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abstract

We investigate which mapping we have to use to compare measurements made in a
rotating frame to those made in an inertial frame. Using a non-Galilean coordinate trans-
formation we obtain that creation-anihilation operators of a massive scalar �eld in the
rotating frame are not the same as those of an inertial observer. This leads to a new vac-
uum state (a rotating vacuum) which is a superposition of positive and negative frequency
Minkowski particles. After this, introducing an apparatus device coupled linearly with
the �eld we obtain that there is a strong correlation between number of rotating particles
(in a given state) obtained via canonical quantization and via response function of the
detector. Finally, we analyse polarization e�ects in circular accelerators in the proper
frame of the electron making a connection with the inertial frame point of view.

Key-words: Rotating vacuum; Radiative processes; Polarization e�ects.

Pacs numbers: 04.62.+v, 03.65.Bz



{ 1 { CBPF-NF-069/96

1 Introduction

1.1 Introductory Remarks

The purpose of this paper is to discuss the puzzle of the rotating detector [1] and to relate
this to polarization e�ects of electrons in storage rings [2]. We try to avoid many technical
di�culties to emphasize only fundamental results.

The use of general coordinate transformations in quantum �eld theory in 
at spacetime
introduce a plethora of new phenomena. One of these is the Unruh-Davies e�ect [3, 4].
An universal de�nition of the vacuum for a system described by a Hamiltonian is that
the vacuum is the lowest energy state. If to describe the system we use a �nite number of
degrees of freedom, all representations of the operator's algebra are unitarily equivalents,
i.e., diferent vacua lie in the same Hilbert space. This means that the physical description
of the system will not depend on the choice of representation. However, if to describe
the system we have to make use of in�nite degrees of freedom, there are an in�nite
number of unitary inequivalent representations of the commutation relations [5]. Di�erent
inequivalent representations will in general give rise to di�erent pictures with di�erent
physical implications.

A well known example of this situation arises in the study of the quantization of a �eld
by observers with linear proper acceleration using the Rindler's coordinate system [6]. If
we quantize a �eld in the Rindler's manifold one �nds quantization structure identical
to the quantization obtained using the usual cartesian coordinates adapted to inertial
observers: in Rindler's manifold there is a time-like Killing vector and the symmetry
generated by this vector �eld is implemented by a unitary operator group. The generator
of this unitary group is positive de�nite and the construction of eingenstates of this
operator allows a particle interpretation [7]. The Minkowski and the Rindler vacua are
non-unitarily equivalents. It is possible to show that the Minkowski vacuum can be
expressed into a set of EPR type of Rindler's particles [8]. As a natural consequence
of this fact is that a particle detector at rest in Rindler's spacetime interacting with a
massless scalar �eld prepared in the Minkowski vacuum responds as though is were at rest
in Minkowski spacetime immersed in a bath of thermal radiation. Many authors claim
that this case of linear acceleration is physically not very interesting since we need an
eternal phase of constant acceleration.

A more treactable case (at least experimentally) is the case of transverse acceleration
found in circular movement. This particular situation introduce some interesting questions
related with the meaning of particles in non-inertial frames of references. To understand
the problem of the rotating detector we have to go back to the problem of the rotating
disc, i.e., the problem of rotation in relativity. A question that has interested many
authors is whether the intrinsic geometry of a rotating disc is Euclidean or not. Infeld,
using Einstein arguments [9] sustained that a rigid disc under uniform angular rotation 

relative to an inertial frame will exhibit a non-Euclidean geometry (by a rigid body one
understood a body in which during the motion no elastic stresses arises). The argument
is that the circunference will su�er a Lorentz contraction although the radius r will not.
Consequently, the circunference of the rotating disc relative to an inertial frame is less than
2�r. Lorentz had a opposed point of view [10] and claimed that the intrinsic geometry of
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the rotating disc is Euclidean since the radius and the circunference of the rotating disc
contract by the same amount.

A di�erent approach to study this problem based on kinematic arguments has been
presented by Hill long time ago [12]. If the speed of any point in a uniform rotating disc
is a linear function of the radius, distant points have speeds exceeding the velocity of
light. Hence this author concluded that the speed-distance law must be non-linear and
approach the velocity of light when the radius goes to in�nity. Even today these are open
questions and no de�nite answer has been given. Of course Hill's approach is related with
the question: which mapping we have to assume to compare measurements made in an
inertial and in a rotating frame?

If we assume a \Galilean" transformation relating the inertial and the non-inertial
frame it is possible to show that the rotating vacuum is just the Minkowski vacuum.
Nevertheless an aparatus device (a detector coupled with a �eld) which gives information
about the particle content of the state of the �eld can be excited if it is prepared in the
ground state with the �eld in the Minkowski vacuum [13]. This is an odd result. One
would expect the rotating detector not to be excited by the rotating vacuum. Futhermore,
the rotating detector in the (inertial) Minkowski vacuum can be experimentaly imple-
mented, e.g. electrons in storage rings. Therefore a zero rate of excitation in the rotating
vacuum and the measurement of transitions of rotating detectors (electrons, atoms, etc.)
in the Minkowski vacuum are theoretical and experimental results that test the correct-
ness of the mapping relating the inertial and the rotating frames. In this paper we discuss
these problems. We will show how the rate of spontaneous excitation of atoms can give
the correct transformation law and the intrinsic geometry of the rotating disc. The same
idea has been developed by Svaiter and Svaiter [14] and Iliadakys, Jasper and Audretsch
[15], to perceive the existence of cosmic strings. Svaiter and Svaiter assumed the string
quantization [16] and obtained the probability of transition per unit proper time for �nite
time measurements. Iliadakys, Jasper and Audretsch didn't assume the string quanti-
zation (thus physically realistic strings are included), and obtained asymptotic results.
It is possible to use the same idea, examinating radiating \atoms" to �nd the intrinsic
geometry of the rotating disc.

We would like to stress that we are not interested in discussing the subtle problem of
how to decode the information stored in the composite system (detector and scalar �eld)
to convert in a classical sign. The modern treatment of this problem is the following:
both the detector and the scalar �eld are not closed systems but they are open systems
interacting with the enviroment. In this way certain phase relations dissapear, i.e., loss of
coherence to its enviroment (Decoherence). This idea allows that the composite system
(detector and the scalar �eld) be described by a diagonal matrix density [17]. For an
application of such ideas in the Unruh-Davies e�ect see for example Ref. [18].

1.2 Synopsis

The paper is organized as follows. In section 2 we discuss the possible mappings that
we could assume to compare measurements made in the rotating frame and those in the
inertial frame. After use a Galilean-like transformationn we present the well known result
that a rotating vacuum de�ned by these transformations is just the Minkowski vacuum.
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Some disturbing situations are analysed. In section 3 we discuss radiactive processes
in a frame of reference comoving with the monopole detector. Due to interpretational
di�culties associated with the Galilean-like transformations we consider a Lorentz-like
transformation and second quantize the scalar �eld in this rotating coordinate system. It
is shown that this rotating vacuum is not the Minkowski vacuum. In section 4 we perform
the second quantization of the total Hamiltonian of the system to show that the process
of an absorption (emission) of a rotating particle and excitation (decay) of the detector in
the non inertial frame is interpreted as an excitation (decay) of the detector with emission
of a Minkowski particle in the inertial frame. Conclusions are given in section 5. In this
paper we use �h = c = 1.

