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Abstract

Based on a previously postulated entropy, that now becomes a particular case, we show

that there exists an in�nite set of entropies, with similar properties, that reduce in a

common limit to the Boltzmann-Shannon form. The probabilities for the microcanonical

ensemble and for the canonical ensemble are obtained. The method used to construct

the set is quite simple and quite general and can be applied to generalizations of physical

quantities and to other generalized entropies.
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Wehrl [1] has called the attention to the fact that what can be learnt of \entropies"

like:

�lnf�1 (Tr�f (�)) (1)

where f is an increasing convex or concave function, or

f�1 [Tr�f (�ln�)] (2)

or (Dar�oczy [2])

1

1� �

�
Tr�� � 1

�
(3)

is that mixing-enhancement leads to loss of information in the worst way because all the

measures of lack of information, and not only the entropy, increase.

However, in 1988, Tsallis[3], independently and inspired in a magnitude normally used

in multifractals, postulated a one-parameter-dependent Dar�ockzy-like entropy:

Sq = kB
1�

PW

i=1 p
q

i

q � 1
(4)

where W is the total number of con�gurations, pi are the associated probabilities, kB is

some suitable constant and q is the parameter that allows the generalization. It is not

di�cult to realize that in the q ! 1 limit Eq. (1) reduces to the well known expression:

S = �kB

WX
i=1

pi ln pi: (5)

To obtain Eq. (2) from Eq. (1) it is possible to use a replica trick type of expansion

(as in the original work) or, even simpler, to use the L 'Hospital rule for limits.

In [3] it was proposed for the �rst time a connection between that class of entropies

and properties of physical systems. Since then there has been a great number of papers

trying to accomplish such a task, examples of which are: the dynamic linear response for

nonextensive systems [4], and an explanation for the cosmic background radiation [5](see

[6,7] for a recent and partial review). The main motivation for this proposal was that it
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has been known for many years [8] that the Boltzmann-Gibbs Statistical Mechanics does

not properly apply to systems with some special characteristics, for example, systems

with no energy minimum E0, systems where the interaction energy is comparable to

the internal energy and systems with no equilibrium states. On the other hand many

functional forms for the entropy have been proposed in several �elds and particularly

in Information Theory [9]. There are some di�culties in Tsallis-Dar�oczy (TD) entropy

(speci�cally, among others, the necessity of imposing a cuto� to avoid complex values of

the probabilities and also the convexity of the entropy that could led to violations of the

Second Law of Thermodynamics for some values of parameter q and temperature).

Based on TD entropy and on the q ! 1 ( � ! 1 in the notation of Dar�oczy) limit pro-

cess for recovering Boltzmann entropy, we introduce an in�nite set of entropies (of which

the TD one becomes a particular case). The method here described enables the obtention

of such sets for some entropies. General properties corresponding to the microcanonical

and canonical ensembles are also presented.

The simple method consist in the following: let us integrate separately with respect

to q the numerator and the denominator of Eq. (5), n � 1 times. We will obtain an

\entropy" nSQ of the form (we use Q instead of q):

nSQ = kB
R[Q; fpig]�

PW

i=1
p
Q
i

lnn�1 pi

P [Q]
; (6)

where P [Q] and R[Q; fpig] are polynomials in Q and some functions of the probabilities

pi. But in the limit Q! 1, as in the limit q! 1 for the TD entropy, we must recover the

Boltzmann entropy. For this, all the derivatives up to degree n� 1 of both the numerator

and the denominator should vanish in that limit. From those conditions it is obvious to

see that

P [Q] =
(Q� 1)n

n!
; (7)

and that R[Q; fpig] is formed by the n �rst terms of the Taylor series of
PW

i=1 p
Q

i = ln
n�1 pi

around Q = 1:
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R[Q; fpig] =
WX
i=1

n�1X
k=0

pi

lnn�1�k pi

(Q� 1)k

k!
; (8)

The number n has no direct physical meaning (in contrast to q in TD entropy appar-

ently associated to non-extensivity); it is simply the number of times we have to apply the

L 'Hospital rule to obtain the Boltzmann form. We will call n the order of the entropy.

Note also that in the limit Q! 1, n disappears in all the expressions (as it should be).

