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Abstract

We investigate the behavior at �nite temperature of the massive �'4 model in a D-
dimensional spacetime, performing a renormalization up to the order of one loop. In this
approximation we show that the thermal mass increase with the temperature, while the
thermal coupling constant decrese with the temperature. We establish that in the (�'4)3
model there is a temperature ��1? above which the coupling constant becomes negative.
We argue that the system could develop a �rst order phase transition, where the origin
corresponds to a metastable vacuum.
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1 Introduction

In the last years, there has been much interest in the nature of the electroweak phase
transition. The high temperature e�ective potential in the standard and in the (�'4)4
models have been calculated by many authors, where the contribution from multiloops di-
agrams has been taking into account. Several authors [1] have pointed out the importance
to known whether in (�'4)4 model the phase transition is of �rst or second order.

The possibility of a �rst order phase transition in (�'4)4 has been discussed by Arnold
and Spinoza [2]. Using the ring-improved one-loop e�ective potential these authors showed
that even for temperature independent coupling constant, the (�'4)4 model can develop
at the �rst sight a �rst order phase transition. Nevertheless, these authors sustain that
the phase transition is of the second order and that the one-loop ring improved potential
cannot be trusted to distinguish between a �rst or second order phase transition. They
claim that the contribution of higher loop corrections shall dominates over the one-loop
ring improved contributions in the phase transition region. Intending to shed some light
on this matter Tetradis and Wetterich investigated the order of the phase transition
in the N-component (�'4)4 model using the ideas of the renormalization group (running
coupling constant) and obtained a second order phase transition in the model [3]. Di�erent
answer has been obtained by other authors. Evaluating the ring diagrams Carrington and
Takahashi independently obtained in a pure scalar model at D = 4 a �rst order phase
transition [4]. The same answer was obtained by Carmelia and Pi [5] using the technique
developed by Cornwall, Jackiw and Tomboulis [6]. Nevertheless the authors of ref. [5]
claims that this result (a �rst order phase transition in the model) must be wrong.

Our interest in these issues was stimulated by some results of Ford and Svaiter [7]
concerning the thermal dependence of the mass and coupling constant in (�'4)4 model
de�ned in a non-simple connected spacetime. In the aforementioned paper these authors
studied a neutral scalar �eld using the one-loop e�ective potential. The cases of trivial
and non-trivial topology of the spacelike sections were discussed. The dependence of the
renormalized mass and coupling constant on temperature and topology were derived using
the analytic regularization [8] and a modi�ed minimal subtraction renormalization proce-
dure [9]. In addition they have also discussed the possibility of vanishing the renormalized
coupling constant in this model, as well as the limits of validity of the one-loop approx-
imation. The (�'4)4 model in non-trivial topologies of the spacelike sections and �nite
temperature has recently also been studied by Elizalde and Kirsten [10] and Villareal [11].
These author studied the behavior of the renormalized mass using the one-loop approxi-
mation [10] and the two-loops approximation [11], but the behavior of the renormalized
coupling constant with the temperature was not analysed.

The two goals of this paper are the following. The �rst one is to extend the discussion of
the massive self-interacting �'4 model to an arbitraryD-dimensional spacetime, assuming
trivial topology of the spacelike sections. The second one is to discuss the possibility of a
�rst order phase transition in the massive (�'4)3 model.

In many papers studying second order phase transition in the �'4 model the temper-
ature dependence of the coupling constant is neglected. This approach is reasonable for
the description of a second order phase transition because in this case the variation of
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the mass with the temperature is the most important fact. It is enough to consider the
renormalized coupling constant as constant and the thermal mass drives the second order
phase transition [12]. As we will see, in the one-loop e�ective potential of the �'4 model
all even powers of the vacuum expectation value of the �eld �0 does appears. Therefore
this model may display a �rst order phase transition if the �40 coe�cient changes its sign
while the �20 and �60 coe�cients are positive.

