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ABSTRACT

A new class of exact expanding inhomogeneocus
solutions of the Eiﬁstein-Maxwell equations is derived.
fhese solutions éeneralize the dust filled models found by
Ruban and the DoroshkeQich "magnetic” universes. In the
most general case the cosmological constant is non-zero
and the matter content is a mixture of two interacting
perfect fluids plus a sourceless electromaénetic field. The
influence of the field near the singularity and at the latter
stages of the expansion is examined. A subclass of the models
approaches homogeneity and isotropy for lérge cosmological

times.

Key words: Cosmology; Magnetic Fields; Inhomogeneous Models;
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1. INTRODUCTION

The assumption of a primeval magnetic field has
some interesting consequences in astrophysical and cosmological
problems. In principle,;such a field could play an important
role on the structure of formation process, in the origin of the
galactic and intergalactic magnetic field, as well as to
alter significantly the underlying geometric structure of the
universe, at least in the early stages of the cosmic

evolution‘l-s).

Dynamical effects produced by magnetic fields were
investigated by several authors, firstly in the framework of

homogeneous axially-symmetric models (2710} (2)

. Doroshkevich
derived a class of exact solutions and concluded that the
magnetic field can exert a strong influence along the
expansion for any matter equation of state. Generalizations
of the Doroshkevich solutions are available in the

{(7-10)

literature . An useful compendium of homogeneous axially—.

-~symmetric solutions with a simple fluid and magnetic field
is given in the paper by Vajk and Eltgroth(7).
In the last decade, after the class of dust filled

(11)

universes found by Szekeres , an increasing attention

has been paid to inhomogeneous cosmological models(lz-la).
Recently, the Szekeres-spacetime has been extended by
introducing a new radiative component plus an electromagnetic
field(lg). In this paper, Tomimura and Waga (hereafter referred

to as TW) have shown that if an electromagnetic field is

included as source term for the Szekeres metric of class II
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{for this notation see ref. (13)),self-consistent solutions
are possible only if the spacetime gains symmetry. In this
case, the Szekeres metric reduces to the inhomogeneous simple

form first considered by Ruban(zo)

. In the present article

we take the next step in the direction of determining exact
solutions in the framework of Ruban's line element. We assume
that the source of the gravitational field, in the most general
case, is formed by a mixture of two interacting simple fluids
plus an electromagnetic field. The work of TW has been
extended to include éeveral kinds of two fluids and a cosmo-
logical constant. This paper is organized as follows: in the next
section, the basic equations are deduced and an algorithm,
enclosing both the one- and two-fluid description, is given

for obtaining new solutions and recovering the known ones as
particular cases. In section 3, the method is applied for
deriving a new class of solutions in closed form. Finally,

in section 4, the e§olution of the models and the influence

of the electromagnetic field is discussed.
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2, THE MODELS

Let us consider Ruban's line element‘zo'

as? = at? - @?(x,t) ax? - R%(t) (dy2+hldz?) , (2.1)
where
_ siny if k =1 ’ (2.2a)
h(y) = sinvk y _ y if k=20 , (2.2b)
sinhy if k = -1 , (2.2¢)

and k is the curvature parameter of the homogeneous 2-spaces t
and x constants..The functions Q and R are free and will be
determined by the Einstein field equations (EFE)} with cosmo-
logical constant (in our units 81G = ¢ = 1)

v

B - 2 g"VR + AgY = oV 4 Y (2.3)

f

where T;v is the energy-momentum tensor (EMT) of the material

medium and

wv _ _ 1 uove _ 1 uv af

is the EMT of the electromagnetic field.
It is assumed that the material medium is a mixture

of two perfect fluids, whose EMT is

v _ wov o uv
Tm = (pm + pm)u u P9 e (2.5)

where fm = P1¥Po and P, = P1*P, are respectively the net
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energy density and pressure of the mixture.