In our notation TD entropy is the �rst order entropy. It is also interesting to note

that for n > 1 we always pass through the TD form in the limit process to the Boltzmann

form, speci�cally in the (n� 1)th step.

Then nSQ adopts the form:

nSQ = kB

PW

i=1

Pn�1
k=0

pi

lnn�1�k pi

(Q�1)k

k! �
PW

i=1
p
Q
i

lnn�1 pi
(Q�1)n

n!

: (9)

It is easy to show the positivity of nSQ in Eq. (6) by developing the second sum in

the numerator in a Taylor series around Q = 1 and by writing the result in the form:

nSQ = �kB

WX
i=1

1X
k=n

pi

lnn�1�k pi

n! (Q� 1)k

k! (Q� 1)n
(10)

that is positive for any Q. Note that for Q > 1 and any n and also for Q < 1 and n even,

it corresponds to an alternate series whose terms decrease with k in absolute value, being

the �rst term positive. For Q < 1 and n odd, all the terms are positive.

From Eq. (10) it can be noted a remarkable property of index n, when n ! 1 we

recover Eq. (5) again!!!, except terms of the order of 1=(n+1) that vanish, independently

of Q.

We now extremize nSQ with the condition
PW

i=1 pi = 1 (microcanonical ensemble). It

is straighforward to show that it is extremized for the case of equiprobability and that in

that case:

nSQ = n!kB
(�1)n�1 ln1�nW

Pn�1
k=0 (�1)

k (k!)�1 (Q� 1)k lnkW + (�1)nW 1�Q ln1�nW

(Q� 1)n
;

(11)



CBPF-NF-069/97 4

that recovers the particular case of TD entropy (n = 1) and that, as expected, reduces to

the Boltzmann form in the Q! 1 limit for any n.

By di�erentiating Eq. (8) with respect to W it is obtained that for n = 1 the entropy

is an increasing function of the number of states W for any Q. For n > 1 , nSQ is an

increasing function of W if Q � 1 and a decreasing function for Q > 1. When n = 1

the entropy is an increasing function of W for any Q but, for Q > 1 the TD entropy

has the problem that, for some values of temperatures, the probabilities become complex

numbers. For n > 1 that problem is eliminated with pure physical arguments, i.e., the

entropy has to be an increasing function of W and therefore the range Q > 1 should be

dropped out.

It is relatively easy to show concavity properties for nSQ by de�ning a mixed proba-

bility law as:

p00i � �pi + (1 � �) p0i (12)

and evaluating the quantity:

n�Q � (nSQ (fp
00

i g))� [� (nSQ (fpig)) + (1� �) (nSQ (fp
0

ig))] : (13)

Using Eq. (7) it is shown [10] that for Q > 0 the quantity n�Q � 0 , i.e., the entropy

is concave independently of n. For Q < 0, there is a Q� [n] below which the entropy

is convex (n�Q < 0). For Q� � Q � 0 the entropy have not a de�nite concavity. For

n = 1, Q� � 0 and for n = 2, Q� = �0:3. We are bent to think that the only region

physically acceptable (if there is any region physically acceptable, see below) is [0,1], still

more knowing that convexity can led to violations of the Second Law of Thermodynamics

[11].

In order to obtain the corresponding expressions for the canonical ensemble we now

extremize nSQ with the additional condition
PW

i=1 pi�i = UQ , where the �i and UQ are

known real numbers. Following the lines of reference [3] we de�ne:

n�Q �
nSQ
kB

+ �P 0[Q]

WX
i=1

pi � ��P [Q]

WX
i=1

pi�i (14)
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where P 0[Q] is the �rst derivative of P [Q]. By imposing @(n�Q)=@pi = 0 8i, it is not too

di�cult to arrive to the condition:
Pn�1

k=0
(Q�1)k

k!
1�(n�1�k) ln�1 pi

lnn�1�k pi
� pQ�1i

Q�(n�1) ln�1 pi
lnn�1 pi

P [Q]
+ �P 0[Q] + ��P [Q]�i = 0; (15)

that again recovers the TD case for n = 1. For n > 1 Eq. (12) represents, together with

the conditions imposed to the probabilities and to the f�ig, a system of (W + 2) non-linear

simultaneous equations for fpig, � and � (for n = 1 it is possible to obtain an explicit

form for the fpig). Actually, to obtain a general form for generating (partition) functions,

could be the main di�culty for n > 1, however, the methods appears to be uniform and it

is not to di�cult to see that there exist between the probabilities in the TD and superior

order cases the same relation that between the entropies them self, i.e. the probabilities

for entropies of order greater than one can be obtained by integrating (separately and as

many time as necessary) the denominator and the numerator of the exponential of the

expression for the probabilities in the TD case writen in an appropriated form:

pi =

�
1� (1 � q)

