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Abstract

We construct a Heisenberg-like algebra for the one dimensional in�nite square-well potential in quantum

mechanics. The number-type and ladder operators are realized in terms of physical operators of the system as

in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a

recently developed non commutative di�erential calculus. This \square-well algebra" is an example of an algebra

in a large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains q-

oscillators as a particular case. We also show here how this general algebra can address hidden symmetries

present in several quantum systems.
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1 Introduction

The harmonic oscillator is a paradigmatic system in
physics for several well-known reasons. The algebra re-
lated to it, the Heisenberg algebra, is a reference tool
in second quantization, and its structure, based on cre-
ation and annihilation operators and its particle inter-
pretation, is used everywhere having, up to now, no
analogous interpretation in any other system.

In the last years, several attempts have been made
to generalize Heisenberg algebra and a particular gen-
eralization, known as q-oscillators [1], and their appli-
cations [2, 3, 4] have attracted considerable attention.
Nevertheless, in all generalizations of Heisenberg alge-
bra, a clear comprehension of the physical problem un-
der consideration is always lacking. The special role
played by the harmonic oscillator system is then indis-
putable although it is not understood why other sys-
tems could not have similar algebraic structures.

Recently, it was constructed a generalization of the
Heisenberg algebra depending on a general functional of
one generator of the algebra, f(J0) [5, 6]. For linear f it
was shown that the algebra corresponds to q-oscillators,
the Heisenberg algebra being obtained in the limit when
the deformation parameter q! 1. The representations
of the algebra, when f is any analytical function, was
shown to be obtained through the study of the stability

of the �xed points of f and of their composed functions,
exhibiting an unsuspected link between algebraic and
dynamical system formalisms.

We show here that this generalization of the Heisen-
berg algebra together with a non-commutative di�er-
ential calculus, developed to be used in space-time dis-
crete networks [7, 8, 9], are appropriate to describe hid-
den algebraic aspects of a simple quantum mechanical
system: the one-dimensional in�nite square-well poten-
tial. All generators of the algebra, ladder operators plus
a number-type one, are written in terms of physical op-
erators of the system in a similar way to what happens
in the harmonic oscillator.

The introduction of creation and annihilation oper-
ators realized in terms of physical operators and a Fock
space representation for this simple problem, opens the
possibility of applying the formalism of second quan-
tization to a large amount of quantum systems with
possible applications ranging from condensed matter to
quantum �eld theories. We also stress in this paper hid-
den symmetries in many quantum mechanical systems
presented in the sequence of energy eigenvalues, a sym-
metry unsuspected up to now [5, 6].

The generalization of the Heisenberg algebra re-
cently developed in [5, 6] can be described by the gen-
erators J0, J� satisfying the relations:
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J0 J+ = J+ f(J0) ; (1)

J� J0 = f(J0) J� ; (2)

[J+; J�] = J0 � f(J0) ; (3)

where J� = Jy+, J
y
0 = J0 and f(J0) is a general ana-

lytic function of J0. The above algebraic relations are
constructed in order that, in the representation theory,
the n-th eigenvalue of operator J0 is given by the n-th
iteration, through the function f , of an initial value �0.
The operator

C = J+ J� � J0 = J� J+ � f(J0); (4)

is a Casimir operator of the algebra. The representation
theory of the algebra can be analyzed assuming that we
have an irreducible representation of the algebra given
by eqs. (1-3). Consider the state j0i with the lowest
eigenvalue of the Hermitian operator J0,

J0 j0i = �0 j0i : (5)

For each value of �0 and the parameters of the algebra
we have a di�erent vacuum that for simplicity will be
denoted by j0i. As j0i is the vacuum, we have,

J� j0i = 0: (6)

As consequence of the algebraic relations (1-3, 5, 6) we
obtain for a general functional f

J0 jmi = fm(�0) jmi; m = 0; 1; 2; � � � ; (7)

J+ jmi = Nm jm+ 1i; (8)

J� jmi = Nm�1 jm� 1i; (9)

where N2
m = fm+1(�0)��0 and we have used f0(�0) =

�0. Note that fm(�0) denotes the m-th iterate of f ,

�m � fm(�0) = f(�m�1) : (10)

Eqs. (7-9) de�ne a general n-dimensional represen-
tation for the algebra. In order to solve it, i.e., to con-
struct the conditions under which we have �nite- and
in�nite-dimensional representations we have to specify
the functional f(J0). Heisenberg algebra is the simplest
particular case of algebra (1-3) and we can see that if
we choose f(J0) = J0+1 the algebra given by eqs. (1-3)
becomes the Heisenberg algebra. In [6] we used linear
and quadratic functionals, leading to multi paramet-
ric deformations of the Heisenberg algebra. Also, we
showed in [6] that it is the iteration aspect of the alge-
bra that allow us to �nd their representations through
the analysis of the stability of the �xed points of the
function f and their composed functions [5, 6].

