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Abstract

In conformally invariant quantum �eld theories one encounters besides the standard DHR superselection
theory based on spacelike (Einstein-causal) commutation relations and their Haag duality another timelike
("Huygens") based superselection structure. Whereas the DHR theory based on spacelike causality of observables
con�rmed the Lagrangian internal symmetry picture on the level of the physical principles of local quantum
physics, the attempts to understand the timelike based superselection charges associated with the center of the
conformal covering group in terms of timelike localized charges lead to a more dynamical role of charges outside
the DR theorem and even outside the Coleman-Mandula setting. The ensuing plektonic timelike structure of
conformal theories explains the spectrum of the anomalous scale dimensions in terms of admissable braid group
representations, similar to the explanation of the possible anomalous spin spectrum expected from the extension
of the DHR theory to stringlike d=1+2 plektonic �elds.
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1 Introduction

Among the oldest and most fruitful concepts in quan-
tum mechanics and quantum �eld theory are the spin-
statistics connection, the PCT-theorem and the factor-
ization of the total symmetry into inner- and spacetime-
symmetries [1]. Spin&Statistics and PCT were �rst
seen in the formal Lagrangian quantization approach,
whereas the internal symmetry entered particle physics
initially via the phenomenologically motivated approx-
imate isospin symmetry of nuclear physics and was eas-
ily incorporated into the Lagrangian framework in the
form of �eld/particle multiplets. The DHR-theory [2],
which started from the properly mathematically for-
mulated causality and spectral principles for observ-
ables of (what become later known as) algebraic QFT
[3] and aimed at the reconstruction of charge carrying
(non-observable, superselected) �eld operators, �nally
culminated in the theorem of Doplicher and Roberts
[4]. In this way it became clear that the local quan-
tum physics generated by a physically admissible �eld
multiplet with a speci�c internal symmetry group was
already uniquely (after �xing some conventions) char-
acterized by the observable structure. This de-mysti�ed
to a large degree the concept of internal symmetries by

showing a new way to derive the representation cat-
egory of compact groups (all compact groups arise in
this way) from localization principles of quantum ob-
servables, a quite unexpected connection which has not
yet been fully appreciated by the particle physics com-
munity.

Moreover the Spin&Statistics and TCP issue be-
came inexorable linked with that of internal symmetry
and the original Einstein-causal observable algebra was
reattained as the �xed-point algebras under the com-
pact global "gauge group". Although this picture about
internal symmetries con�rmed the formal observations
in the Lagrangian quantization setting i.e. there were
no completely unexpected new physical concepts (the
innovative power especially of the DR theory remained
on the mathematical side), the superselection analy-
sis of observable algebras was able to relate hitherto
seemingly unrelated structures and thus lead to a fresh
and novel point of view with di�erent perspectives be-
sides contributing a new mathematical duality theory
on group representations.

The only exceptions were low dimensional �eld the-
ories (D < 1 + 3) where models were found by spe-
cial non-Lagrangian methods and where the algebraic
methods led to the more general braid group- instead
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of permutation group- statistics [3] for which there are
no natural Lagrangian realizations.

Since one of the main localization prerequisites of
this theory is the possibility of compact spacetime local-
ization and since this requirement in conformal quan-
tum �eld theories is formally automatically met as a
result of the conformal equivalence of noncompact re-
gions (e.g. wedges) with compact ones (e.g. double
cones or "diamonds"), the Doplicher Roberts theorem
is in particular applicable to all conformal higher di-
mensional (D � 1 + 3) theories.

However it was realized rather early that confor-
mal theories have additional superselection rules which
have a somewhat di�erent conceptual basis and are in-
timately related to anomalous scale dimensions. They
result from the structure of the center Z of the con-
formal covering whose action describes a timelike rota-
tional sweep and hence they are not accounted for by
the DR theory. In this paper we look for arguments
that the coherent subspaces associated with the con-
formal covering group are also of local origin i.e. as-
sociated with the representation theory of an algebra
with timelike locality [9]. In fact it was noticed that
the ensuing conformal decomposition theory is nonlo-
cal at spacelike di�erences [5], but its timelike structure
remained unexplored.