We would like to stress that the study of the dependence of the coupling constant
with the temperature it is not new in the literature. Many authors have studied such
dependence in the �'4 model and also in a abelian model like QED [13]. Instead of
using perturbative arguments, the use of the renormalization group equations allowed the
investigation on the mass and coupling constant thermal dependence. Such program was
implemented by Fujimoto, Ideura, Nakano and Yoneyama [14]. These authors obtained
that the behavior of the mass and coupling constant with the temperature are opposite, i.e.
when the temperature increases, the renormalized mass increases while the renormalized
coupling constant decreases.

The result of our analysis is that for D < 4, there is a temperature ��1? where the
e�ective coupling constant vanishes. For temperatures ��1 > ��1? , the renormalized cou-
pling constant becomes negative and the system may su�er a �rst order phase transition.
We should note that at ��1 = ��1? the system is still in an interacting phase. At this
temperature only the e�ective coupling constant (�(�) = � � �2f(�)) vanishes. All the
higher 2n-points correlation functions do not vanish, therefore the model is not gaussian
at the temperature ��1? . This is an important point that was stressed by Weldon [15].
The non-triviality of the model can be veri�ed analysing the beta coe�cient of the Callan-
Zymanzik equation. Since for D = 3 there is a ultraviolet atractive �xed point, the model
is not Gaussian. For D > 4 Aizeman and Frohlich proved the triviality of the model [16].

One may argue that �'4 cannot exhibit a �rst order phase transition because the
Ising model displays only a second order phase transition and �'4 belongs to the same
universality class of the Ising model. This argument breaks down if we assume a positive
tree level mass square because in the one-loop approximation the thermal correction to
the mass is positive and the Ising model at the phase transition belongs to the same
universality class of the massless �'4 model [17]. Therefore starting with a positive tree
level mass squared the renormalized mass will always remain positive and the model will
not be massless at any temperature (second order phase transition is easily obtained
working with a negative tree level squared mass).

One important point is whether one-loop approximation results can be trusted. In
fact, the behavior of the thermal correction to the coupling constant changes in the two-
loops approximation. It was been shown by Funakubo and Sakamoto [13] that only for
low temperatures the behavior of the thermal coupling constant remains the same as the
obtained in the one-loop approximation. For high temperatures (��1 >> m) the behavior
is opposite i.e., the thermal correction to the coupling constant is positive. Nevertheless
this fact does not exclude the possibility of a �rst order phase transition at intermediate
temperatures in (�'4)3 also for the two-loops approximation. One interesting result in
favour of the one-loop approximation was given by Stevenson [18] for the massless model.
The extension of the Stevenson result for the massive model deserves investigations.

The paper is organized as follows. In section II, the massive self-interacting �'4 model
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is analised. Conclusions are given in section III . In this paper we use h
2�

= c = 1.

2 The one-loop e�ective potential in the �'4 model

at zero and �nite temperature.

Let us assume the following Lagrange density associated with a massive neutral scalar
�eld:

L =
1

2
(@�')

2 � 1

2
m2'2 � �

4!
'4 +

1

2
�Z(@�')

2 � 1

2
�m2'2 � 1

4!
��'4; (1)

where �Z, �m2, and �� are the wave function, mass and coupling constant counterterms
of the model. De�ning the vacuum expectation value of the �eld '0 =

<0j'j0>
<0j0>

, after the

Wick rotation, in the one-loop aproximation, the e�ective potential is given by [19]:
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1

2
m2'2

0 +
�
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'4
0 �

1

2
�m2'2

0 �
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��'4
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and

VII('0) =
1X
s=1

(�1)s+1
2s

�
1

2
�'2

0

�s Z dDq

(2�)D
1

(!2 + ~q 2 +m2)s
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Before continuing, we would like to discuss one important point. Performing analytic
or dimensional regularization, we must introduce a mass parameter �, in terms of which
dimensional analysis gives to the �eld a dimension ['] = �1=2(D�2) and to the coupling
constant a dimension [�] = �4�D. Mass has dimension of inverse length, i.e. [�] = [m] =
L�1, and the e�ective potential (the energy density per unit volume) has dimension of
L�D.