Here, in this paper, we shall use the inverse ap-
proach utilized in [5, 6], where it was studied general
functional forms of f . Now, we look for a simple phys-
ical problem with a known spectrum and try to obtain

the generalized algebra related to it. To implement this
program we will need the formalism of the non commu-
tative di�erential calculus mainly studied by Dimakis
et al [7, 8, 9].

In [7] a formalism was developed for a one-
dimensional spacial lattice with �nite spacing, i.e., a
discrete space. We will sketch here an analogous for-
malism for a momentum-space instead of the position-
space. The reason is that inmany physical problems the
momentum space is already discretized, with only some
allowed values. In the one-dimensional in�nite square-
well potential for example, that will be analyzed below,
the allowed values for the (adimensional) momenta are
only the positive integers, as it is well-known. Thus, the
non commutative di�erential calculus approach seems
to be specially appropriated to be used in the momen-
tum space. The formulae used here are analogous to
the formulae used in [7], and the reader should see this
paper for a more detailed exposition and explanation
of the non commutative calculus (remembering again
that their formulae were derived for a discrete position-
space). Therefore, let us consider an one dimensional
lattice in a momentum space where the momenta are
allowed only to take discrete values, say p0, p0 + a,
p0+ 2a, p0+3a etc, with a > 0. The non commutative
di�erential calculus is based on the expression

[p; dp] = dp a ; (11)

implying that

f(p) dg(p) = dg(p) f(p + a) ; (12)

for all functions f and g. Let us introduce partial deriv-
atives by

d f(p) = dp (@p f) (p) = (�@p f) (p) dp ; (13)

where the left and right discrete derivatives are given
by:

(@p f) (p) =
1

a
[f(p+ a)� f(p)] ; (14)

(�@p f) (p) =
1

a
[f(p)� f(p � a)] ; (15)

and satis�es

(�@p f) (p) = (@p f) (p � a) : (16)

The Leibniz rule for the right discrete derivative can be
written as:

(@p fg) (p) = (@pf) (p)g (p) + f(p + a)(@pg) (p) ; (17)

with a similar formula for the left derivative [7].
Let us now introduce the momentum shift operators

A = 1 + a @p (18)
�A = 1� a �@p ; (19)
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which increases (decreases) the value of the momentum
by a

(Af) (p) = f(p + a) (20)

( �Af) (p) = f(p � a) (21)

and satis�es
A �A = �AA = 1 ; (22)

where 1 means the identity on the algebra of functions
of p. Let us now introduce the momentum operator [7]

(Pf) (p) = p f(p) ; (23)

(P y = P ), which returns the value of the variable of the
function f . Clearly,

AP = (P + a)A (24)
�AP = (P � a) �A : (25)

Integrals can also be de�ned in this formalism but
it is rather a technical point and the interested reader
can look the paper [7] for a detailed explanation. Here
we will only use the de�nition of a de�nite integral of a
function f from pd to pu ( pu being equal to pd +Ma,
where M is a positive integer) as

Z pu

pd

dp f(p) = a

MX
k=0

f(pd + k a) : (26)

Using eq. (26), an inner product of two (complex) func-
tions f and g can be de�ned as

hf ; gi =
Z pu

pd

dp f(p)� g(p) ; (27)

where � indicates the complex conjugation of the func-
tion f . Clearly, the norm hf ; fi � 0 is zero only when
f is identically null. The set of equivalent classes of
normalizable functions f (hf ; fi is �nite) is a Hilbert
space and it can be shown that the operators A and �A
are well de�ned in this space [7]. We have

hf;Agi = h �Af; gi ; (28)

where
�A = Ay ; (29)

being Ay the adjoint operator of A. Eqs. (22) and (29)
show that A is a unitary operator. It is also possible to
de�ne a position operator X given as X = (@p+ �@p)=2i
[7]. With this very short adapted review of the non
commutativedi�erential calculus we can go further and,
together with the generalization of the Heisenberg al-
gebra, analyze the physical example of the quantum
mechanical in�nite one dimensional square-well poten-
tial.

Thus, let us assume a one dimensional system with
zero potential between zero and L and in�nite else-
where. As it is well-known, the spectrum of the Hamil-
tonian (H = cP 2, c = 1=2m, �h = 1) with the

above boundary conditions is proportional to n2, where
n = 1; 2; 3; : : :. The momentum is quantized and pro-
portional to n. Therefore, we can see the momentum
space as an one dimensional periodic lattice with con-
stant spacing a = �=L, clearly a candidate to apply the
non commutative di�erential calculus sketched before.
We then take the momentum operator in the Hamil-
tonian H = cP 2, with the above boundary conditions,
as de�ned in eq. (23).

