnetic model on the isotropic square lattice.

In a previous paper on the Potts model (de Magalhies and Essam 1988, Potts
Model and Flows IO), herein referred to as PF3, we presented a more efficient recursive
algorithm than the BCM. This algorithm was based on combinatorial formulae conjectured
by Tsallis (1988), the proofs of which were given in PF3 through the use of flow

polynomials (Tutte 1954, 1984), The connections between these graph theoretic
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polynomials and the Potts model were presented in papers 1 (Essam and Tsallis 1986,
which we will herein refer to as PF1) and I (de Magalhdes and Essam 1986) of the
above mentioned series (see also Wu 1988 for a less formal derivation of some of these
connections). The algorithm of PF3 is known as the ‘subgraph break—collapse method®
(SBCM) and therein the Potts cluster is represented by a graph G, the vertices of which
are the atoms; the occurrence of an edge in G represents a bond, or interaction, between
the corresponding atoms. A graph with many vertices requires a prohibitive amount of
computer time to calculate its partition function and correlation functions directly as a sum
over states. The BCM and the SBCM provide alternative and more efficient ways of
calculating these functions, In both of these recursive methods, the above mentioned
functions for a graph G are expressed in terms of those for the “broken" (deleted) and
"collapsed™ (contracted) graphs. These are obtained from G by deleting and contracting
respectively a chosen edge e. The extension of the techniques from the Potts model to the
Z(2\) model involves other graphs besides the broken and collapsed graphs. In the BCM
these extra graphs are the "precollapsed” graphs (in which the edge e is precollapsed),
while in the SBCM they are the graphs with fixed flows on the edge €. Such an edge
will be referred to as a "“frozen edge®. Here we interpret the precollapsed bonds in terms
of flows and derive all equations necessary to extend the algorithm of PF3 to the general
Z(\) model. From these equations, which we call "graph reduction equations”, we derive
an extension of the formulae which appear in the BCM of Mariz and coworkers, We
argue that our algorithm is more efficient than the BCM. One of the reasons for this is
the fact that the use of frozen edges, rather than precollapsed edges, reduces the depth of
recursion since the number of frozen edges can never be more than the number of
independent cycles in the graph.

In section 2 we first summarise a previous result (Biggs 1976,1977) in which the
partition function of the Z()) model is expressed as a sum over mod-)\ flows, and then
extend it to the correlation function, In section 3 we derive the graph reduction equations

of the SBCM. In section 4 we present the SBCM algorithm and an extension of the
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BCM formulae. We also illustrate the SBCM by an example for Z(4) and compare it with

the BCM. Finally, the conclusions are presented in section 5.

2, THE FLOW VECTOR AND CORRELATION FUNCTION.
2,1 The model.

We consider a Z()\) cluster represented by graph G with vertex set V and edge set
E. With each vertex i of V is associated a state variable n; which takes on the X integer

values, 0,..,2-1, The Hamiltonian is given (Alcaraz and Ko&berle 1980,1981) by

H(G) = kgT z ha(ny -nj) 2.1)

ecE
where the edge e¢ has vertices i and j and nj-n; is calculated mod A. The sum over edges
in (2.1) includes all interacting pairs of atoms and the interaction may depend on e so
that, for example, lattice models with anisotropic couplings are included. The pair

interaction energy is independent of the ordering of i and j so that
ha (A-t) = ho(ar). (2.2)

It follows from (2.2) that for A>2 there are only (X+1) distinct values of the energy of
interaction between a given pair of atoms, where X=[N2] is the integer part of M2,
The following are important special cases of (2.1), the Potts model:
he(O) for njf = nj

he(ni—nj) - [ (2.3a)
M(e+he(0) for n; # nj.

and the clock model:
he(“i‘“j) - K, cos[Zr(ni-nj)/)\] {(2.3b)

where Ke=fJa, with Jo being the coupling constant between the spins on vertices i and j,

is positive for ferromagnets,
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2.2 The Partition Function,

A theorem of Biggs (1976,1977) concerning the partition function Z(G), which he

refers to as algebraic duality, may be written in the form

2(C) = \""5( [ z) D(G) (2.4)
eeE

where » is the number of vertices and ¢ is the number of edges in G. iz is the
partition function of the edge e in isolation, where z, is given by
-1 -he(cx)

z, = EO e (2.5
Oy

and D(G) is the following generating function for flows:

DG - ¥ Tt (pled). (2.6)
peF(G) ecE

Here the function te(c) is the component « of the \~dimensional vector transmissivity
ta (Alcaraz and Tsallis 1982) for edge e defined by:
1 MU 2xies/n -hg(8)
t (o) = — 3 e27IeA/X che
e . .

(o=0,1,...,x-1) (2.7)

and p(e) is the value of the flow ¢ on the edge e. A flow is a function defined on the
edge set E which assigns an integer value, in the range 0,..,)\-1, to each edge, subject to
a conservation condition at each vertex (see, for example, PF1). The conservation
condition may be expressed as follows. Each edge is given an arbitrary directing and an
incidence matrix S is defined for jeV and e¢E by
+1 if e ig directed into j
Sje = 1 -1 if e is directed out of j (2.8)
0 if j is not a vertex of e,
We say that o is a flow on G [1.e. peF(G)] If for each jeV,

Bp(j) = Y Sje p(e) =0 mod X\, (2.9)

eceE
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that is, the signed sum of the flows at each wvertex is zerc mod X.
We note that it follows from (2.2) and (2.7) that

te(r-0) = to(a), (2.10)

and that to(0)=1. For the case of the Potts model t.(a), for o#0, is independent of o and

is given by eq. (2.2) of PF3. Also in this case eq. (2.6) reduces to eg. (2.7) of PF3.