Now, by consideriﬁg ghe magnetic and electric fields
along the x-axis, it follows that the nonvanishing components
of the Maxwell tensor Fuv are F01 = -F10 = E and F32 =
= -F23 = H. Moreover, since the metric functions depend on the
coordinates t, x and y alone, it is reasonable to suppose
ab initio that E = E(t,x,y) and H = H(t,x,y). In this case,
it is easily shown by using the line element (2.1}, that the

Maxwell equations (sguare bracket means antisymmetrization)

# (/=g V)., =0 (2.6)
-g
and

F[uv;k] = 0 (2.7}

give the following functional forms to the fields:

/Ii'r%) Q
E = > (2.8)
R
and
H = /2T Hy sin/k y -, (2.9)
vk

where the factor 471 was introduced to simplify the expression
of T%v. E0 and HO are constants related with the intensity
of the electric and magnetic fields respectively. Replacing

the above equations into eq. (2.4) one obtains

00 =-Q “Ty; = R “T;, =R h Tyy = —7 - (2.10)
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In the comoving frame hf1=6uo), using (2.5) and

(2.10) the EFE given in Appendix A can be rewritten as

2
m . +2
—0 2RQ R°+k _
Py + 0, + R4 0 + R2 A ' (2.11)
2
m - .2
0 2R R k
Py + Py -G =-S5 - -—+4 ' (2.12)
1 2 R4 R R2 R2
: 2
2 2m
RO + RO - I:R + RR”‘ - g:lo =0 , (2.13)
R
2 E%*“S
where My = > and an overdot means differentiation with

respect to time. Note that the EFE are not modified if only
one field is present. Since there is no observational basis
for a primordial electric field, in what follows just the
magnetic one will be considered. Incidentally, egs. (2.9} and
(2.10) show that such a field is "frozen-in" for any solution
of (2.11) — (2.13). The lines of force are entrapped into

the fluid and are cérried along with it regardless the value
of the electrical conductivity.

The system (2,11)—(2.13) is indeterminate since there
are three differential equations and four unknown quantities,
namely p, p, R and Q in the one-fluid description and six
unknowns, namely Pys Por Pys Py R and Q for the case of two
fluids. Moreover, the net pressure is a function of t alone
whereas the net energy density is a function of t and x.
Therefore, in the one fluid description the usual eguation of
state cannot be imposed without loss of generality. Essentially,
this is the same problem appearing for the first time in

Szekeres' type models. There, it was circumvented by Szafron(13)
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who suggested ap_g}gorithm for obtaining exact solutions.For
a simple fluid it can be adapted as follows:

(i) specify the net pressure p = p(R,R,R,A) in eq.
(2.12) and solve it for R = R(t);

{(ii) obtain Q = Q(R,x) from (2.13);

(iii} from eq. (2.11), compute the net energy
density of the fluid P by substituting the expressions of
Q(R,x) and R(t). |

An explicit example will be given in the next section.
We remark that if p = A = 0 the sclutions obtained are simple
inhomogeneous generalizations of the Doroshkevich universes.

In addition, if my = 0 Ruban's models are recovered, and if
.2

Pu(R) =5 or p_(R) = 3(y-1) (B3%) where C and vy are
R R
constants then the models stand for twe subclasses of Szekeres'

type solutions {21722

. Of course, in the two-fluid description
several choices are possible since one needs to fix three

unknown quantities, for instance Py+ P, and p,. If

Py =A=k=0 and P, = % Py = %T the solutions of TW

with dust, isotropic radiation and electromagnetic field are

recovered and if my = 0 these soluticons reduce to a subclass

(14)

of Pollock and Cadderni work.
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3. A NEW CLASS OF SOLUTIONS

Here, by using the conditions (i)—(iii) defined in
the last section we will exhibit, in closed form, a set of
exact solutions to the system (2.11)—(2.13). Firstly, note
that if m, = 0, egq. (2.12) reduces to that of the FRW models.

