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Abstract

Using concurrently the dimensional and analytic regularization methods we re-examinate

the Gross-Neveu model at �nite temperature and density (chemical potential) in a D-

dimensional spacetime. The renormalized e�ective potential is presented at the one-loop

approximation. In the case of non-zero chemical potential we show that the e�ective

potential acquires an imaginary part, which means that the system becomes metastable,

indicating the possibility of a �rst order phase transition.
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1 Introduction

Besides computer simulations and the lattice approach there have been many attempts

over the years to circunvect the limitations of perturbative renormalizability, in quantum

�eld theory in the framework of its formulation on a continuous spacetime. For instance,

many e�orts have been done in this sense in the context of constructive �eld theory

[1]. Also if a N-component ("colors") �eld with a quartic coupling of intensity � is

considered, the introduction of an ultralocal intermediate �eld leads to the possibility of

the summation of an in�nite number of Feynman diagrams with an e�ective three body

coupling constant �p
N
, in the large N limit. In this case some of the more divergent

diagrams are suppresed and an e�ective complete propagator is obtained. This is the

basic idea underlying the so-called 1
N
expansion. A well known example where this idea is

implemented is the four fermion self-interaction model ( � i i)2, the Gross-Neveu model [2].

Although this model is perturbatively non-renormalizable in D = 3, at leading order in
1
N
, the resulting e�ective theory shares some of the basic requirements for a constructively

renormalizable theory. This is due to the remarkable property of asymptotic safeness [3].

From the point of view of the renormalization group, the model has been studied by many

authors. Among them some are listed in ref.[4].

In D = 2 the massless model is asymptotically free and in any spacetime dimension

D < 4 a chiral symmetry may be spontaneously broken with dynamical generation of

mass. In the absence of chemical potential and at �nite temperature the spontaneous

broken symmetry may be restored via a second order phase transition. For D = 2

the condensation of kinks means that the phase transition may occur at any non-zero

temperature. The question that is raised is to known whether the presence of the chemical

potential changes the order of the phase transition [5]. In the literature there is no

agreement on the subject since some results from lattice calculation indicate that for non-

zero chemical potential the transition becomes of �rst order while it is of second order

for vanishing chemical potential [6]. Wolf obtained a di�erent result in D = 2, with a

tricritical point separating second order phase transition from �rst order one. Recently the

four fermion model has also been investigated by Barducci et al. [7] where an explicitly

broken chiral symmetry introduced by a fermionic mass term to the Lagrangian was

analized. These authors suggest that depending on the values of the fermion mass the

transition could be of �rst or of second order. Also indications for the existence of a

tricritical phenomenon were found.
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In this note our aim is twofold. First, to investigate the �nite temperature behavior

of the e�ective potential of the Gross-Neveu model in arbitrary spacetime dimension.

Second is to analyse the order of the phase transition for non-zero chemical potential. For

more generality, we treat the model in arbitrary spacetime dimension D, and to exhibit

the analytic structure of the e�ective potential we use a mix between dimensional and

zeta function analytic regularization methods. It results that the so regularized e�ective

potential is free of any ultraviolet singularity in odd spacetime dimension. This somehow

surprising result is to be compared to those obtained in the case of the calculation of the

Casimir energy using similar regularization methods. In the case of non-zero chemical

potential, we show that the e�ective potential acquires an imaginary part, which means

that the system becomes metastable, indicating the possibility of a �rst order phase

transition.

The outline of the paper is the following: in section 2 we briey review the formalism

of the e�ective potential. In section 3 the e�ective potential is obtained at zero and

non zero chemical potential. Conclusions are given in section 4. In this paper we use

�h = kB = c = 1.

2 The one-loop e�ective potential of the Gross-

Neveu model at zero and �nite temperature.

Let us consider a system consisting fermion �elds in thermal equilibrium with a reser-

voir at temperature ��1. They are de�ned on a D = d + 1 dimensional at spacetime

with trivial topology of the spacelike sections. The Gross-Neveu model is described in

terms of a U(N) symmetric action for a set of N massless fermions

S( � ; ) =
Z
dDx

 
� (i 6 @) +

�

2N
( �  )2

!
: (1)

The symmetry which prevents the fermions from acquiring a mass in perturbation theory

is

 ! 5 : (2)

In a even dimension spacetime the above transformation de�nes a discrete chiral symme-

try. In a odd dimensional spacetime a fermionic mass breaks space parity.