2.3 The correlation function.

Now let us extend Biggs's result to pair correiation functions. Such a function will
normally be the thermal average of some function f(nj—n,) where, as usual, the difference
of the state variables ny,np, for arbitrarily chosen vertices 1 and 2, is calculated mod \.
The special vertices 1 and 2 are known as roots of the graph. Making a Fourier

decomposition of f gives:

x-1
1 .
<f(n1-n2)>thermal - - S, fx-a Ta(l,Z,G) (2.11)
)
where
~2xic(n,-n,)/x
1™
Ta(l,Z,G) - <e thermal =
a1 A-~1 -2xfa(n,-n,)/: -h (n,-n.,)
-ﬂ% I ... I e 1727 qe o1 0 (2.12)
nl-l} n’-O ec¢E

This definition together with (2.2) implies that

Thoa(1,2;6) = Ty(1,2;6) (2.13)
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In PF1 the pair correlation function of the Potts model (given by the thermal
average of §1.8) is related to the equivalent transmissivity t§9(G). This relation may be
recovered as an example of (2.11) and (2.12) by letting

f(ny-n3) = s1.55 = Aé{ng-ny) - 1 (2.14)

in which case T1(1,2,G) = Tx(1,2,G) = ... = T»1(1,2,G) = tfXG) and Tp(1,2,G)=1 (see
eq.(2.22) below).
We now extend (2.6) in order to express Ta1.2;G) in terms of flow generating

functions. Inverting (2.7) gives:

—he(ni-nj) z a1 -2riﬁ(ni—nj)/)&

e -— Y e te(B) {(2.15)
x £=0
and hence
-he(ni—nj)
Me NS R z&mh-—zpwnMantw@n}ulﬂ
ecE eeE ~ ped A ecE ecE

where p(e) is the value of § on edge e, @ is the set of all functions on E with values in
the range 0,..,>s-1, and 5n(e)=ni—nj. Now using Lemma 1 of Biggs (1976), namely:

S e(e)én(e) E njaw(j) (2.17)
ecE

where Bp(j) is defined in eq. (2.9) and combining it with equations (2.4), (2.12) and
(2.16) we obtain:

Te(1,2;6) = N,(1,2;G)/D(C) (2.18a)

where

A1 x-1

N,(1,2:0m07°8 3 5 expElnynyda- 3 @) Tt (o)) (2.180)
ped ny=0 n,=0 A jev eck
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Using a well-known property of the X roots of unity, the sum over n; yields a factor

zero unless

-0 if 1=1 _
Op(i) = {+x if 1=2 {2.19)
0 otherwise.

This may be expressed by saying that the flow is conserved at every non-rooted vertex
and that there is a net external flow o entering at root 1 and leaving at root 2. A

flow which satisfies (2.19) will be called a rooted a-flow. The set of such flows will be

denoted by F,(G) and hence

N,(1,2;6) = 3 Il t (ple)). (2.20)
peFa(G) ecE

We will call N(1,2;G) = {N(1,2;G),0=0,1,..,A-1} the flow vector, although strictly
speaking each of its components is a flow generating function for rooted o—flows.
Comparison between (2.20) and (2.6) shows that D{G)=Np(1,2;G) and we note that egs.

(2.18a) and (2.13) imply that:

Ny_o(1,2;6) = Ny(1,2;6) (2.21)

For the Potts model eq (2.20) reduces, for o#0, to (see proof in the Appendix):

N1(1,2;G) = N9(1,2,G) = .., = Ny_1(1,2;G) = N19(G) =
- L F, ,(x,G") m t (2.22)
G'sSG 12 ecE' °

which is eq. (4.3) of PF1. Here Fy7(\,G') is the two-rooted flow polynomial defined in
PF1.

In PF1 it was shown that the correlation function for a two-rooted Potts cluster is
proportional to the transmissivity of a2 single effective edge with Hamiltonian defined in
terms of a partial trace over the internal spins (see eq. 3.15 of PFl). We now extend

this result to the Z()\) model. Following the derivation of eq. (2.18b) we can show that
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the sum of the left-hand side of eq. (2.16) over all n's except nq and ny (denoted below
by Tr') depends only on the difference nyj-np. It is therefore possible to define the

equivalent Hamiltonian heg(ng-nz) by:

Tr' [exp(- E he(“i_nj))] - C exp[-heq(nl-nz)] . {(2.23)
ecE

where C is a constant. Carrying out the further sum over ny and nj with and without the
factor exp[-2ri(n)-nz)o/A] and taking the ratio of the results gives, using (2.7) and (2.12):

T(1,2;G) = tese(0) (2.24)

where tqff{c) is the component « of the vector transmissivity of a single pair of atoms 1
and 2 interacting with Hamiltonian heq(nl-nz). We therefore call T(1,2;G) =
{Nn(1,2;G)/Np(1,2;G), o=0,1,...,x-1} the equivalent vector transmissivity between the roots
1 and 2 of G. For Z(4), T(1,2;G) is the equivalent vector transmissivity of Mariz et al

(1985) which they denote by G.