It thus suggests to the pressure the following expression(zl)

p = 3(y-1) (R%+K) /R® , (3.1)

where the constant parameter Yy will be identified with the
adiabatic index of the asymptotic (in time) equation of state
p = (y-1)p. So, inserting (3.1) into (2.12) and considering

from now on that A wvanishes one finds

2
Rﬁ+m2"—2)ﬁ2+117—;ﬂk--]2-'£-g-=0 , (3.2)
the first integral of which is given by
R% = (R—I{“’)”-2 - k - =5y (m—,fiz L iE Y £ 5, (3.3)
and
R? = (R—lf)2 - X - (I;—E)Z(R—!f)zln(—r-{,%)‘ JifY = 3§, (3.4)

where R0 is a constant y-independent.

If mj = 0 eq. (3,3) is the first integral for any v,

whereas (3.2) reduces to the FRW differential equation. 1In

this case, the solution of (3.2) wvalid for any values of y and

(23)

k was given by Assad and Lima in terms of hypergeometric

functions. However, if My and k are both different from zero
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the method developed there cannot be applied. Henceforth, for
the Eaké of simplicity we consider just the quasi-Euclidean
models (k = 0) with v # % . In this case, following the ansatz

of the ref. (23), it is easy to show that the solution of

{3.2) or equivalently (3.3) is given by(24)'
t-ty = 3537 (R/Rg) [} i v T (R/R,) Fy
2R (mg/Ry) 2 172
-0}y -0 0 F {3.5)
4-3Y 1-3Y 2 ! )

where ty = t(Ro), F, = Fl(Ro) and FI(R) is the hypergeometric

function

2
{m,/R,)
3y-2 .3, __0""0 3y-4
15 351 - —952—(r/Ry) ] (3.6)

F 3y-4

1

It should be noticed that taking the limit my * 0 and using

(23) pla,bjci1) = [ELTIEZBBL | oq. (3.5) gives

the identity
the expected result

) 2/3y
_ 3 -
R-R0.1+—.}(t to):l . 3.7)

of the FRW flat models (?3).
Consider now the equation of Q aé given in {(2.13) with

A = 0. Replacing in it (3.2) one finds that
Mo
RQ+RQ+ [(31' 2)R+( ) ; Q=0 , (3.8)

the solution of which, as shown in Appendix B, can be written

as
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(3y=-4) /2

Q = BRF, + WRy(R/Ry) Fq o (3.9)

where B and u are arbitrary functions of x, and F3, F, are

two new hypergeometric functions

(3.10)

2
3y-5-D_  3y-5+D_ . _9y-14  Mo/Rg)

_ . 0 3r-4
Fo = F|30y-4) ' Z(v-4) ' 203v-4) ¢ a3y (R/Rg) f] ‘

(3.11)

where D = v33-24y . Note that if my, = 0 the function Q reduces

to

Q = BR + yno(nxnoﬁ3Y'4’/2 . (3.12)

The full solution for the metric (2.1) with k = 0 is
given implicitly by (3.5)—(3.6) together with {(3.9)—(3.11).

To complete the solutions we obtain the net energy density

P =Py, * Pp ’ (3.13)
2
Mo
where pp = — is the energy density of the magnetic field.
R -

From eqs. (2.11) and (3.9} one finds that

B2
R

(1 + 230') , (3.14)

p=

where ﬁz is given by (3.3) and Q' = 3Q/%R. This completes the
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solution in the case k = 0. Note that since DB 2 0, the weak
energy condition will be ensured by the positiveness of the
matter energy density itself. By combining egs. (3.12) and

(3.13) it follows that Pm > 0 only if

2m§
2

OlO_

1 .
>3 + ﬁ2 . {3.15)

e

Thus, since the first member of this equation is a function of
t and x whereas the second one depends only on t, as in the
Szekeres type models, the positivity of p may be closely
related with the choice of the arbitrary functions(lz'ls'lg).