2 The Rotating Coordinate System

The problem of the rotating disc have been investigated by many authors and can be
posed in the following way. Suppose the Minkowski spacetime with line element in the
cylindrical coordinate system x

0� = (t0; r0; �0; z0) given by

ds2 = dt02 � dr02 � r02d�02 � dz02: (1)

Suppose a disc rotating uniformly about the z axis with angular velocity 
. Which
coordinate transformation we have to use to connect the inertial frame to the rotating
frame? In other words, which mapping we have to assume to compare measurementsmade
in those frames? Eddington [19], Rosen [20] and Landau and Lifshitz [21] adopted as the
transformation between the inertial x0� = (t0; r0; �0; z0) and rotating frame x� = (t; r; �; z)
the following equations:

t = t0; (2)

r = r0; (3)

� = �0 �
t0; (4)

z = z0: (5)

In the rotating coordinate system x� = (t; r; �; z) the line element can be written as

ds2 = (1 � 
2r2)dt2 � dr2 � r2d�2 � dz2 + 2
r2d�dt: (6)

The line element in the rotating frame is stationary but not static. The world line of a
point of the disc is an integral curve of the Killing vector � = (1�
2r2)�1=2@=@t which is
timelike only for 
r < 1. Rosen claimed that using the transformations given by eqs.(2-5)
the speed-distance law is linear and this put a limit on the size of the disc that rotate
with a given angular velocity. The same point of view was given by Landau and Lifshitz
when they restricted the transformation law for r < 1=
.

A second possibility trying to avoid the disc problem in the core of the discussion
is to follow Hill's arguments. This author presented a di�erent answer for the problem.
He raised the question if it is possible to �nd a group of transformation between the
inertial and the non-inertial frame in such a way that for small velocities we obtain the
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linear speed-distance law and for large distance approach the speed of light. Such a
transformation frames was presented by Trocheries [22] and also Takeno using a group
theoretical approach [23]. The coordinate transformations are given by

t = (t0 � r0�0 tanh
r0) cosh 
r0; (7)

r = r0; (8)

� = (�0 � t0

r0
tanh
r0) cosh 
r0; (9)

z = z0: (10)

Note that if we assume this mapping to connect measurements made in the rotating frame
and those made in the inertial frame, in the rotating coordinate system the line element
assume a non-stationary form

ds2 = dt2 � (1 + P )dr2 � r2d�2 � dz2 + 2Qdrd� + 2Sdrdt; (11)

where P , Q and S are given by

P = (
Y

r2
+ 4
�t) sinh2
r � 


r
(t2 + r2�) sinh2 2
 + 
2Y; (12)

Q = r� sinh2
r � 1

2
t sinh 2
r + 
rt; (13)

S =
t

r
sinh2
r � 1

2
� sinh 2
r � 
r�; (14)

and
Y = (t2 � r2�2): (15)

Before starting to analise the detector problem we would like to present some experimental
and theoretical arguments against an in favour of Trocheries and Takeno's coordinate
transformation. The Special Theory of Relativity show us that di�erent inertial frames
are connected by Lorentz transformations. Why we use a Lorentz-like transformation to
connect measurements in the inertial and the non-inertal frame? We should mention that
it is possible to write the transformations de�ned by eq.(7-10) making a analogy with the
Lorentz transformations. Let us de�ne l = r� and 
 = (1� v2)�1=2. It is straightforward
to show that eqs.(7) and (9) becomes

t = 
(t0 � vl0)

and
l = 
(l0 � vt0):

In other words the transformations de�ned by Trocheries and Takeno are \Lorentz-
like" transformation. The fundamental di�erence is that in this case the velocity is
v = tanh
r0. It has been sugested by Phipps [24] that the Takeno's velocity distribu-
tion does not agree with the experimental data. Strauss [11] also adopted a Lorentz-like
transformation, but with a linear v = 
r speed-distance law. The important consequence
is that the light velocity on the rotating frame is one. Again, some authors claim that
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this result is in contradiction with the Sagnac's e�ect [25, 26]. The only way to have
results consistents with this e�ect is to use a \Galilean" transformation given by eq.(2-
5). We would like to stress that the above arguments does not establish conclusively
that we have to use the Galilean transformations. As we will show, direct supports of
Lorentz-like transformation between both frames are suplied by the detector puzzle and
the depolarization e�ect of electrons in a circular accelerator.

Let us now discuss some implications of the Galilean transformation in quantum �eld
theory. To investigate the meaning of particle in an arbitrary cordinate system in a

at spacetime we have two di�erent routs. The �rst is to canonical quantize the �eld

and obtain the number of particles operator for each mode NR(!) = by(!)b(!) in the
arbitrary frame. For static line elements (Rindler, for example) this can be done in a
unambiguosly way. For time dependent line elements (Milne, for example) it is possible
to de�ne instantaneous positive and negative frequency modes and diagonalize an instan-
taneous Hamiltonian operator. The second rout is to introduce an measuring device, i.e.,
a detector (atoms) with a coupling with the �eld. Experimentalists detect photons in
laboratories. They are absorbed at �xed instants and cause the electrons in the atoms to
jump from a ground state to an excited state. Glauber an others produced a theory of
photodetection using the rotating-wave approximation (RWA). In this approximation the
detector (square-law detector) must gives information about the particle content of some
state [27][28]. In other words, square-law detectors goes to excited state by absorption of
quanta of the �eld.

Before continue let us discuss some arguments pro and con of the Glauber's detector.
Bykov and Takarskii [29] showed that this detector model violates the causality principle
for short observations times. If we assume that the observation time is large compared
with E�1, everething is in order. Note that it is possible to consider measurements of
�nite durations only for �T > 1=E. Of short time intervals we cannot even de�ne the
two-level system. Nevertheless there are some situations were we can not use the RWA,
for example in resonant interaction between two atoms [30]. As we will see the RWA can
not be used only to �nd the rate of spontaneous decay. The same situation occur in a
semi-classical theory of spontaneous emission where an atom in the excited state is stable
since there is no vaccum 
uctuations.