3. GRAPH REDUCTION EQUA'_I‘IONS OF THE SBCM.

In this section we extend the equations of the SBCM algorithm from the Potts
model to the Z()\}) model. The major step is to replace the denominator and numerator of
the equivalent transmissivity of an effective edge used in the Potts model by a flow
vector.

In PF3, three ways were used to reduce the size of the graph under consideration:
(a) splitting into pieces at articulation vertices; (b) replacement of subgraphs attached at
only two vertices by effective edges; (c) removal of (effective) edges using an effective
break—collapse equation. The first of these was made possible by the fact that the
correlation function for an articulated graph might be factorised. Secondly, three types of
subgraph were considered for replacement by an effective edge, namely: (a) edges in
series, (b) edges in parallel and (c} subgraphs which were not combinations of series

and/or parallel edges. The latter was referred to briefly as non-reducible subgraph
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replacement. Finally edge removal might only be carried out at the expense of replacing
the graph by two further graphs; one in which the edge was deleted and the other in
which the edge was contracted. It was therefore only used as a last resort when the
replacement by effective edges was not possible. All three ways were used recursively and
applied to effective edges and subgraphs containing effective edges as well as ordinary
edges. The formulae which enabled the reduction processes to be carried out were derived
for subgraphs, with the understanding that they could be used for effective edges since the

latter can always be expanded into subgraphs.
3.1 Splitting of Articulated Graphs.

Suppose that G is separated into two subgraphs Gy and Gy by an articulation vertex
i (see Fig. 1). There are two cases to consider depending on whether both roots 1 and 2
are in the same subgraph (Fig. 1a) or whether there is one root in Gj and one root in
Gy (Fig. 1b). In the latter case we suppose that i#1 or 2 and the graphs are said to be
in series,

(a) Both Roots in Gy.

If i#1 or 2, by the conservation condition (2.19), any flow in F(G) is such that
the signed sum of o(e) over the edges of Gy incident with i is zero, and hence we say
that there is no flow between Gy and Gj. It follows that any flow in F{G1) combined
with any flow in F(Gj) gives rise to a flow in F {G) and that all such flows may be
obtained in this way. The sum in (2.20) may therefore be reorganised as follows:

N (1,2;6) = 3 ) Mt (o) [t (py(e)) 3.1
P1¢Fo(CG1) v2€eF(G3) ec¢Eq e¢Ey

and hence, using (2.6) and (2.20):

Nn(1,2,G) = Np(1,2;G1) D(G2) (3.2)
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If i=2, there is a net flow of « into i from Gq and again using (2.19) there is no
flow into Gg since Op(2)=c. Similarly there is no flow into G5 when i=1 and eg. (3.1)

holds in all cases.

(b) G; and Gy are in Series
For graphs in series (Fig.1b) eq. (2.19) implies that there is a flow of o from G
to Gy and hence any flow in F,(G) may be composed from a flow in F{G1) and a flow

in Fo(G32). As in case (a) the sum in (2.20) may be factorised:

N, (1,2;6) = 3 ) M tlpi(e) [t (py(e))
01€Fn(C1) ¢02¢eFo(Gy) ecEq ecEp
~ Np(1,1;G1) Np(1,2;62) 3.3

For two edges in series, eq (3.3) reduces to eq (9) of Alcaraz and Tsallis (1982).

3.2 Parallel Combination of graphs.

Suppose now that G is composed of two subgraphs Gy and G2 having only the root
vertices 1 and 2 in common (see Fig. 1c). Suppose that the flow into the edges of Gq
which are incident with root 1 is 8, then the flow into G2 is a~f. Subdividing the flows
on G according to the value of 8 gives:

A-1

N (1,2;6) =3 3 p) It e e [t (pye))
B=0 p1€Fg(G1) p2¢Fy_g(Gy) ecEq eeEy

A-1
-3 N, (1,2;G6,) S M t (py(e))
g0 b Vg eFy_g(G2) eeEy © 2

a1
- ﬁEO Nﬁ(l,.2;Gl) Na-ﬂ(l'Z;Gz)_ ' (3.4)
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which, for the Potts model, reduce to eqs (4.14a) and (4.14b) of PF3 in the respective
cases of o # 0 and & = 0.

Eq (3.4) has the form of a convolution and hence the discrete Fourier transform,

a1
No(1,2;6) = 5 21Ny (1209, (3.5)
g a0 o
may be factorised as:
Ng(1,2;6) = Ng(1,2;61)Rg(1,2;G3). (3.6)

The N's may be polynomials in several variables and the product of two of these
polynomials is usually the most time consuming operation in the determination of
Ng(1,2;G). If so then taking the Fourier transform, using the product rule (3.6) and then
inverting is more efficient than the direct convolution. The advantage of the transform

method increases with the number of graphs in parallel; if there are n such graphs then
Lt n e
Ng(1,2;G) - I Ng(1,2;Gy). 3.7
k=1