Only in the very special and atypical D=1+1 con-
formal theories which permits a topology preserving
interchange between the space- and time-like regions
and which leads to a tensor decomposition into two
"chiral" lightray theories, a su�ciently rich family of
nontrivial ("minimal") models (abelian braid group il-
lustrations with exponential Bose �elds were already
discussed in [5]) was later found by Belavin Polyakov
and Zamolodchikov [6]; in fact the chiral version of
the conformal central decomposition theory is part of
their \block"-decomposition. The BPZ methods were
based on special algebraic structures which had no
counterpart in higher spacetime dimensions. By em-
phasizing the charge transport around the compacti-
�ed Minkowski world (charge-monodromy) [7] and the
related braid group statistics as expressed in terms of
exchange algebras, it was possible to incorporate chiral
quantum �eld theory into the algebraic setting of su-
perselection sectors i. e. to place it under a common
roof with higher dimensional QFT.

The suggestion to look for timelike braid group com-
mutations in higher dimensional conformal theories is
consistent with the analytic structure of the two-point
function which for scalar �elds is

hA(x)A(y)�i ' lim"!0
1h

� (x� y)2"

i�A (1.1)

(x� y)2" = (x� y)2 + i"(x0 � y0)

hA(x)A(y)�i = e2i�A hA(y)�A(x)i ; x > y (1.2)

where the " boundary prescription is just the space-

time version of the energy-momentum positivity and
7 denote �timelike separationes. One observes that
for timelike distances the commutation relation can be
at best plektonic1 and certainly not bosonic/fermionic.
But the two-point function does not reveal anything
substantial concerning localization of �elds and in
particular 2- and 3-point functions cannot distingush
anyonic (abelian) from general plektonic (nonabelian)
timelike braid group structure. The consistency with
higher point functions will be presented in section 3.

It is well known from chiral theories (where dis-
tances are lightlike) that the plektonic superselection
structure is inexorably linked to the appearance of non-
trivial central projectors which are the spectral projec-
tors in the spectral resolution of the abelian generator

Z of center( ^SO(4; 2)) = fZn;n 2Zg : In chiral the-

ories, which are based on the factorization Ŝ(2; 2) '
^SL(2; R)� SL(2; R); a very good understanding about

a one-to-one relation between algebraic nets of AQFT
and conformal equivalence classes of generating \�eld
coordinates" used in standard QFT has been achieved,
and even the problem how to construct pointlike �elds
from nets of algebras has received successful attention
[10]. There can be no reasonable doubts that these con-
siderations can be generalized the higher dimensional
conformal case, and in the present paper we will present
some consistency arguments to this e�ect.

Even though conformal theories are somewhat out-
side of particle physics proper (since interactions, al-
though consistent with all other properties of QFT, are
inconsistent with a bona �de zero mass particle struc-
ture [8]), they still are expected to furnish useful illus-
trations of interacting local quantum physics.

In the next section we prepare the geometric pre-
requisites. This material is well known but we need
to remind the reader and to set our notation. In the
same section we also review the expansions with respect
to the central projectors of Z: The core of this paper
is section 4 where the consistency of timelike plektonic
structures is discussed within the Wightman framework
and were one can also �nd some remarks about some
concepts which hopefully will turn out to be important
in an algebraic setting.

2 Conformal Central Decompo-

sition

According to Wigner the projective aspect of states in
quantum theories requires the action of the universal
covering of symmetry groups to act on state vectors
in Hilbert space. Whereas for the Poincar�e group the
double covering explains the phenomenon of hal�nteger
spin and its relation to Fermi statistics, the larger con-
formal group has a much richer in�nite covering sym-

metry i.e. the center of the conformal covering ^SO(4; 2)

1As it has become costumary in AQFT \plektonic" is used for the general (abelian and nonabelian) physically admissible braid group
representation whereas anyonic refers to the abelian case (which is closer to the standard formulation of QFT).
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is generated by one abelian element Z of in�nite order2.
Corresponding to spacelike 2� rotation as compared
to the timelike sweep through �M; the related physi-
cal phenomena are somewhat di�erent. Whereas the
spatial spin-statistics connection and associated univa-
lence superselection rule appeared quite early in the
famous work of Wick Wightman and Wigner at the be-
ginning of the 50s [3] and marked the beginning of the
discussion about limitations of the quantum mechan-
ical superposition principle due to superselection sec-
tors, the conformal superselection rule which required
the setting of local QFT and led to the temporal confor-
mal decomposition theory, was discovered only twenty
years later [5]. There is a formal similarity between
both since whereas in the case of spin a 2� rotation in
space results in a e2�is phase factor on vectors of spin
s is related to the spacelike commutation structure for
localized operators, the conformal case permits in ad-
dition a timelike rotational sweep which is associated
via the eigenvalues e2�i� of Z to the spectrum of anom-
alous dimensions. Whereas the connections between
the anomalous dimensions with the central phases in
full timelike sweeps and the associated timelike decom-
position theory into superselected sectors of local op-
erators was obtained already in the 70s [5], the possi-
ble connection (there are as yet no controllable models)
with a timelike braid group structure of charge-carrying
�elds associated with timelike commuting observables
ful�lling Huygens principle is of a fairly recent vintage
[9] and constitute the main subject of this report.