Going back to our problem, let us discuss these two routs that are usually used to
investigate the meaning of particles in a curvilinear coordinate system. Let �rst perform
the quantization of a massless real scalar �eld in the rotating frame assuming the �rst
mapping giving by eqs.(2-5). First we have to solve the Klein-Gordon equation in the
x� = (t; r; �; z) coordinate system given by

�
(
@

@t
� 


@

@�
)2 � 1

r

@

@r
r
@

@r
� 1

r2
@2

@�2
� @2

@z2

�
'(t; r; �; z) = 0 (16)

to �nd the normal modes that satis�es

L �Ku�qmkz (t; r; �; z) = �i�!u�qmkz(t; r; �; z); (17)

where �K is a time-like Killing vector. It is not di�cult to show that the modes are given
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by [13, 31]

u�qmkz(t; r; �; z) =
1

2� [2(�! +m
)]
1

2

e�i�!teim�eikzzJm(qr) (18)

where
(�! +m
)2 = k2z + q2; (19)

(�! +m
) > 0; (20)

and the radial part Jm(qr) are the Bessel functions of �rst kind [32]. To continue the
canonical quantization, the �eld operator '(t; r; �; z) have to be expanded using these
modes and the complex conjugates fu�qmkz(t; r; �; z); u

�
�qmkz

(t; r; �; z)g, i.e.,

'(t; r; �; z) =
X
m

Z
�qd�qdkz

h
a�qmkzu�qmkz (t; r; �; z) + a

y
�qmkz

u��qmkz
(t; r; �; z)

i
: (21)

Of course, in stationary coordinate systems the de�nition of positive and negative fre-
quency modes has no ambiguities. To compare both quantizations i.e., in the inertial and
in the rotating frame, we have to �nd the Bogoliubov coe�cients between the inertial
modes (cilindrical waves) f k(t0; r0; �0; z0);  �k(t

0; r0; �0; z0)g and the non-inertial ones given
by eqs.(18). Since the Bogoliubov coe�cients �k� = �(uqmkz ;  k) are zero, Letaw and
Pfautsch concluded that the vacuum de�ned by

a(�q;m; kz)j0; R >= 0 8 �q;m; kz; (22)

i.e., the rotating vacuum is just the Minkowski vacuum. Note that we are not interested
to discuss complications introduced by in�nite-volume divergences. To circunvented this
problem the creation and anihilation operators have to be smeared with square integrable
test functions (wave-packet).

The introduction of the detector in this quantization scheme raised a fundamental
question. If we prepare a detector in the ground state and the �eld in the Minkowski
vacuum there is a non-null probability to �nd the detector in the excited state if the
detector travel in a rotating world line, parametrized by eqs. (2-5). The orbiting detector
will \measure" quanta of the �eld although there is no rotating quanta in the Minkowski
vacuum. How is possible to a detector being excited if is traveling in a rotating disc if we
prepare the �eld in the Minkowski vacuum? After the absorption, the �eld will be in a
lower energy level than the \original vacuum". Therefore this \original vacuum" is not
the true vacuum of the �eld. Another way to formulate the problem is the following one:
our physical intuition say that a a rotating particle detector in the ground state interact-
ing with the scalar �eld prepared in the rotating vacuum must stay in the ground state.
Nevertheless, assuming the Galilean transformation, the Minkowski vacuum j0;M > is
exactly the rotating vacuum j0; R > and the rate of excitations instead to be zero is dif-
ferent from zero. The detector behaves as if it is not coupled to the vacuum, concluded
Davies, Dray and Manogue [1]. This is the so called rotating detector puzzle. Some time
ago Grove and Ottewill trying to sheed some light for these problem studied extended
detectors [33]. Letaw and Pfautsch, Padmanabhan [34] and also Padmanabhan and Singh
[35] concluded that the correlation between vacuum states de�ned via canonical quanti-
zation and via detector is broken in this particular situation. We cannot agree with this



{ 7 { CBPF-NF-069/96

conclusion. The preceding considerations suggest that the Galilean transformation is not
correct to connect measurements in both frames. In the next section we will remember
the formalism and discuss some possibilities to solve the rotating detector puzzle and the
interpretational di�culties associated with the Galilean-like transformation.

3 Radiative Processes of the Monopole Detector

and a New Rotating Vacuum

Let us consider a system (a detector) endowed with internal degrees of freedom de�ning
two energy levels with energy !g and !e, (!g < !e) and respective eigenstates jgi and jei
[4, 36, 37]. This system is weakly coupled with a hermitian massless scalar �eld '(x) with
interaction Lagrangian

Lint = �m(� )'(x(� )); (23)

where x�(� ) is the world line of the detector parametrized using the proper time � , m(� )
is the monopole operator of the detector and � is a small coupling constant between the
detector and the scalar �eld. For di�erent couplings between the detector and the scalar
�eld see for example Ref.[38] and also Ford and Roman [39].

In order to discuss radiative processes of the whole system (detector plus the scalar
�eld), let us de�ne the Hilbert space of the system as the direct product of the Hilbert
space of the �eld HF and the Hilbert space of the detector HD

H = HD 
HF: (24)

The Hamiltonian of the system can be written as:

H = HD +HF +Hint; (25)

where the unperturbed Hamiltonian of the system is composed of the noninteracting
detector Hamiltonian HD and the free massless scalar �eld Hamiltonian HF . We shall
de�ne the initial state of the system as:

jTii = jji 
 j�ii ; (26)

where jji, (j = 1; 2) are the two possible states of the detector (j1i = jgi and j2i = jei)
and j�ii is the initial state of the �eld. In the interaction picture, the evolution of the
combined system is governed by the Schrodinger equation

i
@

@�
jT i = Hint jT i ; (27)

where
jT i = U(�; �i) jTii ; (28)

and the evolution operator U(�; �i) obeys

U(�f ; �i) = 1 � i

Z �f

�i

Hint(�
0

)U(�
0

; �i)d�
0

: (29)
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In the weak coupling regime, the evolution operator can be expanded in power series of
the interaction Hamiltonian. To �rst order, it is given by

U(�f ; �i) = 1� i

Z �f

�i

d�
0

Hint(�
0

): (30)

The probability amplitude of the transition from the initial state jTii = jji 
 j�ii at the
hypersurface � = 0 to

��j 0
�
 j�ii at � is given by

D
j

0

�f

���U(�; 0) jj�ii = �i�
Z �

0

d�
0

D
j

0

�f

���m(�
0

)'(x(�
0

)) jj�ii ; (31)

where j�f i is an arbitrary state of the �eld and
��j 0
�
is the �nal state of the detector.

The probability of the detector being excited at the hypersurface � , assuming that the
detector was prepared in the ground state is:

Peg(� ) = �2j hejm(0) jgi j2
Z �

0

d�
0

Z �

0

d�
00

eiE(�
00

��
0

) h�ij'(x(� 0

))'(x(�
00

)) j�ii ; (32)

where E = !e � !g is the energy gap between the eigenstates of the detector. Note that
we are interested in the �nal state of the detector and not that of the �eld, so we sum
over all the possible �nal states of the �eld j�f i. Since the states are complete, we have

X
f

j�f i h�f j = 1: (33)

Eq.(32) shows us that the probability of excitation is determined by an integral transform
of the positive Wightman function.