For the Potts model, N is the X of PF3 (eq. 4.15¢), Ny is Y (eq. 4.15d) and the
inversion of eq (3.7) leads for # = 0 and § # 0 to the respective egs (4.15a) and (4.15b)
of PF3. In the case that G is the single edge [1,2] we note that ﬁﬁ I\ is equal to the
probability p(f) defined by Alcaraz and Tsallis (1982) and that Ng /Ng is their ()P i.e.
the dual variable of t(§). For a pair of edges in parallel eq. (3.6) leads to eq. (11) of

Alcaraz and Tsallis (1982),
3.3 Replacement of a Subgraph by an Effective Edge.
We now consider a generalisation of the parallel combination formula which allows

the size of a graph to be reduced by replacing a subgraph by a single edge. In order for

this to be possible G must be the union of two subgraphs H and L which have only two
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vertices i and j in common. Furthermore, both of the root points must be in H (see fig.
2) with the possibility that i and/or j are rooted. The case when both i and j are rooted
is the parallel combination above. In general the flows in F(G) may again be subdivided,
but this time, according to the flow § into L at i (and out at j), by which we mean the
signed sum of p(e) over the edges of L incident with j. By the conservation condition this

implies an additional flow into H at j (and out at i). The generalisation of (3.4) is

therefore
A-1
N,(1,2;6) =3 Nﬁ(i.j;L) Nog(1,2;§,1;H) (3.8a)
B=0
with
Na6(1.2:j.l;H> -3 Tt (ple)) (3.8b)

goEFaﬂ(H) ecEy

where Foo(H) is the set of mod-\ flows on H with an external flow o in at 1 and out
at 2 and 8 in at j and out at i. If i=1, the net flow in H at the common vertex is o8
and if in addition j=2 then there is a net flow in H of o—f out at 2 in agreement with
(3.4).

The sum over 8 in (3.8a) followed by the sum over ¢ in (3.8b) may be replaced
by a single sum over flows in F (HUe;), where e  is an effective edge replacing the
subgraph L and having flow vector equal to the flow vector of L. This result may be

summarised by:

Ny(1,2;G) = Ny(1,2;HUey). (3.9)

This replacement may be repeated as long as there are further subgraphs which satisfy the

above conditions on L so that the flow vector of G may be equal to that of a graph with

several effective edges. The subgraph selected for substitution may itself contain effective
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edges. Figure 3 shows an example of successive replacements.

Eq. (3.9) could also be obtained by performing a partial trace over the internal
vertices of L. as in the derivation of (2.24). Our use of effective edges here is
consistent with that in §2 since (2.24) may be rederived by replacing H by a pair of
isolated root points.

The simplest case of subgraph replacement is when L consists of a pair of edges in
series. These edges may or may not be effective but in any case it follows from (3.3)
that Nﬁ(i,j;L) may be calculated by multiplying the F-—components of the flow vectors of
the two edges. Similarly when L is the parallel combination of two (effective) edges the
equivalent flow vector is obtained using the Fourier transform technique of the section
§3.2. A replacement which is made when no series or parallel combination of edges exists
will be called, as in PF3, a non-reducible subgraph replacement. In this case the
calculation of Ng(i,j;L) is a sub-problem of the same type as the calculation of

Nn(1,2;G) which is one reason why the SBCM is recursive.
3.4 Effective Break—Collapse equation.

When G is such that no further subgraph replacements may be made then further
reduction methods must be considered. In the case of the Potts model a formula known as
the effective break—collapse equation was used (see PF3). This will now be rederived and
extended to the Z(\) model. Let f be an edge of G, possibly effective, and subdivide the

flows in F,(G) according to the flow B=p(f) in f. Definition (2.20) gives:

A-1
Nn(1,2:G) - EO tf(ﬁ) Nog(1,2:£;6) (3.10)

where Naﬁ(l ,2;f;G) is the generating function of the flows on G with external flow ¢ in
at 1 and out at 2 and a fixed flow £ in the edge f. We call such an edge f a frozen
edge. Observe that a fixed flow g from i to j in the edge f=[i,j] is equivalent to an

external flow £ in at j and out at i with f deleted. Therefore Npg(1,2:f,G) is equal to
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Naﬂ(l,2;j,i;H) in eq. (3.8), where H is the ™"broken graph” Gf obtained from G by
deleting the edge f. If =0 then

Npo(1,2;£:6) = No(1,2;G§) (3.11a)

and in particular

Npo(1.2;C) = D(G}). (3.11b)

If f is the edge [i,j] of G we denote by GY the "collapsed graph™ obtained from G§ by
identifying the vertices i and j. The flows on GY may be obtained from those on G by
restriction to the edge set EMf and, hence, the generating function for these flows may be

found by setting t¢{(8)=1 in (3.10), i.e:

x-1
Na(1,2;6) = 3 Nog(1,2;£:6) (3.12)
=0

Therefore to contract an edge is equivalent to summing over all possible flows for this
frozen edge.

The effective break—collapse equations for the models considered below follow from
(3.10) using (3.11) and (3.12).
(a) Potts Model.