If my = 0, these solutions stand for a class of models
recently derived in the framework of a two fluid interpretation(zz).
In addition, if p = 0 (y = 1), the guasi-Euclidean Ruban's model
is recovered. If Mg # 0 and the arbitrary functions are made
constants, the case y = 1 is just the dust-filled electromagnetic

model found by Doroshkevich (see Appendix C}.
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4. SINGULARITIES -AND EVOLUTION

In the framework of the hemogeneous Bianchi type
models it is widely accepted that an electromagnetic field does
not remove the initial singularity present in the evolutionary
models obeying the usual energy conditions(g_lo’. However, a
comprehensive analysis of the role played by a "field-term"
near the singularity as well as its influence in the isotro-
pization process taking place in anisotropic and inhomogeneous
cosmologies is far from being complete. These questions will
be discussed next, by comparing the asymptotic behavior of
the solutions presented in the last section for the models with
and without electromagnetic field.

Consider first the kinematic quantities of the fluid.
Since the pressure is a function of time alone and the
coordinates system is synchronous and comoving, the 4-acceleration
and vorticity are zéro. The rate of shear scalar o and the

expansion parameter 0 are

L J - 2 .
2 _ 1 BV 1 ,RQ-0OR -
0" =3 quo 3 { ) ) . {4.1)
and
5 =-%§ - /3o . (4.2)

It thus follows that if Q + aR where o is an arbitrary
function of x, the models approach the FRW ones. However, the
asymptotic behavior is strongly dependent of the y-parameter.
Next, the limits have been computed retaining only the leading

terms in all physical gquantities.
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4.1 - Behavior for Large Cosmological Times (R >> RO)

The conditions under which the present FRW phase
is attained are easily determined from eq. (3.3). The first
term of the right-hand side (r.h.s.) of eq. (3.3) will fastly
be dominant if the parameter b = molno is not very large
and Y < 4/3. In this case the function R given in eq. (3.5)
approaches the FRW form R v RO (t/to)zfaY. Moreover, from eq.
{3.10)—(3.11) one finds that in this limit

Fu v 1 + c(Y)(R/R0)3Y'4' . {4.3)

and

3y-4

F, v 1+ d(y) (R/Rg) ' (4.4)

where ¢ and 4 are constants y-dependent. Substituting (4.3)
and (4.4) into (3.9) one finds that Q ~ BR. Thus, as remarked
before, this result suggests that the models approach the
homogeneity and isotropy along each fluid line. The equatioh

of state p v (y-1)p may, in fact, be established since the

limit forms of the pressure and the energy density are

p v (-1 (rRy/R)Y (4.5)
R
0
and
3 3y
p v ;3 (RO/R) . (4.6)
0

Hence, it follows that the y-parameter plays the role of an
adiabatic index in the latter stages. The line element itself,

after a trivial variable change, can be rewritten as

as? = at? - R%@x'? + ay'? + az'%) . (4.7)

-
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just as one should expeét in a FRW phase.

0f course, if vy > % the models approach anisotropy
rather than isotropy, since the field term in (3.3) will be
dominant. Note also that if b = 0 the models evolve to the
FRW ones regardless the value of Y. These results make evident
the influence of the field along the expansion. Formally its
main effect, at the latter stages, is to restrict the

admissible values of the adiabatic index over the interval

1 S Y < = .

4.2 - Approach to the Initial Sinqularity

In general, the models derived in the preceding section
present singularities when 0 = 0 or R = 0. The "pancake” Q = 0
singularity is established for those positive values of the
transverse scale-factor R which are solutions, for each value
of Y, of the equation Q(R,x} = 0. Of course, due to the x
dependence it does not occur simultaneously in the comoving
frame. The character of the R = 0 singularity depends of the
values assumed by the "adiabatic index" v . If vy > %, for
instance, it is analogous to the "point-like singularity" which
arises in the FRW models. Here as there, it is simultaneous
for the comoving observers and one may adjust the arbitrary
time scale tO so that it occurs when t = 0. The role played
by the electromagnetic field in such early times is also
strongly dependent of the considered interval of the y-parameter.
For the sake of simplicity we discuss its influencé only near the
initial singularity R = 0.