Before starting to analyze radiative processes, we would like to point out that a more
realistic model of particle detector must also have a continuum of states. This asumption
allows us to use a �rst order perturbation theory without taking into account higher order
corrections. Although we will use in this paper the two-state model, the case of a mixing
between a discrete and a continuum eigenstates deserves further investigations. For a
complete discussion of the detector problem see for example Refs. [40, 41, 42]. In this
section we will use a di�erent notation. Two distincts spacetime points in the rotating
coordinate system will be given by x� = (�; �) and x0� = (�0; �0). Note that we are not
interested in the z and r dependence of the response function and we will use only � as
angular coordinate (this is exactly the situation in storage rings). Since we are interested
in �nite time measurements let us follow Svaiter and Svaiter [43], and also Ford, Svaiter
and Lyra [44] de�ning

� � �0 = � (34)

and
�f � �i = �T: (35)

We would like to stress that Levin, Peleg and Peres [45] also used the same technique to
study radiative processes in �nite observation times. Substituting eqs.(34) and (35) in
eq.(32) and de�ning F (E;�T ) by

P12(E;�T; �; �
0) = �2j h2jm j1i j2F (E;�T; �; �0)
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we have

F (E;�T; �; �0) =

Z �T

��T

d�(�T � j� j)eiE� h0;M j'(�0

; �
0

)'(�; �) j0;Mi : (36)

It is clear that F (E;�T ) is the probability of excitation normalized by the selectivity
of the detector. The same can be done for decay processes and the probability of decay
P21(E;�T ) is given by

P21(E;�T ) = �2j h1jm j2i j2F (�E;�T ):
Let us de�ne the rate R(E;�T; �; �0), i.e., this probability transition per unit proper time
as:

R(E;�T; �; �0) =
d

d(�T )
F (E;�T; �; �0): (37)

Writting in a concise form we have:

R(E;�T; �; �0) =

Z �T

��T

d�eiE� h0;M j'(�0

; �
0

)'(�; �) j0;Mi : (38)

This important result shows that asymptotically the rate of excitation (decay) of the
detector is given by the Fourier transform of the positive frequency Wightman function.
This is exactly the quantum version of the Wiener-Khintchine theorem which asserts that
the spectral density of a stationary random variable is the Fourier transform of the two
point-correlation function. Spliting the �eld operator in positive and negative frequency
parts, the rate becomes:

R(E;�T; �; �0) =

Z �T

��T

d�eiE�
h
h0;M j'(+)(�

0

; �
0

)'(+)(�; �) j0;Mi

+ h0;M j'(�)(�
0

; �
0

)'(�)(�; �) j0;Mi
+ h0;M j'(�)(�

0

; �
0

)'(+)(�; �) j0;Mi
+ h0;M j'(+)(�

0

; �
0

)'(�)(�; �) j0;Mi
i
: (39)

The last matrix element can be writen as

h0;M j'(+)(�0; �0)'(�)(�; �) j0;Mi = h0;M j'(�)(�; �)'(+)(�0; �0) j0;Mi
+ ['(+)(�0; �0); '(�)(�; �)]: (40)

The commutator is a c-number independent of the initial state of the �eld. Many authors
in quantum optics claim that this contribution has no great physical interest. So the
matrix elements determining the detection of quanta of the �eld are of the form

h0;M j'(�)(�
0

; �
0

)'(+)(�; �) j0;Mi + h0;M j'(�)(�; �)'(+)(�0; �0) j0;Mi : (41)

Substituting the modes given by eq.(18) in eq.(39) it is possible to show that the rotating
detector has non-zero probability of excitation. Since the contribution given by eq.(41)
is zero (there are no rotating particles in Minkowski vacuum), the non-zero rate is cause
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by the last term in eq.(40). A disagreable situation emerges. Our apparatus device is not
measuring the particle content of some state.

The �rst solution of the the puzzle of the rotating detector was given a few months
ago by Davies, Dray and Manogue [1]. These authors assumed that the �eld is de�ned
only in the interior of a cilinder of radius a in such a way that the rotating Killing vector
@t�
@� is always timelike. Consequently the response function of the rotating detector is
zero. Of course if the angular velocity of the detector is above some threshold, excitation
occurs. Clearly the excitation of the rotating detector is related with the \Galilean"
transformation to rotating coordinates which is not valid above certain radius.

Since the vacuum state of quantized �eld is a global object we will present a di�erent
solution for the problem. Let us assume that the coordinate transformation between the
inertial and the rotating frame is that de�ned by Trocheries and Takeno [22, 23]. The
advantage of this coordinate transformation is that the velocity of a rotating point is
v = tanh
r (for small radius or angular velocities we recovered the situation v = 
r).
This coordinate transformation cover all the Minkowski manifold for all angular velocities.
Although we will be not able to calculate explicity the Bogoliubov coe�cients between
the inertial and the rotating modes we will prove that these coe�cients are non-zero and
in this case the answer obtained calculating the Bogoliubov coe�cients between cartesian
and rotating modes and the response function of the detector will agree.

To prove the above assumption, �rst we have to canonical quantize a massless scalar
�eld assuming the second mapping given by eqs.(7-10). It is an human impossible task to
solve exactly the Klein-Gordon equation in Takeno's coordinate system. Making a Taylor
expansion for cosh 
r and tanh
r and retaining terms up the �rst order in 
r the line
element becomes

ds2 = dt2 � dr2 � r2d�2 � 4r
�drdt � dz2:

We point out that although we will consider only the case 
r < 1, the low-velocity
limit of Takeno's transformation does not give the \Galilean" transformation since we
have t = t0 � 
r02�0. In this approximation the metric is stationary by not static. This
means that although there is a timelike Killing vector �eld K, the spatial sections putting
t = constant are not orthogonal to the time lines putting r; theta and z constants, i.e.,
the Killing vector K is not orthogonal to the spatial section. This line element describe
a physical situation in which world lines in�nitesimally close to a given world line are
spatially rotating with respect this world line [46]. In this simpli�ed case, the Kein-
Gordon equation reads�

@2

@t2
� @2

@r2
� 1

r

@

@r
� 4
�

@

@t
� 1

r2
@2

@�2
� 4
�r

@2

@r@t
� @2

@z2

�
'(t; r; �; z) = 0: (42)

The solution can be found using partial separation of variables

'(t; r; �; z) = T (t)Z(z)f(r; �): (43)

We obtain:
Z(z) = eikzz (44)

and
T (t) = e�i!t: (45)
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Finally, de�ning !2 = k2z + q2 we obtain the equation for f(r; �)�
@2

@r2
+ (

1

r
� 4i!
�r)

@

@r
+

1

r2
@2

@�2
+ (q2 � 4i!
�)

�
f(r; �) = 0: (46)

The general solution of this equation was derived in the appendix A and is given by

f(y; �) = Cei��
�
J�(y) + lei��J�+�(y)

�
+

l

2

Z
d�

0

Z
dy

0

G(y; �; y
0

; �
0

)�
0

h
y

03J��1(y
0

) + 2y
02J�(y

0

)� y
03J�+1(y

0

)
i
:

where l, y and G(y; �; y0; �0) are also de�ned in the appendix A, and C is a normalization
factor. Although the spatial part of the solution of eq.(42) is extremely complicated,
there is not ambiguity in the de�nition of positive and negative rotating modes since the
temporal part is given by eq.(45) and the world line of the detector is an integral curve
of the Killing vector K = @=@t that generates a one-parameter group of isometries.