For the Potts model, if f is an effective edge then t{0)= Dggr and for >0, tff)
= Negff (the same for all §>0). Thus in this case all components of the flow vector are
determined by the flow vectors for the broken and collapsed graphs. From (3.10) and

(3.11a) we cbtain:

A-1

N, (1,2;6) = D .. N (1,2;68) + Neffﬁgl N,g(1:2:£:6) (3.13)

and using (3.12) and (3.11a)
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No(1,2;C) = Do No(1,2;G) + Nogg [No(1,2;CF) -No(1,2;68)]
= [Depr-NerplNg(1,2;G8) +Nopr Ny(1,2;G¥) (3.14)

which is the "effective break—collapse” rule (egs. (4.13) of PF3).
() The Z(4) model.
For the Z(4) model, because of the symmetry condition (2.21), the flow vector of

an effective edge can have at most three different components:

Negr = (Degr.Niarf.N2efrf Nieft)

Equations (3.10) and (3.11a) now yield
No(1,2;G) = Dggg No(1,2:Gf) #Niaps [Np1¢1,2;F;6)+Ny3(1,2;£;6)

HNoarr Ny2(1,2;f,G)
which combined with (3.12) leads to

No(1,25G) = [Defs-NieffiNa(1,2;G8) + Nygpp No(1,2:GF)

+{N2err-NiefflNg2(1,2;f;G) (3.15)

where the third term did not exist for the Potts model. Thus in addition to the broken
and collapsed graphs required for the Potts model we must also consider the graph G with
the chosen edge frozen with a fixed flow of 2,
(¢) The Z(x) model.

The extension of (3.15) to genmeral A\ may be obtained by subtracting tg(1) times

(3.12) from (3.10). Writing tg(G)= Ngefr we have for \>4:
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No(1,2{6) = [Degr-NierfiNg(1,2;68) + Niepr No(1,2;GF)

h=2
+ Bzz[Nﬁeff-NIEff]Naﬂ(l’2;f;G) (3.16)

and in addition to the flow vectors for the broken and collapsed graphs there are mow a
further A-3 vectors corresponding to the edge f being frozen with fixed flows from 2 to
A2,

4. SBCM AND BCM FOR THE Z()) MODEL

In this section we generalise the SBCM algorithm for the Potts model described in
PF3 to the Z(\) model. Furthermore we extend to effective edges the formulae which
appear in the BCM of Mariz and coworkers, and interpret their precollapsed bonds in
terms of frozen edges. Finally, we illustrate the SBCM using the Wheatstone Bridge Z(4)

cluster and compare it with the results of MTF obtained through their break—collapse

algorithm,

4.1 The SBCM Algorithm.

The SBCM algorithm of PF3, for the Potts model, uses a recursive procedure T
which executes the operations of splitting into pieces, series, parallel and non-reducible
subgraph replacement as long as possible and then wuses the effective break—collapse
equation. Non-reducible subgraph replacement and use of the effective break-collapse
equation both require calls to T and hence the need for recursion. The procedure
terminates when a graph with only two vertices is obtained, at which point the equivalent
transmissivity is calculated by the parallel rule. Three main changes need to be made in

order to extend this algorithm to the Z()\) model.
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(i) Firstly the effective break—collapse equation must be replaced by eq. (3.16) which
entails calculating Naﬂ(l ,2;£;G) for =2 to A-2. This may be achieved by replacing step
(d4) of the algorithm by a loop containing a further call to T for the graph G with the
flow vector for edge f replaced by a constant vector representing the fixed flow 8. For
Z(4) the only fixed flow required is 2 which is represented by the wvector (0,0,1,0). With

this replacement the series and parallel equations work without modification.

(i) Step (d1) of the algorithm selects an (effective) edge for application of the
effective break—collapse equation. The edge selected must now not be a frozen edge, nor
must it be an (effective) edge, the flow in which is already determined by the flow in the

frozen edges together with the conservation condition.

(iii)) A further terminal step must be added before the terminal condition mentioned
in (Ile} of PF3. This is used when the current graph has more than two vertices and yet
no further applications of the effective break—collapse rule are necessary since the flow in
all (effective) edges is already determined by the flows on the frozen edges, the external
flow and the conservation condition. The component o of the flow vector for the graph is
now determined by calculating the implied flow in each (effective) edge and taking the
product of the appropriate components of the flow vectors for these edges. This
terminating condition will arise when the number of frozen edges is equal to the number

of independent cycles in the graph. In this case we call it a frozen graph.

4.2 The BCM for Effective Edges.

(a) The Z(4) model.
Mariz et al (1985) presented for the Z(4) model a break—collapse equation similar

to equation (3.15), but in terms of ordinary edges rather than effective edges. In addition
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to the flow vectors for the broken and collapsed graphs they used a third flow vector
Ngc(l ,2;G) defined for the graph G with the chosen edge, f, "precollapsed®. This was
defined to be N,[(1,2;G} with tg(0)=1, te(1)=te(3)=0 and t§{(2)=1. Interpretation in terms of

flows was not mentioned in the MTF paper but from eq. (3.10) we obtain

NBC(1,2;6) = Nyol1,2;6) + Npz(1,2;6) (4.1)

from which it follows that Ngc(l ,2;G) is the generating function for internal flows having
value 0 or 2 on the chosen edge f and subject to an external flow o entering at 1 and
leaving at 2. Eq.(4.1) combined with (3.15) and restricted to ordinary edges (i.e.
non—effective edges) yields eq. (8) of MTF. Mariz et al (1985) applied the latter
equation recursively until graphs with all edges precollapsed are arrived at. For such a
graph (which we will denote by Gpr) N1 ,2;Gpr) is the number of rooted mod—4 o-flows
with the constraint that the flow on any edge must be 0 or 2. Such flows will be

called even flows. Tsallis (1988) has stated without proof that :