First consider briefly the case without field (my=0).
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3y-4)/2
From eq. (3.12) it follows that if R * 0 then Q " uRo(R/ROf v=4)/ ’

and using eqgs. (2.1), (3.1), (3.3} and (3.14) we readily obtain

for the pressure, energy density and metric the expressiohs

P v (v-1) (Ry/R) Y (4.8)
R
0
p v = (y-1) (Ry/R) Y , (4.9)
RZ 0
B ¢
and
as® ~ at? - u(x)ngtnfno)3Y‘4dx2-n2(dy2+y2dz2) ,(4.10)

where one can make ¥ = 1 by a transformation of x. Thus, the
models starts homogenecus but anisotropic if vy # 2. Moreover,
by comparing egs. (4.8) and (4.9) one can see that in this
limit p v p regardless the value of Yy . In fact, the case
Y = 2 starts as the stiff-matter FRW universe itself. Note °
that if vy > % the singularity is "point-like", but if
Y < % .it is a “c%gar type singularity". In the latter case,
since % v (3y-4) % the Hubble parameter is negative and a blue
shift of the distant objects must be observed. This generalizes
the result implicitly given in Ruban's work for vy = 1.

Now consider m, # 0. For y > %, it is easily seen
that the hypergeometric functions defined by (3.10) and (3.11)
-4

behave, in the 1limit R >~ 0, as F 1+a(m0/R0)2(R/R0)3Y where

a is a constant y-dependent. Inserting this result into (3.10),
as in the preceding case, one finds Q ~ uRO(R/RO)(3Y_4)/2-
Therefore, for y > % the asymptotic behavior (in time) is fully
analogous to the case without field. Following Doroshkevich,

we say that if vy > % the field is "written into" the solution
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but it does not modify its characteristics near the initial
singularity. However, the field can exert a notable influence
if y < %. In this case, it may be easily shown that the initial
Ycigar-like singularity™ which occurs for m, = 0 can be avoided.
In fact, since ﬁz 2 0 , the first integral (3.3) shows that

there is, for each value of Y, a critical value of R given
_ (my/Ry) 2 5 1/(4-3Y)

by R, = Ry [W:I

shouid b% the minimal allowed value of R since eq. (3.2) yields

ﬁc =3 —%— . But, these models cannot start with such a

in which R = 0. In principle, R,

minimal value of R because if R = 0 the net energy vanishes
(see eq. (3.19)). It thus follows that R > R, if one wishes to
ensure the positiveness of the matter energy density. Of course,

this result remains valid for the Doroshkevich solution (y = 1).
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5. FINAL COMMENTS

The existence of spatially inhomogeneous solutions
of the Einstein-Maxwell equations in the framework of Ruban's
metric has been examined. By adding another fluid component
plus an electromagnetic field the algorithm suggested by
Szafron has been extended for determining all exact solutions
in the considered background. The previously known models are
recovered by a straightforward application of it and a new
class of solutions containing matter plus a "frozen-in"
magnetic field have been derived. In general, the models are
spatially inhomogeneous but there are three Killing vectors
in their bidimensional sections t and x constants. The influence
of the magnetic field near the singularity and at the latter
stages of the expansion is strongly dependent on the "adiabatic

index" Y of the asymptotic equation of state. If Y > 4

3
the field is "written into" the solution but it does not change
its characteristics in the neighborhood of the singular point.
The models evolve to the FRW ones with an arbitrary vy-law
only if y < %. In any case, these solutions show that the
"frozen-in" condition is, in fact, unrelated with the spatial
homogeneity property.

Finally, we remark that if my = 0 the one-£fluid
solutions have been interpreted as a mixture of two interacting
simple fluids(zz). However, it is not clear for us, if such an

interpretation would be applied in the presence of the electro-

magnetic fiéld.