Note that we have problems to de�ne the Hamiltonian in the rotating frame if we work
with the Takeno coordinate transformation without assume 
r < 1. The metric given by
eqs.(11-15) is not invariant under time translations. Usualy the Hamiltonian is de�ned as

H =

Z
T ����d��

p�g

where �� is a timelike Killing vector �eld. Since in the rotating frame the line element
is not stationary it is a complicated question how to de�ne HR. A possible solution of
this problem is to use the same idea that we use in expanding universes where there is no
timelike Killing vector �eld. It is possible to introduce the de�nition of particles at each
time. This procedure introduce the di�cult of particle creation [47, 48]. An alternative
idea is to de�ne the energy as the integral over all modes

H =

Z 1

0

d!
1

2
!N(!)

where N(!)d! is the number of modes with frequency between ! and ! + d! [49]. To
circumvent the ultraviolet divergences of the equation above it is convenient to quantize
the �eld in the interior of a box and de�ne the renormalized mode sum energy

< H >ren=

Z 1

0

d!
1

2
! [N(!) �N0(!)]

where now N(!)d! is the number of modes with frequency between ! and ! + d! in
the presence of the boundaries and N0(!)d! is the number of modes with frequency
between ! and ! + d! in the empty space-time. < H >ren represent the physically
observable change in the vaccum energy of the �eld (Casimir energy). The motivation
of the < H >ren de�nition is that there is some frequency above which the boundary is
transparent. This de�nition eliminate the ultraviolet divergences.

Going back to the low-limit velocity case, we have that the line element is stationary
and there is no ambiguity to de�ne the rotating vacuum j0; R > is such a way that:

bq�kz j0; R >= 0: (47)
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where

'(t; r; �; z) =
X
�

Z
qdqdkz

h
bq�kzvq�kz (t; r; �; z) + b

y
q�kz

v�q�kz(t; r; �; z)
i
: (48)

By sake of simplicity let use the following notation:

'(t; r; �; z) =
X
�

b�v�(t; r; �; z) + by�v��(t; r; �; z); (49)

where � � fq; �; kzg is a collective index.
It is straighforward to show that the Minkowski vacuum can be expressed as a many

rotating-particles state. By comparing the expansion of the �eld operator using the iner-
tial modes and the rotating modes it is possible to obtain the expression comparing both
vacua, i.e j0;M > and j0; R >:

j0;M >= e
i
2

P
�;�

by(�)V (�;�)by(�)j0; R > (50)

where
V (�; �) = i

X
k

���k�
�1
k� ; (51)

and the Bogoliubov coe�cients are given by ��k = �(v�;  �k) and ��k = (v�;  k) . It is
clear that the number of rotating particles in a speci�c mode in the Minkowski vacuum
is given by

< 0;M jNR(�)j0;M >=
X
k

j�k� j2: (52)

Let us choose the hypersurface t0 = constant to �nd the Bogoliubov coe�cients, i.e.,

��k = i

Z 2�

0

d�0
Z 1

�1

dz

Z 1

0

rdr fv�(x0) [@t0 k(x
0)]� [@t0v�(x

0)] k(x
0)g :

The Bogoliubov coe�cients B�k must be non-zero since the positive and negative fre-
quency rotating modes are mixture between positive and negative inertial modes. The
important conclusion from the above arguments is that the Minkovski and this rotating
vacuum are not the same. Now we will show that the expectation value of the number
operator of rotating particles is proportional to the response function, recovering the old
idea that rate of spontaneous excitation is proportional to the number of particles (in the
mode of interest) in the state of the �eld. Note that the rate given by eq. (39) can be
written as:

R(E;�T; �; �0) = RI(E;�T; �; �
0) +RII(E;�T; �; �

0)

where

RI(E;�T; �; �
0) =

Z �T

��T

d�eiE�
�
h0;M j'(�)(�

0

; �
0

)'(+)(�; �) j0;Mi

+ h0;M j'(�)(�; �)'(+)(�0; �0) j0;Mi� : (53)



{ 13 { CBPF-NF-069/96

and

RII(E;�T; �; �
0) =

Z �T

��T

d�eiE� h0;M j ['+(�
0

; �
0

); '�(�; �)] j0;Mi : (54)

The former equation is independent of the state. It is a vacuum 
uctuations contribution
and in the case of spontaneous excitation (E > 0) in the asymptotic limit gives zero
(stability of the detector's ground state). In the case if spontaneous decay (E < 0) we
can substitute the Minkowski vacuum by the rotating vacuum i.e.,

RII(E;�T; �; �
0) =

Z �T

��T

d�eiE� h0; Rj ['+(�
0

; �
0

); '�(�; �)] j0; Ri : (55)

A straighforward calculation gives us a general expression in both cases for the detector
at rest in the rotating frame i.e.

RII(E;�T ) =
1

2�

�
�E�(�E) + cos(E�T )

��T
+
jEj
�

�
Si(jEj�T )� �

2

��

and, in the asymptotic limit for spontaneous decay we have:

lim
�T!1

RII(E;�T ) =
jEj
2�

It is not di�cult to show that the term between the parentesis in eq.(53) gives

h0;M j'(�)(�
0

; �
0

)'(+)(�; �) j0;Mi + h0;M j'(�)(�; �)'(+)(�0; �0) j0;Mi =X
��

X
k

���k�k�
�
v�(�

0; �0)v��(�; �) + v�(�; �)v
�
�(�

0; �0)
�
:

Consequently the rate of excitation for the detector at rest in the rotating frame is:

RI(E;�T; �) = �T jZj2jf(r; �)j2 h0;M jNR(�)j0;Mi
�
sin(E � �)�T

(E � �)�T
+
sin(E + �)�T

(E + �)�T

�
:

In the asymptotic limit the rate of excitation becomes

lim
�T!1

RI(E;�T; �) = �T jZj2jf(r; �)j2 h0;M jNR(�)j0;Mi �(E � �): (56)

Thus the rate of excitation will be proportional to the number of rotating particles
with energy E in the Minkowski vacuum multiplied by the square of the \wavefunction"
(jZjjf(r; �)j) in the world line of the detector.