One reason for this delayed attention to such a fun-
damental problem is of course that the required meth-
ods have neither a natural place in the Lagrangian ap-
proach, nor are they in reach of the BPZ [6] representa-
tion theoretical methods (e.g. no immediate analog of
locally acting di�eomorphisms beyond the �nite para-
metric conformal group exists) whose algebraic struc-
ture is restricted to chiral theories. As will be seen
in the sequel they are even somewhat outside the for-
malism of DHR since the issue of global causality in
the presence of a covering of spacetime tends to be
more \dynamical" than the basically kinematical DHR
superselection analysis. The step to re-derive or in-
corporate the chiral results into the general setting of
locally generated superselected charges by liberating
them from the rather special di�eomorphism- and loop-
group algebras has been achieved in a series of papers,
for the most recent (with references to prior ones) see
[11].

Although the similarities with D=1+1 in the cover-
ing and causality aspects are helpful, one must also ap-
preciate the di�erences. The most important di�erence
is already visible on the classical level when one studies
the characteristic value problem. It is well known that
for D>1+1 that data on that part of the light front
which constitutes the upper causal horizon of a wedge
region already fully determines the data in the wedge
region, whereas for D=1+1 one needs the data on both
lower and upper horizon to determine the data inside

the wedge. The latter fact is of course intimately re-
lated to the D=1+1 decomposition into chiral right and
left movers which for the quantum observables prevails
even the presence of interactions. These di�erences
have their counterpart in local quantum physics [9].

The content of the present paper aims at show-
ing consistency between the Boson/Fermion statistics
structure of the spacelike based DHR theory and the
appearance of new central decomposition superselection
sectors which require an autonomous role for the time-
like region. Whereas the timelike region is the arena of
interactions which in massive interactions has remained
impenetrable to direct investigation, conformal symme-
try opens this region to a full analysis for interacting
charge-carrying �elds. This phenomenon has no chiral
counterpart.

Before we present the timelike braid group structure
and the resulting classi�cation theory for anomalous
scale dimensions in the next section, we will review
brie
y the known facts about the conformal covering
structure and the decomposition theory of local �elds
in the remainder of this section.

It is customary to compactify D-dimensional
Minkowski space M within a (D + 2)-dimensional lin-
ear formalism [15] with signature (D; 2) corresponding
to the SO(D; 2) group with signature (+|-+) where
+ means timelike. The surface of the forward light
cone is a D+1 dimensional submanifold LC(d+1) =
f�; ���� = 0g and the D-dimensional manifold of di-
rections on this surface is the model for the compacti-
�ed Minkowski space �M:The following parametrization
which is also useful for the in�nite sheeted covering fM
of �M is well known (� = "conformal time")

�M = (sin�; e; cos� ); �� < � < �; e2 = 1 (2.1)

�M ' S3 � S1

In terms of the D-dimensional standard coordinates it
reads

x0 =
sin�

cos� + ed
; ~x =

~e

cos� + ed
(2.2)

where the boundary of �M correspond to in�nite remote
points in the Cartesian coordinates (the usual covering
model which one associates with the standard coordi-
nates is �M=Z2 together with the corresponding group
^SO(D; 2)=Z2). Since the covering space has the topol-

ogy

fM = (e; � ) ' Sd�1 �R; (2.3)

the causal dependence region in the global sense of the
covering space is the noncompact complement of the
compact spacelike region. In terms of di�erences be-
tween events (e; � ) and (e0,� 0) in fM we have for globally
causal relations

j� � � 0j > jArcos(e � e0)j � timelike (2.4)

j� � � 0j < jArcos(e � e0)j spacelike (2.5)