The Hamiltonian's eigenvalue associated with the
(n+1)-th level is proportional to (n + 1)2 and we can
write

en+1 = b(n+ 1)2 = (
p
en +

p
b)2 ; (30)

where en is the eigenvalue of the Hamiltonian associ-
ated with the n-th level and b = �2=2mL2. As J0 is
related to the Hamiltonian [5, 6] and their eigenvalues
should satisfy the iterations given by a function f in
eqs. (1 - 3), we see that if we choose this function as

f(x) = (
p
x+

p
b)2 ; (31)

the J0 in eqs. (1-3) has eigenvalues equal to the energy
eigenvalues of the square-well potential. Eqs. (1-3) can
then be rewritten for this case as

[J0; J+] = 2
p
bJ+
p
J0 + b J+ ; (32)

[J0; J�] = �2
p
b
p
J0 J� � b J� ; (33)

[J+; J�] = �2
p
b
p
J0 � b : (34)

The square root of the generator J0 is well de�ned since
this is a Hermitian operator and can be diagonalized.

We then have an algebra eqs. (32-34) where, by
construction, the eigenvalues of J0 , en, are the energy
eigenvalues of the quantummechanical one dimensional
in�nite square-well potential and J� act as ladder oper-
ators. In order to have a complete description, similar
to the case of the one-dimensional harmonic oscillator,
we must realize the operators J(� ; 0) in terms of physi-
cal operators. We propose for this problem the follow-
ing realization:

J+ =
p
c P (1 + a @p) (35)

J� =
p
c (1� a �@p)P (36)

J0 = c P 2 : (37)

Clearly, J0 is the Hamiltonian and can be written, anal-
ogously to the harmonic oscillator case, as an ordered
product of ladder operators

J0 = J+ J� = c P 2 ; (38)

as J+ =
p
c PA, J� =

p
c �AP and, according to eq.

(22), A �A = 1. Using eqs. (24-25) it is straightforward
to check that these operators indeed satisfy the commu-
tation relations given by eqs. (32-34), applying them to
a function (state) of p. We stress that, the operators



CBPF-NF-073/00 4

P and X are the momentum and position operators in
the momentum space for the one-dimensional in�nite
square-well potential. Moreover, it is possible to write
the operators P and X in terms of the ladder operators
J� and the operator J0.

Fock space representations of the algebra generated
by J0 and J�, eqs. (32-34), are obtained consider-
ing eigenstates of J0, with �xed values of the momen-
tum. Let us call jni the eigenstate of J0 whose mo-
mentum is associated with the quantum number n,
n = 0; 1; 2; 3; : : :. The eigenvalue �n that appears in
eqs. (5-10) can be put as �n = b n2 and the eqs. (7-9)
can be rewritten as

J0 jni = b n2 jni; n = 0; 1; 2; � � � ; (39)

J+ jni =
p
b (n + 1) jn+ 1i ; (40)

J� jni =
p
bn jn� 1i ; (41)

P jni = an jni ; (42)

where N2
n = b (n+ 1)2.

Hence, we see that an algebraic formalism similar
to the harmonic oscillator algebra is constructed for
another physical problem: the one dimensional in�-
nite square-well potential in quantum mechanics. The
sequence of energy eigenvalues of the in�nite square-
well potential hides an algebra, whose symmetries were
not suspected up to now. This Heisenberg-like alge-
bra, that we call square-well algebra, is an example of
a large class of generalized Heisenberg algebras, class
that contains q-oscillators as a particular case, recently
constructed [5, 6]. It is interesting to stress that the
number-like and ladder operators are realized in terms
of physical operators of the system as in the harmonic
oscillator. Also, a number interpretation is possible, al-
lowing us to consider a system with higher momenta
or several systems with lower momenta. It would be
tempting to �nd applications of this second quantiza-
tion type approach in condensed matter and quantum
�eld theory.

Our results indicate that the procedure adopted in
this paper, i.e., to �nd a hidden algebraic structure of
a physical system with the corresponding physical re-
alization of the algebra generators, can be applied to
other quantum systems. The introduction of general-
ized Heisenberg algebras for Hamiltonian systems con-
stitutes thus a very powerful tool for extracting sym-
metries that conventional treatments are unable to dis-
close. We have exempli�ed the use of this algebra for
a simple quantum mechanical problem, namely the in-
�nite square-well potential. However, usefulness of the
method also lies in its application to more complex
physical systems.

The most di�cult task in this method is to real-

ize J(�;0) in terms of physical operators of the system,
such that the algebra is still satis�ed, with the prod-
uct J+ J� being proportional to the Hamiltonian of the
problem studied, as was done in this paper. Work in
this direction is under way.
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