It is not di�cult to extend the results given by eqs.(3) and (4) to �nite temperature
states. After a Wick rotation, the functional integral runs over the �elds that satisfy
periodic boundary conditions in Euclidean time. Than, we perform as usual the following
replacement in the Euclidean region:

Z
d!

2�
! 1

�

X
n

(5)

and

! ! 2�n

�
(6)

where !n =
2�n
�

are the Matsubara frequencies. De�ning the dimensionless quantities:

c2 =
m2

4�2�2
; (7)

(��)2 = a�1; (8)
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and

g =
�

8�2
(9)

'0

�
= � (10)

ki =
qi

2��
(11)

the Born terms plus one-loop terms contributing to the e�ective potential gives,

V (�; '0) = VI('0) + VII(�; '0)

where

VII(�; �) = �D
p
a

1X
s=1

(�1)s+1
2s

gs�2s
1X

n=�1

Z
ddk

1

(an2 + c2 + ~k 2)s
: (12)

To evaluate the Matsubara sum in eq.(12) di�erent methods are used in the literature.
A very elegant method was emphasized by Kapusta [20], where eq.(12) is expressed as a
contour integral. In the method the Matsubara frequency sum separates in a piece which
is temperature independent and a temperature dependent part. Since we are interested
to make a paralel with the tricritical phenomena in the paper we will apply an alternative
method using a mix between dimensional and zeta function analytic regularizations. Let
us �rst use dimensional regularization[21]. Using the well known result,

Z
ddk

(k2 + a2)s
=

�
d

2

�(s)
�(s� d

2
)

1

a2s�d
; (13)

and de�ning,

f(D; s) = f(d + 1; s) =
(�1)s+1
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�
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2�(s � d

2
)

1
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(14)

we obtain,

VII(�; �) = �D
p
a

1X
s=1

f(D; s)gs�2sAc2

1 (s�
d

2
; a); (15)

where the function Ac2

N (s; a1; a2::aN) is the inhomogeneous Epstein zeta function de�ned
by

Ac2

N (s; a1; a2; ::; aN) =
1X

n1;n2::nN=�1

(a1n
2
1 + a2n

2
2 + :::+ aNn

2
N + c2)�s: (16)

The terms s � D
2
are divergent and we will regularize the one-loop e�ective potential

using the principle of the analytic extension. Let us assume that each term in the series of
the one-loop e�ective potential V (�; �) is the analytic extension of these terms, de�ning
in the beginning in an open connected set.

After some calculations using a Melin transform [22] it is possible to �nd the analytic
continuation of eq.(15) to the whole complex s plane. The result is a meromorphic function
with simple poles at the points s = 1; 2::; D2 . Substituting the analytic extension in eq.(15)
yields



{ 5 { CBPF-NF-070/95

VII (�; �) = �D
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where:
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s

1

�(s)
; (18)

and K�(z) is the Kelvin function [23].
If we suppose that D = 4, the model is perturbatively renormalizable and an appro-

priate choice of �m2 and �� will render the analytic extension of the terms of the series
in s in the e�ective potential analytic functions in the neighbourhood of the poles s = 1
and s = 2 respectively.

To �nd the exact form of the counterterms let us use the renormalization conditions

@2

@�2
V (�; �)j�=0 = m2�2 (19)

and
@4

@�4
V (�; �)j�=0 = ��4: (20)

Since the vacuum expectation value of the �eld has been chosen to be constant, there is
no need for wave function renormalization. Substituting eqs.(3),(17) and (18) in eqs.(19)
and (20) it is possible to �nd the exact form of the countertems in such a way that
they cancel the polar parts of the analytic extension of the terms s = 1 and s = 2.
Note that we are using a "modi�ed" minimal subtraction renormalization scheme where
the mass and coupling constant counterterms are poles at the physical values of s. The
temperature dependent mass is proportional to the regular part of the analytic extension of
the inhomogeneous Epstein zeta function in the neighborhood of the pole s = 1. The same
argument can be applied to the renormalized coupling constant. The thermal contribution
to the renormalized coupling constant is proportional to the analytic extension of the
inhomogeneous Epstein zeta function in the neighborhood of the pole s = 2. The choice
of the renormalization point � = 0 implies that only the regular part in the neighborhood
of the pole s = 1 will appear in the renormalized mass. From the above discussion we
can write

m2(�) = m2 +�m2(�) (21)

and
�(�) = �+��(�); (22)

where m2(�) and �(�) are respectively the temperature dependent renormalized mass
squared and coupling constant. A straightforward calculation of the thermal contribution
to the renormalized mass squared using eq.(17), (18) and (21) gives