2Actually the physical conformal group is SO(d; 2)=Z2, but for our purpose its double covering is more suitable.
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and in a graphical representation3 in terms of the sur-
face of a D+1 dimensional cylinder one has a tiling
in terms of in�nitely many repeated diamond-shaped
Minkowski spacetimes with a d-1 dimensional \in�nity"
�MnM which is spanned by the backward light cone with
apex atm+1 = (0; 0; 0; 0; 1; � = �) intersected with the
forward cone with apex m�1(� = ��) [9]. As on S1;
there is no genuine causality concept on �M ; algebras
commute whenever the light rays emanated from the
localization region of one do not intersect the other.
A glocal notion of causality is however restored on fM
[16][15]:

There exists an economical way to organize the con-
formal transformations relative to the Poincar�e sub-
group which consists in de�ning the analogue of the
chiral rotation with the help of the conformal inversion
acting on translations

R� = P� + IP�I (2.6)

I : x!
�x

x2

The inversion itself is not part of the connected con-
formal group (except in free theories), but the product
IP�I is the generator of the fractionally acting abelian

subgroup corresponding to x! x�bx2

1�2bx+b2x2
whereas R�

generates a kind of "translation" analogue which acts
as a timelike rotation through the compact �M: In fact
if one looks at

Ue(� ) = ei�e�R (2.7)

eR = e�R�; e
2 = 1; e0 > 0

one realizes that Ue(� ) in the rest frame is precisely the
so called conformal-time transformation which plays
the crucial role in the compacti�cation and which for

� = 2� de�nes the generator of the center of Ŝ(D; 2):
The advantage of the above formalism is that it presents
the full conformal group by starting from the Poincar�e
group extended by scale transformations and associ-
ating only one additional one parametric subgroup
namely the conformal \time" rotations; the rest fol-
lows from Lorentz transformations. This makes the
topological similarity of S3 � S1 with the well known
chiral case analytically very explicit. In particular the
well-known statement that observable chiral �elds on
S1 have meromorphic analytically continued correla-
tion functions paases to higher dimensional conformal
observables on �M ' S3 � S1: In this analytic language
the cuts of correlations of charge-carrying �elds on the
complex extension of �M disappear in the transition to
the complexi�cation on fM:

The basic observation which led the present au-
thor et. al. [5] to the decomposition theory for co-
variant local Boson/Fermi charge-carrying �elds F was
that one obtains quasiperiodic �elds on M which re-
main irreducible even under global conformal transfor-
mations including those involving the action of the cen-
ter of the group which has one abelian generator Z

center(Ŝ(D; 2)) = fZn; n 2Zg

F (x) =
X
�;�

F�;�(x); F�;�(x) � P�F (x)P� (2.8)

Z =
X
�

e2�i��P�

in terms of central projectors. In a way the existence
of this decomposition facilitates the use of the standard
parametrization of Minkowski space augmented by the
quasiperiodic central transformation

ZF�;�(x)Z
� = e2�i(�����)F�;�(x) (2.9)

and hence one may to a large part avoid the use of the

complicated covering parametrization and its ^SO(D; 2)
transformations which the unprojected �elds F would
require. For the latter �elds on fM the notation would
be insu�cient; one also has to give an equivalence class
of path (the number n ?0 of the heaven/hell one is in)

with respect to our copy of M embedded in fM: The
projected �elds on the other hand are analogous to sec-
tions in a trivialized vectorbundle.

Whereas spacelike causality on M and �M is not
conformally invariant (only lightlike separations are in-

variant), the global distinction in fM between posi-
tive/negative timelike and spacelike is invariant and
corresponds to the two sign in (2.4). The attachment
of an index n to the projection in Minkowski spacetime
prevents that a pair of points in fM which was space-
like can become timelike under a transformation since
e.g. it prevents the passing through lightlike in�nity

via special conformal transformations x! x�bx
2

1�2bx+b2x2 .
In this way we solved the causality paradox [17] since
it only came about by forgetting the path dependence
which linked the Minkowski \heavens and hells" to our
Minkowski space [5]. Instead of the (e; � ) parametriza-
tion (2.4), we used a function of a pair of conformal
transformations �(C1; C2) which can be obtained from
the quadratic expression �(b; x) = 1� 2bx+ b2x2 [5][3].

It was shown [5] via the conformal proper-
ties of 3-point functions that specfZn; n 2Zg =
e2�i�; � an: dim:g: Strictly speaking it is not the dimen-
sion but rather the so called "twist" t = � + s where s
is the spin [5], but here we restrict ourselves to bosonic
theories.