—17=~

APPENDIX A

THE EINSTEIN FIELD EQUATIONS

CBPF-NF-072/88

For Ruban's line element (2.1), the Einstein field

equations with cosmological constants Ruv -

reduces to

QRzTDO = oR? + 2ROR + kQ - AQR?

QR'1T22 = -0R - OR - R + AQR

-1, -2

OR™"h™Ty; = -QR - OR - OR + AQR

where an overdot means time derivative.

= - ﬂ,guv=T

uv’

{A.1)

(A.2)

(A.3)

(A.4)
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APPENDIX B

THE SOLUTION OF THE Q FUNCTION

We now consider the differential equation (3.8) to

the QO function

2
m
8 4+ R 4-3y,% . (6Y-5 _JZ:] -
RG + RQ*'[}3y_2)R4-(3Y_2) 5 ]o=0 . (B.1)

In order to obtain @ directly as a function of R, we define

for v # % the following transformation

1 my 2 R 3v-4
O =RY(E,x) , & = =377 (ia) (EE) . (B.2)

Substituting (B.2) into (B.1) and using (3.2) and (3.3) we

find that Vy satisfies the Gaussian hypergeometric differential

equation(zs)

2

1y 3% . [3y=2)  _ 3(y=1) [ 3 2 ..
BlErl) =5+ [5Ey-47 ~ T3y=a %]_3% T B
ot (B.3)

i = —1=D = 14D _ = 3Y=2
with parameters a = oq327gy s b = 33Ty and c Z(3y-4) '

2{4n-1)
3(2n-1)

the general solution of (B.3) is given by

where D = V/33-28y , For y # » where n is an integer,

(27)
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. " 1-D 14D . 3y-2
ViE,x) = Bix) F[;(3y-4) ' 20v-8) P Z0Gv-D ! %}

+ nix)e(3v-61/2 _3y-5-D 3y-54D . _9y-14 -.E
2(3y-4) *' 2(3y-9) ' 2(3y-4) * '

(B.4)

where B and u are arbitrary functions of x, and the F's are
hypergeometric functions.
Inserting (B.4) into (B.2) it is easily seen that the

solution of Q is given by eqgs. (3.9)—-{3.11).
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APPENDIX C.

|
[

THE CASE Yy

Of particular interest within the class of solutions
presented in the section 3 is the case Y = 1, which generalizes

the homogeneous medel found by Doroshkevich‘z). Setting vy = 1
in egs. (3.9)-(3.11) we find

i |
Q(R,%) = BIRF[1,-2;- 1 ; @& ] +
0
+ xRyt F[i -5 Y (-‘3—)"1] ; (C.1)
0 R0 2' 2' 2 7' 'R R0 ! ¢

this may be rewritten in terms of elementary functions as

0.2 R ,-1 My 2,R =2
Q(R,x) = B(K)REI + 4 ()" () - 4{==) " () :I +
| R, 'Ry R, 'R,
R .-1/2 [ _ Mo, 2,r ,~-17}/2
+ H(X)Ro (iE) [} fﬁ;) (ﬁ;) :] : ’ (C.2)

where the scale factor R(t), implicitly given by egs. (3.5)—13.6)

taking vy = 1, may be written in parametric form as(7)
2
R m
R(n) = _4Q n2 + 2 , (C.3)
Ro
2
R m
P e e (C.4
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where n is the usual conformal time defined by dt = Rdn .

Substituting (C.3) into (C.2) one finds

rind 4 24R2m n? - 24m? 2u(x)R
e - g [0+ 20 7.2
: iRy R? 2 + 4m

. (CDS)
o" 2

n +4m0

As one should expect, identifying mg = q2, R0 = C and taking

the arbitrary functions B and u as given by 8 = % HoRo

and u = —§§ where Ug and E are two dimensional constants,
2Rp

the solutions (C.3}—(C.5) reduce to the quasi-Euclidean

Doroshkevich universe in the form presented by Vajk and

Eltgroth(7)
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