�m2(�)��m2(1) =
1

8�2
�

1X
n=1

m

�n
K1(mn�): (23)
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Using the asymptotic representation of the Bessel function Kn(z) for small arguments
we obtain that at high temperatures the temperature dependent mass squared is propor-
tional to ���2 [24]. The result given by eq.(23) was also obtained by Braden [25] using
Schwinger's proper time method. This author also discussed the two-loop e�ective po-
tential and the problem of overlapping divergences where the possibility of temperature
dependent counterterms appears. Nevertheless these divergences must cancel as it was
stressed by Kislinger and Morley [26].

Based uppon the same arguments previously used, the thermal contribution to the
renormalized coupling constant is given by:

��(�)���(1) = � 3

8�2
�2

1X
n=1

K0(mn�): (24)

The Bessel function K0(z) is positive and decreases for z > 0. Therefore let us present
an interesting result: the renormalized coupling constant attains its maximum at zero
temperature (��1 = 1) and decreases monotonically as the temperature increases. In
other words, the thermal contribution to the renormalized coupling constant ��(�) �
��(1) is negative, and increases in modulus with the temperature. The same result was
obtained by Fujimoto, Ideura, Nakano and Yoneyama using the renormalization group
equations at �nite temperature [14]. Once we are discussing thermal e�ects, in the limit
of zero temperature the thermal contribution to the mass and coupling constant must
vanish.This can be easily seen from eqs.(23) and (24). Since the thermal contribution to
the renormalized coupling constant is negative one could enquiry: is it possible for the
renormalized coupling constant to vanish? Once ��(�) is O(�2) and we assume D = 4,
it is not possible to implement such a mechanism for �nite temperatures. For D < 4
the renormalized coupling constant is not necessarily a small quantity. In the strong
coupling constant regime (D = 3) we expect to �nd a �nite temperature ��1? such that
the renormalized coupling constant vanishes.

We note that there is no discontinuity in the behavior between the cases D = 4 and
D < 4 as we will see later. For D < 4 the model becomes superrenormalizable and only a
�nite number set of graphs need overall counterterms. In the one-loop aproximation for
D = 4 there are only two divergent graphs and for D < 4 there is only one. This result
can be easily obtained by investigating eq.(17). In this equation the divergent part of the
e�ective potential is given by �(s � D

2 ) and for D < 4 only the s = 1 pole will appear.
In other words, for D < 4 there is only �nite coupling constant renormalization at the
one-loop aproximation. The graph s = 2 gives a �nite and negative contribution to the
coupling constant. For D � 4 the renormalization of the coupling constant is obligatory
(note the presence of the pole in s = 2).

Going back to the generic D-dimensional case, the renormalization conditions also are
given by eqs.(19) and (20). Using the renormalization conditions we can �nd the regular
part of the analytic extension which gives a �nite contribution to the renormalized mass
squared �m2(D;m; �; �) and coupling constant ��(D;m; �; �) in a D-dimensional 
at
spacetime. We will simplify the notation writing �m2(�) and ��(�). The thermal
contribution to the mass and coupling constant are respectively:

�m2(�)��m2(1) =
�D�2�

2(2�)D=2

1X
n=1

�
m

�2�n

�D
2
�1

KD

2
�1(mn�) (25)
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and

��(�)���(1) = �3

2

�D�4�2

(2�)D=2

1X
n=1

�
m

�2�n

�D
2
�2

KD

2
�2(mn�): (26)

These are the main results of the paper. Since ��(�) ���(1) < 0 we may have a
temperature ��1? where �(�) vanish for D < 4.