N1(1,2iGpr) = N3(1,2;Gpy) = 0 (4.22)
c(cpr)
N2(1,2;Gpp) = 2 712(Cpy) (4.2b)
c(Gpr)
D(G,,) = 2 (4.2¢)

where ¢(Gpy) is the number of independent cycles in Gpr: 1120Gpy) is 1 if the roots are
connected and zero otherwise. We now argue that these results follow directly from our
interpretation in terms of flows. We first note that, for even flows, Jp(i) is even for all
i, and hence (2.19) can only be satisfied when ¢ is even. Eq. (4.2a) therefore follows
immediately. Further we note that there is a correspondence (bijection) between the even

rooted mod-4 2-flows and the unrestricted mod-2 1-flows obtained by replacing edges
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with flow 2 by edges with flow 1. Eq. (4.2b) follows from the fact that the number

c(Gpr)
of unrestricted rooted mod-2 1-flows s 2 + when the roots are

connected on Gpr: and O otherwise (see PF1). Eq.(4.2c) results from a similar

correspondence between even mod—4 flows and unrestricted mod-2 flows.

(b) The Z()\) model.

Using eq. (2.21) we can rearrange eq. (3.16) for @ = 0,1,..., X in the following

form:
X 5
N (1,2;6) = [Dypp + (X -2)Ny po- BEZ Ngerrl No(1,2:iGg)
y X bb...c...b
* NierNa(1:2:6p) + éz(nﬁeff'nleff) Na (1,2;6) (4.3)

with the superscript ¢ occupying the gth position, Nabb---c---b(l ,2;G) is defined (Tsallis,
private communication) as N (1,2;G) with the chosen edge f being a precollapsed edge of

type B, ie.

1 if v = 0,8 or )-8
t o0y —{ (4.4)

0 otherwise

Using eq. (3.10) it follows that for 8 = 2,3,....%
NpP-€+8(1,2:G) = Nyg(1,2,£G) + Npg(1,2:£:G) + Ny 5—g(1,2:f:G) (4.5)

where for X even and § = M2 the last two terms become equal and should be included
only once.

Eq. (4.3) reduces, when f is an ordinary edge, to the break—collapse equation
conjectured by Mariz et al (1985,1988) for » = 4 and 6, and by Mariz and Tsallis

(Tsallis, private communication) for a general value of \. In the break—collapse algorithm



CBPF-NF-073/88

of Mariz and coworkers, eq. (4.3) is applied as many times as needed to arrive at graphs
Gpr with all edges precollapsed. But, since Gpr can confain, for A > 4, different types
of precollapsed edges, there are no simple formulae for the components of their flow
vectors such as the ones for A = 4 (see eqs. 4.2). Their calculation involves the explicit
enumeration of all mod-) flows which can take the values 0, § or A»§8 on each
precollapsed edge of type B.

4.3 An lllustration of the SBCM for the Z(4) Model and Comparison with the BCM

Now let us illustrate the SBCM for the Z(4) model by calculating the equivalent
transmissivity of the Wheatstone Bridge graph G of fig. 4. The same calculation was
carried out in MTF using their BCM algorithm and we are therefore able to compare the
number of steps required by the two algorithms. We note that with the choice h(0) =
Ky - 2Kj, h(l) = h(3) = K; +2K3 and h(2) = 3K; -2K3, the Hamiltonian (2.1) can be
written in terms of two coupled Ising variables as in eq. 1 of MTF. The transmissivity
components t(1} and 1(2) defined by (2.7) when expressed in terms of K; and K, are

seen to be the parameters t; and ty defined in egs. (2a) and (2b) of MTF.

In the rest of this section we assume that the vector transmissivity te = t, the same
for all edges. Applying eq. (3.15), to graph G in fig. 4, with f being the edge e3, we

get for ¢ = 0,1,2,

Ny(1.2:G) = [1-t{1)]Ng{1,2:0p)H(N,(1,2,G) + [H2)-t(1)INgp(1,2563,G) (4.6)

where the graphs Gy, G, and G4 are shown in Fig. 4. The terms corresponding to the
deleted graph Gy, and contracted graph G, can be easily calculated by using the series
and parallel equations (3.3) and (3.4). The expressions for the flow vectors for these
graphs agree with egs. (9a)-(9f) of MTF, where their superscripts bb and ¢c¢ refer to our

graphs Gy, and G, respectively.
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In order to calculate the last term of eq. (4.6), we apply eq. (3.15) to the graph

Gq with the edge f chosen to be es:

N2(1,2:e3:Gq) = [1-4(1)INy2(1,2;e3;Ge) + t{1)Ng(1,2;e3;G¢)

+ [t(2)-t(1)INg22(1 ,2;e3,e5;Gg), (o = 0,1,2) 4.7

where G, Gy and Gg are shown in Fig, 4.

Since G has only onme cycle, the value of the flow on the frozen edge will
automatically fix the values oej) of the flow on the remaining edges, i.e. G, is a frozen
graph. These are given by: (2) ple]) = olep) = 2 and pleg) = 0 for o = 0; (b) pleq)
=1, pleg) = 2 and pleg) = 3 for @ = 1; (c) pleg) = 0, pleg) = pleg = 2 for a = 2.