All above formula in fact remain true in the case
D=1+1 if one takes care of the chiral tensor product
structure which leads to a bigger tensor product cen-

ter ^SO(2; 2) =
�
Z
n+
+ � Z

n�
�

	
: In that case the D=1+1

�elds can be projected by factorizing double-indexed

projectors P�+�� = P
(+)
�+ � P

(�)
�� onto charge sectors

which re�ne the central projectors i.e. a central projec-
tor is a sum over charge projectors: Restricting to one
chiral factor, one �nds a lightlike plektonic exchange

3M looks then like a Penrose world, except that Penrose does not make the �M identi�cations because his matter content is not
invariant in the sense of Huygens priniple.
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algebra for double indexed charge-carrying �elds or op-
erators (removing the � notation)

F�;�(x)G�;
(y) =
X
�0

R
(�;
)
�;�0 G�;�0(y)F�0 ;
(x); x > y

(2.10)

Fa;�G�;
 =
X
�0

R
(�;
)
�;�0 G�;�0F�0;
 ; locF > locG

(2.11)

i.e. a commutation relation with R-matrices which form
a representation of the in�nite braid group. The more
general algebraic form (2.11) of the exchange algebra in
terms of operator algebras instead of �elds was derived
in [7].

Since in higher dimensions only the timelike region
has an ordering structure which is maintained by posi-
tive respectively negative central transformations Z�1;
the exchange relations are geometrically consistent for
the timelike region in any dimension, with 7 meaning
positive/negative timelike. In the next section we will
test the consistency of this plektonic structure with the
spacelike bosonic/fermionic commutation relation.

3 Timelike Decomposition

Structure and the Braid

Group

For chiral theories the structural investigations by the
methods of algebraic quantum �eld theory were pro-
ceeded by a good understanding of exchange algebras
in the more standard setting [12] of Wightman �elds
and their correlation functions. It is reasonable to pro-
ceed in the same way for higher dimensional conformal
QFT.

The most powerful tool of Wightman's formula-
tion is provided by the analytic properties of correla-
tion functions. It is well known that the complexi�ed
Lorentz group may be used to extend the tube ana-
lyticity associated with the physical positive energy-
momentum spectrum. The famous BHW theorem [1]
insures that this extension remains univalued in the
new complex domain and the Jost theorem charac-
terizes its real points. Finally spacelike locality links
the various permutations of the position �eld opera-
tors within the correlation function to one permuta-
tion (anti)symmetric analytic master function which is
still univalued. The various correlation functions on the
physical boundary with di�erent operator ordering can
be obtained by di�erent temporal i" prescriptions.

Complexifying the scale transformations, the con-
formal correlations can be extended into a still big-
ger analyticity region which even incorporates \time-
like Jost points" but trying to �nd a master function

which links the various orders together fails in the pres-
ence of �elds with anomalous dimensions and remains
restricted to �elds which live on the compacti�cation
�M: The latter are the analogs of chiral observables, ex-
cept that apart from (composite) free �elds one does
not have algebraic examples since Virasoro- and Kac-
Moody algebras do not exist in higher dimensions.

The analytic timelike structure of 3-point functions
suggest that the permutation group should be replaced
by the more general braid group. The global timelike
ordering structure on the covering fM is the prerequi-
site; without this ordering one can only have the more
special permutation group commutations since the ex-
change and its inverse can then be continuously de-
formed into each other.

A plektonic (general braid-type) charge structure
which is only visible in the timelike region would im-
mediately explain the appearance of a nontrivial time-
like center and the spectrum of anomalous dimension.
It would kinematize conformal interactions and reveal
conformal QFT as basically free theories if it would not
be for that part of interaction which sustains the time-
like plektonic structure. Of course the situation trivi-
alizes if the theory has no anomalous dimensions and
nontrivial components. Analogous to [3] (remarks at
end of section V.4) we conjecture that this character-
izes interaction free conformal theories which are gen-
erated by free �elds4. What makes this issue somewhat
complicated is the fact that contrary to chiral theories
we do not have a single nontrivial example because this
issue is neither approachable from the representation
theory of known in�nite dimensional Lie-algebras nor
from the formal euclidean functional integral method.
The remaining strategy is to show structural consis-
tency of the spacelike local- with the conjectured time-
like plektonic- structure and to �nd a new construction
method (non energy-momentum tensor- or current- al-
gebra based, non-Lagrangian). Here we are mainly con-
cerned with consistency arguments and in the following
we will comment how local/plektonic on-vacuum rela-
tions between two �elds can be commuted through to
a generic position.