Before discussing a existence of a �rst order phase transition in the case D = 3, we
would like to point out that the investigation of the (�'4)4 model with a negative bare
coupling constant has recently been done by Langfeld et al, where an analytic contin-
uation of the model with positive � to negative values was presented [27]. Although
several authors claim that the renormalized coupling constant of the (�'4)4 model must
be positive, a de�nitive supporting argument is still lacking [28].

Going back to the discussion of a �rst order phase transition, let us de�ne a dimen-
sionless e�ective potential v = V

�D
, as:

v(�; �) =
1

2
m2�2�D�2 +

�

4(2�)D=2

1X
n=1

�
m

�2�n

�D
2
�1

KD

2
�1(mn�)�2

+
�

4!
�4�D�4 � 1

16

�2

(2�)D=2

1X
n=1

�
m

�2�n

�D
2
�2

KD

2
�2(mn�)�4

+ high order terms in �: (27)

The previous results can be used to demonstrate a �rst order phase transition in the
massive (�'4)3 model. To simplify our discussion let us assume that is possible to truncate
the series of the e�ective potential in s = 3. These does not imply the assumption that
high order powers of the �eld gives vanishing contributions. They are simply neglected
as compared to the leading terms, since we are interested in the pro�le of the e�ective
potential near the origin. The coe�cient of '6 is positive (one requires this to ensure that
the truncated e�ective potential is bounded from below). For the sake of simplicity, let us
also assume that the coe�cient of the '6 is constant and given by � for the case D = 3.
In this case the leading contributions to the e�ective potential is

v(�; �) =
�
1

2
m2 +

�

4(2�)
3

2

1X
n=1

�
m

�2�n

�1

2

K 1

2

(mn�)
�
�2

+
�
�

4!
� �2

16(2�)
3

2

1X
n=1

�
m

�2�n

�� 1

2

K 1

2

(mn�)
�
�4 + ��6: (28)

>From the above discussion, for D = 3 we obtain the following pro�le for the e�ective po-
tential in the neighborhood of the origin. Bellow the temperature ��1? , the dimensionless
e�ective potential has only one global minimum. Heating the system above the temper-
ature ��1? , the renormalized coupling constant would become negative and the system
can develop a �rst order phase transition since the vacuum expectation value of the �eld
changes discontinuously by temperature e�ects. Note the similarity with the tricritical
phenomena where in the tree level (V (') = m2'2 + �'4+ �'6) the model develop a �rst
order phase transition if we allow the coe�cient of the quartic term to be negative [29].
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3 Conclusions

In this paper we studied the renormalization program assuming that a scalar �eld is in
equilibrium with a thermal reservoir at temperature ��1. We have attempted to analize
the consequences of the fact that not only the renormalized mass, but also the renormal-
ized coupling constant acquire thermal corrections.

It was proved that in the �'4 model, in the one-loop aproximation, the thermal correc-
tion to the renormalized mass is positive and the thermal correction to the renormalized
coupling constant is negative. In this case the renormalized coupling constant attains its
maximum at zero temperature and decreases monotonically as the temperature increases.
In D = 4, ��(�) is O(�2) therefore it is not possible to vanish the renormalized cou-
pling constant at a �nite temperature of the thermal bath. In D = 3 (in the regime of
strong coupling) there is a �nite temperature where this can be achieved. For tempera-
tures ��1 > ��1? (negative coupling constant) the system can develop a �rst order phase
transition, where the origin is a false vacuum.

As we discussed, the thermal corrections to the coupling constant at high temperatures
including higher order loop contributions is positive. It is clear that our conjecture about a
�rst order transition for the (�'4)3 model concerns the low temperature regime, where the
renormalized coupling constant may becomes negative. In other words, if the temperature
��1? is in a region such that the one-loop corrections to the e�ective potential are the
leading ones, then we could have a �rst order phase transition in D = 3. Of course
we are not sure whether the existence of the phase transition as conjectured by us is or
not an artifact of one-loop approximation. It would be interesting to have a fully non-
perturbative argument to demonstrate or disprove this conjecture in a general way, using
resummation methods or for example Constructive Field Theory arguments.
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