Bell and Leinaas studied the depolarization problem in accelerators trying to use the
idea of a Unruh-Davies e�ect. The electron in a accelerated ring is a magnetic version
of the monopole detector, since there is a linear coupling between the magnetic �eld B
and the magnetic moment of the electron. To see this result let us de�ne the invariant
operator

H =
e

2m2
F �
��p

�s�
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where m is the electron mass, F �
�� =

1
2�����F

�� and s� is the four vector spin operator. In
the frame in which the electron is at rest the operator H describes the interaction between
the spin magnetic moment of the electron with the magnetic �eld,

H = �~�: ~B:
To understand the depolarization problem let us suppose an ensemble of electrons (de-
tectors) in equilibrium with a thermal bath. The probability to �nd the detector in the
state ji > is:

Pi =
e��!i

Z
(57)

or
Pe
Pg

= e��E (58)

de�ning the occupation number N(e) and N(g) we have

N(e) = N(g)e��E: (59)

Since the electron in a accelerator is a magnetic version of the monopole detector in the
equilibrium, the rate between spin up and spin down will be given by the above equation.
Thus if we introduce a complete unpolarized electron beam, it will su�er a polarization
until the equilibrium is reached. The asymptotic rate of spin 
ip will be proportional to
the asymptotic limit of the rate R�(E;�T ) i.e.,

lim
�T!1

R�(E;�T ) =
jEj
2�

�
�(�E)

�
1 +

1

e�jEj � 1

�
+�(E)

1

e�E � 1

�
:

Note that although the situation is similar to the Rindler's case where the detector goes
to excited state by absorption of Rindler's particles (the Minkowski vacuum is a thermal
state of Rindler's particles), there is a fundamental di�erence. In the Rindler's case there
is an past and future horizont. Part of information which would have an inertial observer
is inaccessible for accelerated observers. Although the Minkowski vacuum j0;M > is a
pure state, for accelerated observers it must be described by a statistical operator. This
is the origin of the thermal distribution of particles. As was noted by Bell and Leinaas
in the case of circular motion the measurements of the polarization does not agree with
the calculations if we interpret the polarization by thermal e�ects. In our approach,
depolarization is related with the fact that the Minkowski vacuum is a many particle
state of rotating particles. Let us try to improve this ideas using Einstein's arguments
[50]. All calculations will be held in the rotating frame. Suppose that the probability to
�nd the detector in the state ji > is given by

P (!i) =
f(!i)

Z
(60)

where the partition function Z is given by

Z =

2X
i=1

f(!i): (61)
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Still following Einstein's arguments we have three di�erent processes: absortion of rotating
particles, induced emission and spontaneous emission (stimulated emission by the j0; R >
vacuum 
uctuations) of rotating particles. De�ning the rate of spontaneous decay by
A2!1(E;�T ) we have

dW2!1(E;�T ) = A2!1(E;�T )dt (62)

For the induced emission R2!1(E;�T ) we have

dW2!1(E; j�T ) = R2!1(E;�T )dt; (63)

and �nally for the rate of absorption R1!2(E;�T ) we have

dW1!2(E;�T ) = R1!2(E;�T )dt: (64)

In the equilibrium situation between an ensemble of rotating detectors and the scalar �eld
in the Minkowski vacuum (asymptotic limit) we have

f(!1)�(E)R1!2(E) = f(!2) (�(E)R2!1(E) +A2!1(E)) (65)

where � is the number of rotating particle in the mode E in the Minkowski vacuum i.e.

�(E) =< 0;M jNR(E)j0;M > : (66)

Although the spectrum of the rotating particles in the Minkowski vacuum is not known,
at the equilibrium we have R1!2(E) = R2!1(E). In the equilibrium situation the this
hipotesis must hold. Note that this is not in principle fundamental for our conclusions.
A straightforward calculations gives

�(E) =
A2!1(E)

R1!2(E)

1
f(!1)
f(!2)

� 1
(67)

The knowledge of the Bogoliubov coe�cients �k�(�) give us both �(E) and R2!1(E). A
second step in our analysis is to use the result that A2!1(E) is exactly the rate of spon-
taneous decay of a inertial detector interacting with the �eld in the Minkowski vacuum.
Thus we have

f(!1)

f(!2)
=

�
ER�1

1!2(E)

< 0;M jN(E)j0;M >
� 1

�
: (68)

This result show us the conection between the the rate between up and down spins as a
function of the mean life of the excited state and �(E) after the equilibrium situation is
reached.

We still have to answer some questions. Where does the energy of excitation come
from if we analyse the process from the point of view of the inertial observer? The non-
inertial observer does not meet any di�culty. At some initial time we prepare the detector
in the ground state and the �eld in the Minkowski vacuum. Since the Minkowski vacuum
is a many rotating-particles state the detector goes to excited state absorbing a positive
energy particle. For large time intervals energy conservation holds. For the point of view
of the inertial observer the �eld is in the empty state. How is possible the excitation?
A natural answer is to say that it is necessary an external accelerating agency to suplly
energy to keep the detector in the rotating world-line. It is possible to show that the
detector goes to excited state with the emission of a Minkowski particle. In the next
section we will perform the second quantization of the detector Hamiltonian to analyse
the absorption and emission processes from the inertial point of view.
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4 Second Quantization of the Total Hamiltonian and

Polarization E�ects on Electrons and Positrons in

Storage Rings

In this section we will prove that the process: absorption (emission) of positive energy
rotating particle with excitation (decay) of the detector (from the non-inertial point of
view) is interpreted as a emission of a Minkowski particle with excitation (decay) of
the detector from the inertial point of view. This simple result express the fact that
electrons (positrons) experience a gradual polarization orbiting in a storage ring. This
mechanism lead to the emission of spin-
ip synchronon radiation [51]. It is important to
stress that the amount of spin-
ip radiation is extremely small compared with the non-

ip radiation. An open question is why the polarization is not complete after the system
reach the equilibrium? We will try to answer this question applying the ideas developed
by us in the preceding sections. Of course again we have a oversimpli�ed description of
the phenomenon. Before start the second quantization of the detector and interaction
Hamiltonian let us remember the fundamental results of the preceeding section (we will
use a di�erent notation in this section).