Assume for simplicity as before that we are in a
\minimalistic" situation where the �eld theory has no
internal symmetry group5, but that the �elds can be
given \timelike" charge indices �; �; 
:: and their con-
jugates ��; ��; �
:::: resulting from projectors on charge
spaces so that the decomposition is as in the chiral case
where the charge projectors with the same phase fac-
tors e2�i� constitute a re�nement of the central projec-
tors. Clearly � and its conjugate �� contribute to the
same central projector. In fact we may take over a sub-
stantial part of the formalism and concepts of [12] if
one replaces the chiral translation+dilation augmented
with the circular rotation generator L0 by the spacetime
symmetry group which leaves the timelike in�nite point

4Note that this conjecture would be wrong in D=1+1 since from selfdual lattice construction on current algebras one obtains models
without nontrivial sectors which are di�erent from free �elds.

5The general exchange algebra relations with group algebra valued R-matrices have been elaborated by K-H Rehren (private com-
munication).
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�xed (Poincar�e+dilations) extended by the generator of
conformal time R0 instead of the chiral L0: One would
of course also have to change the title of the old paper
from \Einstein causality and Artin braids" to \Huy-
gens causality and Artin braids" referring to the time-
like ordering for which the conformal observables ful�ll

the Huygens principle of vanishing commutators. The
\on-vacuum" structure of commutation relations fol-
lows from the structure of the conformal 3-point func-
tions (here the F;G;H �elds are not observable �elds
but are as the F,G of the previous section)

c

hH�(x3)G(x2)F (x1)i = cFGH
1

[�(x12)2"]
�3

1

[�(x13)2"]
�2

1

[�(x23)2"]
�1

(3.1)

�1 =
1

2
(�F + �H � �G); �2 =

1

2
(�G + �H � �F ); �3 =

1

2
(�F + �G � �H)

d

where the "-prescription was explained in the in-
troduction. For spacelike and timelike distances one

concludes

c

G(x2)F (x1)
 =

�
F (x1)G(x2)
; (x2 � x1)

2
< 0

e�i(�G+�F )Z�F (x1)G(x2)
; (x2 � x1)
2
> 0; (x2 � x1)0 > 0

(3.2)

d

since this relation is valid on all quasiprimary compos-
ites H: They consist of the equal point limit of the asso-
ciated primary Hmin (lowest scale dimension operator
in the same charge class) multiplied with a polynomial
in the observable �eld. These composites applied to the
vacuum form a dense set in the respective charge sector6

and hence the on-vacuum formula is a consequence of
the structure of 3-point functions. The spacelike local
commutativity o�-vacuum is consistent with that on-
vacuum since for y timelike with respect to the spacelike
pair x1; x2 we have (cF=superselected charge of F )

c

P�F (x1)G(x2)H(y)
 =
X
�

P�F (x1)P�G(x2)H(y)


=
X
�

P�F (x1)P�e
i�(�G+�H��� )H(y)G(x2)
 (3.3)

=
X
��0

R
(�
)
��0 (cF ; cG)e

i�(�G+�H��� )P�H(y)P�0F (x1)P
G(x2)


d

and therefore the o�-vacuum vanishing of the F -G com-
mutator is consistent with the on-vacuum vanishing of
this commutator if there holds a certain relation be-
tween R(cF ; cG) and R(cG; cF ) which is identically ful-
�lled for cF = cG. Similarly one does not run into in-

consistencies if one tries to obtain a timelike o�-vacuum
F -G situation from the on-vacuum placement by com-
muting through a H which is spacelike to the timelike
F -G pair

c

6With a bit more work and lengthier formulas one can avoid the colliding point limit and use correlation functions containing 3
charged �elds and an arbitrary number of neutral observable �elds. The dependence on the observable coordinates is described by a
rational function on �M:
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P�F (x1)G(x2)H(y)
 = P�H(y)F (x1)G(x2)
 = P�H(y)ei�(�G+�H��� )G(x2)F (x1)


=
X
�

R
(�
)
��0 (cF ; cG)P�G(x2)P�0F (x1)P
H(y)
 =

X
��0

R
(�
)
��0 (cF ; cG)P�G(x2)P�0H(y)F (x1)
 (3.4)

d

where in the second line we commuted F through G
before trying to bring both to the vacuum. Since their
is no rule to commute the P�G(x2)P�0 with P�0H for

(x2 � y)2 < 0; there is no way to get to the same HGF
order as in the �rst line and hence no consistency rela-
tion to be checked. The absence of rules for spacelike
commutations for projected �elds protects the formal-
ism to run into inconsistencies.