Ei

kBT

� 1

1�q

= exp
ln
h
1� (1� q) Ei

kBT

i
1� q

(16)

where the Ei are the associated energies, kB is the Boltzmann constant and T is the

temperature.

The existence of an in�nite set of generalized entropies with similar properties pre-

sented in this paper recalls the question: have any of all the existent \entropies" any

physical sense?

Properties for the case n = 1 are appearing on the current bibliography [6,7]. The

introduction of n > 1 should not dramatically a�ect the properties of the entropy found

for the n = 1 case within the allowed Q interval. As a sign of what could be expected,

Fig. 1 shows the dependence of 2SQ for a system with just two states; it shows the same

qualitative features as Fig. 1 of reference[3].

It is our opinion that any choice has to be done very carefully; a particular election

may introduce problems even greater that those present in Boltzmann-Gibbs statistical
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mechanics, not only from the operational point of view but also from the conceptual one.

Let us stress, as a �nal comment, the fact that the method used hereon could be

in principle employed for similar generalized entropies with a non-trivial limit over the

Boltzmann case. The only requirements that the initial entropy has to ful�l are: i) in the

limit to the special value of the parameter (in our case Q ! 1 ) an indetermination of

the type 0=0 or any other analogous should be obtained; ii) each of the terms that shield

the indetermination must have a primitive.

It is not possible to apply the above n � extension to the R�enyi [9] entropy, related

to the TD one by the formula

SR
q = (1 � q)�1 ln

�
1 + (1� q)ST

q

�
; (17)

because it fails in ful�lling the requirement on integrability. Contrary to what may be

though, this is a point in favor of R�enyi's entropy because its unicity.

On the other hand the q  ! 1
q
invariant TD-like-entropy recently devised by Abe[12]:

AbeSq = �kB

PW

i=1 p
q

i �
PW

i=1 p
1

q

i

q � 1
q

(18)

ful�lls the two requirements and it is not too di�cult to �nd for it an extension of the

type in Eq. (6). Let us stress that in [12] it was also obtained that the allowed values for q

are those between 0 and 1 but there the reason was purely mathematical, the 1 < q <1

range can be mapped on the 0 < q � 1 interval.

Summarizing, it was presented a method to obtain a set of entropies from a germinal

one that recovers the Boltzmann entropy in some non-trivial limit. The method was

illustrated using as starting entropy the TD one because it has been believed to present

some physical applications. The method goes well beyond and o�ers an original tool for

generalizations of other physical quantities given that they ful�ll some conditions. It can

be used for generation of in�nite sets of entropies in many of the cases studied in the

extensive and interesting review of Wehrl.
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Wether some generalization is of interest can be evaluated only through applications.

The aims of this work were the presentation of the method (that in our believe has some

subtle connection with functional derivatives) and, fundamentally, to call the attention

on the no-unicity of TD-like entropies (that could be the reason for serious drawbacks in

the utility of those types of entropies). We have not search for applications. However,

many scientists appear to believe in that type of formalism and the case n = 1 has been

explored intensively during the last ten years and some examples of this research are

the Thermodynamics of anomalous di�usion [13], the Statistical-mechanical foundation

for the ubiquity of L�evy distributions [14] and a solution for the solar neutrino problem

[15,16].

The author is indebted to C. Tsallis, E.M.F. Curado, A.R. Plastino, F.A. Tamarit,

S. Cannas and C. Anteneodo for comments and/or criticism on the draft version of the

manuscript. This work was supported by CLAF/CNPq Brazil.
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FIG. 1. Dependence of nSQ for n = 2, W = 2 and some values of Q. Essentially the same as

in Figure 1 of Tsallis[3]. The values of Q are on the corresponding curves.