The corresponding components of the flow vector are:

Noz(1,2:3:Ge) = [H2)P2 (4.82)
N12(1,2;e3:Ge) = [t(1)]2[1(2)]) (4.8b)

and
N2a(1,2:e3:Ge) = [t(2)]2 (4.8¢)

The computation of N,»(1,2;¢4;G¢) involves the calculation of the effective flow vector of
graph Gy (Fig. 4). Gy is composed of an ordinary edge with flow vector (1,t(1),t(2),t(1))
in parallel with a frozen edge of flow 2 whose flow vector is (0,0,1,0). Using, then, eq.

(3.4) we get that:

No(1,2;e3:Gp) = (1(2),t(1),1,4(1)) (4.9)
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The flow vector of Gy can be easily computed through the use of egs (3.3), (3.4) and

(4.9) namely:
Noa(1,2:e3;G) = Npo(1,2:63:Gy) = t(2)+[t(2)[2+2[t(1)]P (4.10a)
Np2(1,2;e3:G¢) = t(1)t(1)+24(2)+t(1)t(2)] (4.10b)

The last term of eq. (4.7) comes directly from the conservation of flow mod—4 since the
number of frozen edges, namely 2, is equal to the number of independent cycles, i.e. Gg
is a frozen graph. The values p(e;) of the flow on the edges ei = 1,2,4) are:

(a) ple1) = pleg) = 0 and pleg) = 2 for o = 0; (bj ge1) = 3, pleg) = 0 and pleg) =1
for @ = 1; (¢) ple1) = 2, pleg) = pleg) = 0 for ¢ = 2. The components of the flow

vector are therefore:

Nopo(1,2:e3.€5:Gg) = 1(2) (4.11a)
N122(1,2;e3.65:Gg) = [H1))2 © (4.11b)
and
N2a(1,2ie3,65:Gg) = 1(2) (4.11c)

Using eqs. (4.7) — (4.11) we arrive at

Np2(1,2;e3:Gq) = Nap(1,2;e3:G4) = 2{[t(2)12+1t(1)]%} (4.12a)

N12(1,2;e3:Gq) = 4[t(1)12{t(2)] (4.12b)

Finally the combination of egs. (9a) — (9f) of MTF with eqs. (4.12) and (4.6) leads to:

D(G) = 1+4[t(1)P+2[t(2) P42[t(1)]4+{t(2)]4+4[t(1)P[t(2)]2+2[t(1 )]41(2) (4.13a)
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Nj(1,2;G) = 2{t(1)]2{1+t(1)+3[t2)2+2t(1 )t(2)+(1)[1(2))2} (4.13%)
and
Nj(1,2;G) = 2{[t(2)]2+[t(2)]3+4[t(1)Pe2)+[t(1)]4+[2(1)]41(2)} (4.13c)

which agree with eqs. (6) and (7) of MTF when the latter are specialised to the isotropic
case,

Notice that combining eqs. (4.1), (4.12) and eqs. (9a) - (9¢) of MTF we recover
their expressions (9g) - (9i) for NE%(1,2;G) (a = 0,1,2) as expected. In the case of the
Potts model (i(1) = t(2)) eqs. (4.13) reproduce eq. (5) of Tsallis and Levy (1981). It is
worthwhile stressing that the application of the SBCM to the graph G (fig. 4) involved the
use of the effective break-collapse equation (3.15) twice, which generated 5 graphs, the
flow vectors of which were easily computed by the series and parallel equations. On the
other hand, Mariz et al (1985) applied their break-collapse equation 5 times generating 11
graphs which are combinations of series and/or parallel edges. Therefore, for the Z(4)
model on the graph G, our method was more efficient than the BCM of MTF since it

required a smaller number of iterations.

5. CONCLUSIONS

We have generalised to the Z(\) model the subgraph break-collapse method (SBCM)
of the Potts model which we presented in a previous paper (de Magalhfes and Essam
1988). The essential change is to replace the denominator and numerator (D,N) of the
equivalent transmissivity of an effective edge used in the Potts model by a flow vector
(Ng:N1....,Nx-1). The effective break—collapse equation contains graphs with frozen edges
having fixed flows in addition to the broken and collapsed graphs which appear in the
Potts model. Detailed modifications of the SBCM algorithm are given in §4.1.

In an alternative algorithm of Mariz and co—workers known as the break-collapse
method (BCM), graphs with precollapsed edges were considered rather than graphs with

frozen edges. The effective break—collapse equation with frozen edges (eq. 3.16) generates
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(z-1) flow vectors, while the one with precollapsed edges (eq.4.3) leads to [M2]+1 flow
vectors. Therefore, for A>4, the BCM generates, in each iteration, less flow vectors to
be computed than the SBCM. On the other hand, in the BCM more iterations are
needed, and the determination of the flow vectors for the terminal graphs (i.e. graphs
with all edges precollapsed) requires the examination of all the mod-)\ flows that can be
formed such that the flow on each precollapsed edge of type § is 0, § or A—8. This is
an enumeration problem, the computing time for which grows exponentially with the
number of cycles in the graphs, except in the case of X = 4 for which formulae are
available (eqs. 4.2). By comparison, our terminal graphs are frozen graphs having a fixed
flow and the flow vector is therefore immediately determined (see §4.1).