Let us also brie
y look at the compatibility of the
timelike plektonic structure with the conformal struc-
ture of the 4-point function of 4 identical hermitean
�elds

W (x4; x3; x2; x1) :=
X



hF (x4)F (x3)P
F (x2)F (x1)i

(3.5)

=

�
x242x

2
31

(x43)2"(x32)
2
"(x21)

2
"(x14)

2
"

��AX



w
(u; v);

u =
x243x

2
21

(x42)2"(x31)
2
"

; v =
x232x

2
41

(x42)2"(x31)
2
"

Whereas the spacelike commutations leads to func-
tional relations for w =

P

 w
(u; v) with the exchange

of two �elds causing a rational transformation of the
u; v (apart from multiplying the w by rational u; v
factors); the timelike commutation of the o�-vacuum
�elds produces rational transformation together with
monodromy R-matrix mixing of the 
-components [9]
(in addition to multiplying the w with noninteger pow-
ers of u and v which depend on the scale dimension
�F ). Despite some similarities with the chiral case, the
dependence of w
 on two cross ratios probably requires
the use of more elaborate techniques than the hyperge-
ometric formalism which is su�cient for the chiral one
variable cross ratio dependence Here we will not pursue
this matter.

In order to incorporate these observations on corre-
lation functions into the algebaic approach one should
start from a theorem [18] which shows that a locally

conformal �eld net on M allows a natural extension eF
to a Haag dual net on fM: The di�cult step is to prove
that there exists a nontrivial (observable) subalgebra A
on �M: The geometric complement of a double cone O
which is relevant for Haag duality of A consists of all
points on �M which are not lightlike to O [3].

An attempt to show the existence of A by modular
method shows the di�culty. Consider the inclusion

(F(Vt+) � F(V+);
) (3.6)

where F(V t+) is the forward lightcone algebra shifted
upward in time by t. One easily checks that this inclu-
sion is modular, i.e. that the modular group of F(V+)
(the dilation group) in one direction compresses F(Vt+)
further into F(V+): As a result the relative commutant

F(Vt+)
0 \ F(V+) (3.7)

together with the time translation and dilation turns
out to de�ne a bosonic net on the timelike line. The
application to the vacuum generates the vacuum sec-
tor H0 (by de�nition) and the covariantized net (us-
ing Poincar�e transformations) of relative commutants
if nontrivial, could serve as de�nition of the conformal
observable net A on �M . There is also the net P0 ~FP0
which containsA and has the samemodular group. The
consistency of the above timelike braid group structure
would suggest that these two nets are equal. A triviality
ofA actually appears quite pathological, but ultimately
this problem of existence of nontrivial anomalous di-
mension has to be solved by constructive examples.

By cutting �M open at �MnM one looses Haag du-
ality, but one regains it together with a new net after
rede�ning double cone algebras as intersections of the
forward with the (time-shifted) backward light cone,
which amounts to a timelike dualization. The mech-
anism, which involves diluting the net at in�nity and
o�setting this by making �nitely localized double cones
bigger, has been nicely explained for free �elds in [21].

This sort of situation where points or subsets are
cut out from a localization region of a net is much bet-
ter understood in chiral theories. There the above sit-
uation corresponds to punching a hole into the circle
(say at 1) in which case the new net lost the confor-
mal rotation and only retains translation and dilation.
One then recovers Haag duality as well as full confor-
mal invariance (with an L0 with a di�erent low-lying
spectrum) by suitably extending those algebras in the
net which do not contain 1: The �rst observation was
made in [19] and extended by a more algebraic analysis,
including a partial classi�cation of all such extensions
in [18]. One expects that a similar construction in the
higher dimensional case will con�rm the compatibility
between the spacelike DHR structure and the present
ideas on the level of AQFT.

4 Outlook

If one wants to use constructions of chiral models
as a guide for higher dimensional conformal mod-
els, one must avoid ideas which are obviously lim-
ited to low dimensions, as representation theory of
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the di�eomorphism- (Virasoro algebra) or loop-groups
(current algebras). Rather one should use the space-
like (permutation group statistics) and timelike (braid
group) structure in the process of classifying and con-
structing models.