The Green's functions of the model are generated by the functional derivatives of the
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generating functional,

Z[�; ��] = c

Z
D D � expfi

Z
dDx(L+ � � + �� )g (3)

where � (x),  (x), ��(x) and �(x) are elements of a Grassmann algebra. The analysis of the

symmetry behavior of the model is simpli�ed using the following device. Let us introduce

the constraint �eld '(x) in the Lagrangian density,

L0('; ; � ) = L( ; � )�
1

2

 
'+ (

�

N
)
1

2 �  

!2

= � (i 6 @) � (
�

N
)
1

2' �  �
1

2
'2: (4)

By the introduction of this constraint �eld '(x), we may write the generating functional

given by eq.(3) equivalently as

Z(�; ��) = c0
Z
D D � D' exp i

Z
dDx(L0 + � � + �� ) (5)

where L0('; ; � ) is given by eq.(4). To determine the equilibrium value of '(x) we de�ne

the generating functional of the connected Green functions, W (J) by

eiW (J) =
Z
D D � D' expfi

Z
dDx(L0 + J'g; (6)

from which we get by a Legendre transform the e�ective action �('0)

�('0) =
Z
dDx ('0(x)J(x)�W (J)) (7)

where

'0(x) =
�W (J)

�J(x)
: (8)

If we assume translational invariance the e�ective potential is given by

V ('0) = �
1X
n

1

n!
~�(n)(0; 0; ::0)('0 � 'min)

n (9)

or

V ('0) =
1

2
'2
0 � iN

1X
s=1

Z
dDk

2�D
1

s
(
�'2

0

Nk2
)s: (10)

As is well known at zero temperature the minimum of the e�ective potential is not at the

origin. There is a spontaneous symmetry breaking with a dinamical generation of mass

associated to a bound state. In order to compare with the results we will get in the case

of non-zero chemical potential, let us briey review some basic features of the model at

zero chemical potential.
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If we assume that the system is in thermal equilibriumwith a reservoir at temperature

��1 we may use the Matsubara formalism. In this case we have to perform the replace-

ments ! ! !n = 2�
�
(n + 1

2
) and 1

2�

R
dq0E = 1

�

P
n. De�ning ( �

N
)
1

2 = g the the e�ective

potential is given by

V ('0; �) =
1

2
'2
0 + 2N

1X
s=1

p(D; s)(g'0)
2s�2s�D�(2s� d;

1

2
); (11)

where p(D; s) is given by:

p(D; s) =
�
d

2

�(s + 1)
�(s �

d

2
)
(�1)s

(2�)2s
: (12)

The Hurwitz zeta function being done by

�(z; q) =
1X
n=0

1

(n+ q)z
; (13)

which is analytic for Re(z) > 1.

Note that the e�ective potential is not yet well de�ned since the Hurwitz zeta function

is de�ned only in a open connected set of points in the s complex plane. By a standard

procedure it is possible to �nd the analytic extension of the Hurwitz zeta function to the

whole s plane. This analytic extension is a meromorphic function with simple poles. To

analytically extend the Hurwitz zeta function we go along the following steps. First we

use the Euler representation for the Gamma function to express it as

�(z; q) =
1

�(z)

Z 1

0
dt tz�1

e�tq

1 � e�t
: (14)

Next we split the integral from zero to in�nity in two integrals from zero to one and from

one to in�nity. The second one is analytic function, the divergences being associated

to the zero limit of the �rst integration. Then using a Bernoulli representation for the

integrand it is possible to get the following expression to the analytic extension of �(z; 1
2
),

�(z;
1

2
) =

1

�(z)
g1(z) +

1

�(z)

1X
n=0

Bn(
1
2)

n!