We have shown by example that for \=4 our algorithm takes less steps than the
BCM of Mariz and coworkers. Taking into account the considerations of the previous
paragraph, we believe that on balance, even for values of \ greater than 4, our algorithm

is still the most efficient.
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APPENDIX: PROOF THAT N,(1,2;G) FOR o#0 IS INDEPENDENT OF « IN THE

CASE OF THE POTTS MODEL.

This result is stated in eq. 2.22 of the text.

In §2 of PF1 it is shown how one can generate, in the Potts model, all the 2<(G)
(c(G) is the number of independent cycles in G) mod-\ flows in a graph G. For this,
one chooses a spanning tree 7 on G, Each edge not in r defines an independent cycle
formed by the chosen edge together with the unique path in 7 which joins the endpoints
of the edge. The primitive flows in the set of cycles so formed provides a basis in the
cycle space of G. For example, for the graph G of Fig. 4, if we choose the spanning
tree drawn in Fig (5a), then we obtain the independent cycles C; and C, shown in Figs
(5b) and (Sc) respectively. All possible mod-) flows can be generated by assigning the
values 0,1,...,\-1 to the strength f; of the flow in each one of these cycles (the strength
of the flow may be taken as the value of the flow on the edge of the cycle not in 7

since this occurs in exactly one of the independent cycles).

Let us now suppose that the roots 1 and 2 of G are connected (i.e., y132(G) = 1),
otherwise N,(1,2;G) is zero. In order to generate the rooted a—flows (¢ = 1,2,...,A~1)
we now add to each of the above A¢(G) unrooted flows, a flow having value o on the
unique path @ in 7 from 1 to 2 and zero on all other edges. ( Fig. 54 shows such a
path for the forest drawn in Fig. Sa.) This will generate, for any fixed o, all the rooted
a—flows which occur in the sum defining N,(1,2;G) without duplication because of the
independence of the cycles. Although, for any values of o and og#oy (o = 1,2,...,31),
the rooted o-flows are different from the rooted oy—flows, the number of flows is equal
to X{0) in both cases. The total number of rooted a—flows is therefore independent of

o,
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We now argue that the number Fu(a)()\,G') of proper rooted o—flows (flows which
are non-zero on every edge) on any partial graph G' of G is also independent of «. This
was implicitly assumed in PF1 where the number of such flows was denoted by Fq(),G).
For 412(G*")#0 let us partition the total number Ze(G") of rooted a-flows (proper and
improper) on G' according to the subset of edges on which they are proper (non-zero),
which gives for any G'S G:

(') _ ¢ F12(a)“’c..) (A.1)

712(6')’\ E"<E'

where the factor y(2(G') has been included on the left since the number of o—flows is
zero when the roots are not connected on G'. In the latter circumstance the right~hand
side is also zero since the number of proper flows is zero on any subgraph of G'. The

above equation may be inverted (Rota 1964) to yield

IE'\E" | c(G")

(@) '
Fi,m " (A6') = I (-1

Y14{C")X
E"SE' 12

(A.2)

Since the right hand side of eq. (A.2) is Independent of o, it follows that

(1 : (2) . (A-1) " m '
Fi2 (MG = Fp™ OMG) = ..o = Fp3" " 7(NG') = Fp(),6') (A.3)

On the other hand, eq. (2.20) particularised for the Potts model gives
for o= 1,2,...,x-1:

(o) '
N (1,2:6) = I F (A\,6') T t (A.4)
o c'sc 12 ecE' °©

The combination of eqs. (A.3) and (A.4) shows that the generating function N(1,2;G) for
the mod-X\ flows subjected to a fixed non-zero external flow o is independent of « in the

case of the Potts model (eq. 2.22).
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FIGURE CAPTIONS

FIG.1 Pictorial representations of two graphs Gy and G, which share an articulation
vertex i ((a) and (b)) or which are in parallel {c). The roots 1 and 2 are represented by
small circles and unrooted vertices by full dots. In (b) the graphs Gy and G5 are in

series,

FIG.2 Pictorial representation of a two-reducible graph G = LUH with the roots 1 and
2 in H and subjected to an external flow o in at 1 and out at 2. A net flow £ goes
from H to L at i and from L to H at j. Each graph is represented by a half-moon
shape.

FIG.3  An example of successive replacements of a subgraph by an effective edge carried
out in the application of the SBCM algorithm. Step (a) shows a non-reducible subgraph
replacement. In (b) and (d) ((c) and (e)) two effective edges in series (in parallel) are

replaced by a new effective edge.

FIG.4 Graphs generated during the application of the SBCM to the Z{4) two-rooted
graph G. Each edge e; is given an arbitrary directing indicated by the arrow. o
represents the external flow in at the root 1 and out at the root 2. The barred line
indicates a frozen edge with flow 2. To each non-frozen edge is associated a wvector

transmissivity t = (1,t(1),t{2),t(1)).

FIG. 5 An arbitrary spanning tree 7 (see (a)) of the graph G (Fig. 4) and its
corresponding independent cycles C; (b) and Cp (¢). f; indicates the strength of the flow

in each cycle C; (i = 1,2). The path ¢ which connects the roots is shown in (d).
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