For observable �elds the correlation functions are
meromorphic on M and rational on �M as functions
of the Poincar�e invariants. But past experience shows
that to base a construction on the (linear) properties of
Wightman functions does not really work because the
nonlinear positivity requirements from quantum theory
are not controllable in such an approach.

All successful low dimensional model constructions
start with concrete operators in Hilbert space and keep
the positivity under control throughout the whole con-
struction procedure. But even having opted for opera-
tor methods, one still faces the question of whether one
should �rst aim for the observable algebras and follow
the dichotomy of observables-charged �elds or pass di-
rectly at the latter. The division into observables/�eld
algebras is useful for structural investigations and for
situations where mathematicians already have stud-
ied algebras (loop groups, Virasoro-di�eomorpisms,..)
which are candidates for observable algebras.

Which objects are more fundamental, observable- or
(superselected) �eld-algebras? This kind of question is
a bit reminiscent of what was �rst the hen or the egg.
From a historical point the �elds were there �rst7 be-
fore Haag realized already at the end of the 50ies almost
single-handed that it would be a good idea to view �elds
in their role of charge-carrying operators as represen-
tation theoretical objects carrying generalized superse-
lected charge. This thought was extremely fruitful and
led 10 years later to the DHR approach and another 20
years later to the DR-theorem. It provided structural
insight into the inner workings of local quantum physics
which Lagrangian QFT was unable to unravel and al-
though it was not designed to lead to instant predic-
tions, it became a valuable long term investment into
QFT. Logically the central position in the structural
analysis belongs to the observable algebras.

I would like to advocate the thesis that for higher
dimensional conformal theories the best constructive
strategy is to take the most advanced mathematical
and conceptual tools and return to the old program of
constructing charged �elds directly. It appears to me
more natural to explain the rather complicated quanti-
zation phenomena of observables (e.g. the Friedan-Qiu-
Shenker c-quantization) in terms of the conceptually
simpler quantization which is inherent in the Makov
traces on the braid group. I am convinced that such
an approach exists and that the Tomita-Takesaki mod-
ular theory will play an important role. Relations to
the isomorphism between anti de Sitter and conformal
spacetime as well as to perturbative attempts (confor-
mal supersymmetric Yang-Mills models) can be found
in [9].

The power of the modular localization method is

evidenced in recent approaches involving \polarization-
free-generators" to low dimensional particle physics
problems [22][23].

Another curious aspect of the present ideas is the
very radical way theories with braid group structure vi-
olate the Coleman-Mandula (C-M) theorem [14]. Braid
group structures cannot be encoded into a multiplici-
ties with a group like action which then factorizes with
the spacetime actions of the conformal symmetry (as
in chiral current algebra representations). The viola-
tion in low-dimensional models (chiral models, massive
factorizing D=1+1 models) which do not �t the prereq-
uisites of the C-M theorem was of course well known to
those authors, but it seems that everybody expected
that this could at best occur in D=1+2 massive plek-
tonic models but is excluded in D > 1+2 theories. The
present work suggests that higher dimensional confor-
mal theories with anomalous dimensions not only do
not satisfy the particle prerequisites [8], of the C-M
theorem but also violate the spacetime/internal factor-
ization of symmetries predicted by the C-M theorem
(even after it was adapted to supersymmetries). The C-
M prohibition of nontrivial amalgamations of internal
and spacetime symmetries applies very much to the DR
internal symmetries, but the charge fusion symmetries
behind the central projectors in conformal theories in
any spacetime dimension is de�nitely outside the C-M
realm. It is not completely excluded that this has con-
sequences for non group like regularities even in massive
theories, since there are no exact nonabelian 
avor sym-
metries in nature. But presently one has no idea of how
and by what means conformal theories could be related
to theories describing scattering of massive particles.

All this shows that the DHR superselection sector
structure has come a long way, and the statement that
braid group structures are excluded in higher dimen-
sions without any further quali�cation seem to be on
its way out. It appeares that there is a new dynamical
role for an extension of the idea of superselected charges
of which conformal theories are a foreboding.

I am indebted to K.-H. Rehren for valuable sugges-
tions and I also would like to acknowledge that I learned
from Detlev Buchholz that some years ago he also had
ideas about possible braid group structures at timelike
distances.
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