1

(z + n� 1)
(15)

where g1(z) is given by

g1(z) =
Z 1

1
dt tz�1

e
t

2

et � 1
; (16)

and Bn(x) are the Bernoulli polynomials. Taking z = 2s�d and de�ning cn =
Bn
n!
( 1
2n�1�1)

we replace this analytic extension in the e�ective potential V ('0; �). A straightforward

calculation gives,

V ('0; �) =
1

2
'2
0 + 2N

1X
s=1

q(D; s)[g1(2s � d) +
1X
n=0

cn

2s�D + n
](g'0)

2s�2s�D; (17)
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where q(D; s) is given by

q(D; s) =
(�1)s

�(s + 1)

1

�(s � D

2 + 1)

1

(4�)2s�
D

2

(18)

A direct consequence of the regularization method employed is the following: we see from

the above equation that h(D; s) has no singularities for odd D and interger s. This means

that for odd D the e�ective potential is �nite. No renormalization procedure is needed.

As we will see in the conclusions it is interesting to note that this fact has a mathematical

connection with similar situations in the Casimir e�ect and for anomalies in unbounded

odd dimensional spacetimes [8]. We will show, that with the introduction of a chemical

potential the e�ective potential develop an imaginary part.

Let us introduce a chemical potential � and de�ne

� =
��

2�
: (19)

Note that the only change is that instead �(z; 1
2
), we have to analytically extend �(z; 1

2
+

i�). Let us �rst write a integral representation of the Hurwitz zeta function as follows

�(z;
1

2
+ i�) =

1

�(z)

Z 1

0
dt tz�1

e�t(
1

2
+i�)

1� e�t
: (20)

Proceeding as we have done to get eq.(15) above, the integrand of eq.(20) may be expressed

in terms of the Bernoulli polynomials. Using the following expansion

Bn(x+ h) =
nX
k=0

Ck
nBk(x)h

n�k (21)

we have

Bn(
1

2
� i�) =

nX
k=0

Ank�
n�k (22)

where

Ank = �(�i)n�kCk
n(1� 21�k): (23)

Substituting eqs.(21),(22) and (23) in eq.(20) we have for the analytic extension

�(2s � d;
1

2
+ i�) =

1

�(2s � d)
g2(z) +

1

�(2s � d)

1X
n=0

nX
k=0

Ank

(2s�D + n)
�n�k (24)

where g2(z) is given by

g2(z) =
Z 1

1
dt t2s�D

et(
1

2
�i�)

et � 1
: (25)
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The e�ective potential is then expressed as

V ('0; �) =
1

2
'2
0 + 2N

1X
s=1

q(D; s)

 
g2(2s� d; �) +

1X
n=0

nX
k=0

Ank

2s�D + n
�n�k

!
(g'0)

2s�2s�D

(26)

Since from eq.(23) for odd (n � k), Ank is imaginary, the e�ective potential develops

an imaginary part. As it was shown by many authors [9] this imaginary part has a

natural interpretation as the decay rate per unit volume of some unstable homogeneous

quantum state. We conclude that the presence of the chemical potential introduce physical

instability in the model. This is indicative of a �rst order phase transition.

3 Conclusion

We obtained two results in the paper. First if we consider that there is a non-zero fermion

density we showed that the e�ective potential acquires an imaginary part. This may be

interpreted as an indication of a �rst order phase transition. The second is expressed in

eqs.(18) and (26). The e�ective potential is �nite in any odd dimensional space time,

in particular in D = 3. There are no ultraviolet divergences. In the Yukawa model

the same mathematical phenomenon has been showed [10] This situation is very similar

to the one encountered in the calculation of the renormalized vacuum energy of scalar

�elds con�ned in boxes (Casimir energy) [11]. Dolan and Nash used the zeta function

analytic regularization method to obtain the Casimir energy of conformally coupled scalar

�eld con�ned in odd and even dimensional spheres [12]. They obtained that for odd

dimensional spheres (even space-time dimension) there is a pole in the point of interested,

being necessary the introduction of a counterterm, while for even dimensional spheres

(odd dimensional space-time) the result obtained is naturally �nite. No renormalization

is needed. The question that we have to answer is the link between the one-loop e�ective

energy and the Casimir energy. This problem has been studied by some authors where it

was proved that the e�ective energy and the Casimir energy di�er, but this is a inherent

renormalization-scheme ambiguity [13].
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