In Minkowski space time it is possible to quantize a massless scalar �eld using the
cartesian coordinate adapted to inertial observers. Thus the scalar �eld can be expanded
using an orthonormal set of modes

'(x) =
X
i

aiui(x) + a
y
i u

�
i (x) (69)

where
aij0;M >= 0 8 i: (70)

There is an inequivalent quantization using coordinates adapted to a rotating observer.
The scalar �eld can be expanded using a second set of orthonormal modes

'(x) =
X
j

bjvj(x) + b
y
j v

�
j (x) (71)

where
bjj0; R >= 0 8 j: (72)

As both sets are complete, the non-inertial modes can be expanded in terms of the inertial
ones, i.e.

vj(x) =
X
i

�jiui(x) + �jiu
�
i (x) (73)

or
ui(x) =

X
j

��jivj(x)� �jiv
�
j (x): (74)

Using these equations and the orthonormality of the modes it is possible to write the an-
nihilation and creation operators of inertial particles in the mode i as a linear combination
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of non-inertial creation and annihilation operators [52], i.e.

ai =
X
j

�jibj + ��jib
y
j (75)

or

bj =
X
i

��jiai � ��jia
y
i : (76)

Let us use the notation introduced in section 3, i.e. jg >= j1 > and je >= j2 >. Thus we
have

HDji >= !iji > i = 1; 2: (77)

Using the above equation and the orthonormality of the energy eigenstates of the detector
Hamiltonian, we can write

HD =
2X

i=1

!iji >< ij: (78)

To second quantize the detector Hamiltonian we have to introduce the Dicke operators
[53]

S+ = j2 >< 1j; (79)

S� = j1 >< 2j; (80)

and �nally

Sz =
1

2
(j2 >< 2j � j1 >< 1j): (81)

In the case of n eigenstates of the (atom) detector Hamiltonian we have to work with the
atomic operators, i.e. the multilevel generalization of the Dicke spin operators for the two
level system. The detector Hamiltonian in the two level case can be written as

HD = ESz +
1

2
(!1 + !2): (82)

The operators S+, S� and Sz satisfy the angular momentum commutation relations cor-
responding to spin 1=2 value, i.e.

�
S+; S�

�
= 2Sz; (83)�

Sz; S
+
�

= S+; (84)�
Sz; S

�
�

= �S�: (85)

It is clear that S+ and S� are respectivelly raising and lowering operators of the de-
tector states (S+j1 >= j2 >;S+j2 >= 0; S�j2 >= j1 >;S�j1 >= 0). The interaction
Hamiltonian given by eq.(23) can be written as

Hint = �[m21S
+ +m12S

� + Sz(m22 �m11)]'(x); (86)

where
< ijm(0)jj >= mij: (87)
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We should simplify the discussion choosing m11 = m22. As we will see the part if the
interaction hamiltonian with the Sz operator is responsible for the non-
ip synchroton
radiation. Substituting eq.(71) in eq.(86) we see that there are di�erent processes with
absorption or emission of rotating particles with excitation or decay of the detector. It
is possible to show that some of these processes are virtual, and only processes with
energy conservation survive in the asymptotic limit, i.e., excitation of the detector with
absorption of a rotating particle (process involving bjS+) and decay of the detector with

emission of a rotating particle (process involving b
y
j S

�).
The �rst process is generated by the following operators:

m12

X
j

vj(x)bjS
+: (88)

Substituting eq.(73) and eq.(76) in eq.(88) it is clear that the above process of absorption
of a rotating particle in the mode j is the following:

X
ijk

�
��ji�jkuk(x) + ��ji�jku

�
k(x)

�
a
y
i S

+: (89)

Therefore this process for the inertial observer is an excitation of the detector with creation
of Minkowski particles.

The second process is generated by the following operators:

m21

X
j

v�j (x)b
y
jS

�: (90)

Substituting eq.(73) and eq.(76) in eq.(90) we see that the above process of emission of a
rotating particle in the mode j is the following:

X
ijk

�
�ij�

�
jku

�
k(x) + �ij�

�
jkuk(x)

�
a
y
i S

�: (91)

Therefore this process for the inertial observer is a decay of the detector with creation of
Minkowski particles.

Now we are able to understand the problem of the synchroton radiation. In the emision
of synchroton radiation by electrons moving along a circular orbit, there are two kinds of
processes: the �rst is the emission of photons without spin 
ip of the electron and the
second is emission with spin 
ip. We will restrict our discussion to the second case. To
make a parallel with the detector's problem we have to assume that the electron trajectory
is \classical" (there is no 
uctuation of the electron path) or even after the photon emission
there is no recoil (as was stressed by Bell and Leinaas, the results does not depend on
position 
uctuations of the electron trajectory). There are two di�erents results in the
literature depending on the value of the Land�e-g factor of the electron. Jackson showed
that the rate of transition from an initial state with the spin of the electron directed along
the magnetic �eld (high energy state) to a state with the electron spin in opposite to the
magnetic �eld (lower energy state) is lower than the opposite situation if the Land�e-g
factor of the electron obeys 0 < g < 1:2. It is important to stress that the situation is
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opposite of the naive description where polarization arises from spontaneous emission as
the spin move from its \upper" (high energy state) to its \lower" (low energy state) in
the magnetic �eld. For the case where 1:2 < g < 2 Jackson and also Sokolov et al [54]
obtained that after the photon emission the electron spin will tends to orient themselves in
opposite to the magnetic �eld (going to the lower energy state). Of course, positrons spins
will have an oposite behavior. These both results are consistent with our interpretation
that absorption (emission) of a rotating particle with excitation (decay) of the detector in
the non-inertial frame is interpreted as emission of a Minkowski particle with excitation
(decay) of the detector in the inertial frame.

To �nd the degree of polarization before the equilibrium situation is achieved let us
de�ne the occupation number of electrons with spins directed in oposition to the magnetic
�eld (lower energy state) by N1, and N2 is the number of electrons with spins directed to
the magnetic �eld. Of course we have N1(t)+N2(t) = N , where N = constant is the total
numbers of electrons in the ring. We will do all the calculations in the rotating frame.
The degree of polarization of an ensemble of electrons in the beam is de�ned as

P (t) =
N1(t)�N2(t)

N1(t) +N2(t)
: (92)

The equation of the evolution of N1 and N2 are given by

dN1

dt
= N2 [�(E)R2!1(E;�T ) +A2!1(E;�T )]�N1 [�(E)R1!2(E;�T )] (93)

and
dN2

dt
= N1 [�(E)R1!2(E;�T )]�N2 [�(E)R2!1(E;�T ) +A2!1(E;�T )] (94)

Let us avoid the di�cult to �nd R1!2(E;�T )) and R2!1(E;�T ) and using the following
approximation i.e,

�(E)R2!1(E;�T ) +A2!1(E;�T ) = �21 = constant (95)

and
�(E)R1!2(E;�T ) = �12 = constant: (96)

Then, starting from a situation where there is no polarization, i.e., P (t = 0) = 0 it is
possible to �nd the polarization until the equilibrium situation is achieved. It is necessary
only to integrate the above equations. A straightforward calculation gives

N1(t) =
N

2

�
�12 � �21
�12 + �21

�
e�(�12+�21)t +N

�
�21

�12 + �21

�
(97)

and

N2(t) = �N
2

�
�12 � �21
�12 + �21

�
e�(�12+�21)t +N

�
�12

�12 + �21

�
: (98)

The degree of polarization of the beam is

P (t) =

�
�21 � �12
�12 + �21

��
1 � e�(�12+�21)t

�
: (99)
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We obtained that if R1!2(E;�T ), R2!1(E;�T ) and A2!1(E;�T ) are independent
of time the asymptotic degree of polarization is constant i.e.,

lim
t!1

P (t) =

�
�21 � �12
�12 + �21

�
:

Experimental results show us a not complete polarization. Why there is residual depo-
larization? This is the puzzle stressed by Jackson [51] and also Bell and Leinas [2]. From
the former equation it is easy to see that the polarization can not be complete. The
process absorption of a rotating particle with excitation of the detector has always non
null probability. In the asymptotic limit we have that if

R21 +A21 > 3R12;

the lower energy state is prefered (1:2 < g < 2, for the Land�e-g factor), and if

R21 +A21 < 3R12;

the higher energy state is prefered (0 < g < 1; 2 for the Land�e-g factor).
We remark that the results that the polarization can not be complete was obtained in a

very crude approximation where the rates R1!2(E;�T ), R2!1(E;�T ) and A2!1(E;�T )
does not depend on time (see eq.(53) and eq.(54)). A more realistic result can be obtained
assuming that this rates does depend on time. De�ning n1 = N1=N and n2 = N2=N and
also

�(E)R2!1(E;�T ) +A2!1(E;�T ) = �21(t)

and
�(E)R1!2(E;�T ) = �12(t)

we obtain the following equations:

n1(t) + n2(t) = 1 (100)

and
dn1(t)

dt
+ n1(t) [�12(t) + �21(t)] = �21(t) (101)

Let us consider the homogeneous linear equation:

dn
(0)
1 (t)

dt
= n

(0)
1 (t) [�12(t) + �21(t)] = 0 (102)

A general solution is

n
(0)
1 (t) = C1e

�
R t

[�12(t0)+�21(t0)]dt0: (103)

Now let us substitute in the non-homogeneous equation the expression

n1(t) = v(t)e�
R t

[�12(t0)+�21(t0)]dt0: (104)

The equation for v(t) becomes

dv(t)

dt
e�
R t

0
[�12(t0)+�21(t0)]dt0 = �21(t) (105)
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consequently we have

v(t) = C2 +

Z t

dt0�21(t
0)e
R t0

[�12(t
00)+�21(t

00)]dt00: (106)

The general solution that we are looking for involves two quadratures and it is given by

n1(t) = C2e
�
R t

[�12(t
0)+�21(t

0)]dt0 + e�
R t

[�12(t
0)+�21(t

0)]dt0
Z t

dt0�21(t
0)e
R t0

[�12(t
00)+�21(t

00)]dt00:

(107)
With the values of R2!1(E;�T ), R1!2(E;�T ) and A2!1(E;�T ), it is possible to �nd
the degree of polarization.

We would like to point out that there is a diferent approach to study these problems.
As it has been pointed out by Milonni and Smith [55] and Ackerhalt, Knight and Eberly
[56], it is possible to study radiative processes without using perturbation theory, but
using the Heisenberg equations of motion. In this approach it is possible to obtain non-
perturbative expressions for radiative processes where the radiation reaction appears in
a very simple way: the part of the �eld due to the atom (detector) that drives the Dicke
operators [53]. In this approach it is possible to identify the role of radiation reaction
and vacuum 
uctuations in spontaneous emission. We would like to stress the fact that
the contribution of vacuum 
uctuations and radiation reaction can be chosen arbitrarily,
depending on the order of the Dicke and �eld operators. As it was discussed by Dalibard,
Dupont-Roc and Cohen-Tannoudji [57], there is a preferred ordering in such a way that
the vacuum 
uctuations and radiation reaction contribute equally to the spontaneous
emission process. More recently this approach was developed by Audretsch and Muller,
Audretsch, Mensky and Muller and also Audretsch, Muller and Holzmann [58] to study the
Unruh-Davies e�ect. These authors constructed the following picture of the Unruh-Davies
e�ect. The e�ect of vacuum 
uctuations is changed by the acceleration, although the
contribution of radiation reaction is unaltered. Due to the modi�ed vacuum 
uctuation
contribution, transition to an excited state becomes possible even in the vacuum. It will
be interesting to use this formalism to study the rotating detector.

5 Conclusions

In this paper we discuss the relativistic problem of uniform rotation and how this question
is related with the puzzle of the rotating detector. After this we discuss the response
function of a particle detector traveling in di�erent world lines interacting with a scalar
�eld prepared in two di�erent vacua: the Minkowski and the rotating vacuum. For
electrons in storage rings, a residual depolarization has been found experimentally. Bell
and Leinaas investigate this e�ect using the idea of circular Unruh-Davies e�ect. We
propose a alternative solution to the rotating detector puzzle and how this will be related
with depolarization e�ects in circular accelerators.

Let use the result that the probability of transition per unit proper time depends not
only of the world line of the \atom" but also the particular vacuum in which we prepare
the �eld to study four di�erent situations:
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i) The response function of an inertial detector interacting with the �eld in the
Minkowski vacuum;

ii) The response function of the rotating detector interacting with the �eld in the
Minkowski vacuum;

iii) The response function of an inertial detector interacting with the �eld in the
rotating vacuum;

iv) The response function of the rotating detector interacting with the �eld in the
rotating vacuum.

The same kind of analysis in a di�erent situation was given by Pinto Neto and Svaiter
[59]. The case (i) gives the usual result that an inertial detector in its ground state
interacting with the �eld in the Minkowski vacuum does not excite. It is clear that the
situation (iv) will give the same result. The case (ii) can be produced in a laboratory.
The case (iii) is more involved. How to produce the rotating vacuum? A possible solution
is to use the ideas developed by Denardo and Percacci [31] and also Manogue [60]. This
second author consider the case of rotating boundaries to push the vacuum around. Note
that we are dealing with a Casimir rotating vacuum. Is it possible to create some kind of
rotating vacuum? If the answer is positive we conjecture that the situation (iii) will give
the same response function as situation (ii).

It will be of interest to explore the consequences of this paper, in particular to exam-
inate some interesting astrophysical situations. For example, the origin of non-thermal
radio-frequency in the Universe can be explained by the mechanism of synchroton ra-
diation? [61]. Some authors discussed the metric of a spinning cosmic string [62]. We
conjecture that electrons and positrons in the neighbourhood of such objects must emit
synchroton radiation. On the same grounds we conjecture that any rotating astrophysical
object (sppining pulsars for example [63]) with a cloud of electrons and positrons is a
source of synchroton radiation. We can attempt to justify our conjecture using the well
known result that the radiation emited by a pulsar has a high degree of polarization. This
fact suggest that the mechanism is similar to the one that generates synchroton radiation.

Before �nish we would like to made some coments concerning the Sagnac's e�ect.
This is the optical analogue of the Foulcault pendulum. In the Sagnac's experiment
the apparatus device rotates, and the optical experiment can determine the rotation of
the frame relative to an inertial frame. This shows the diference between inertial and
the rotating (non-inertial) frame. For inertial frames it is impossible to determine the
absolute velocity of the apparatus. In the case of the rotating frame the angular velocity
can be obtatined. Our criticism of this scheme is the following: to measure the proper
spatial line element (in the rotating frame) we have to measure the time taken by the
light signal between an emision and also absorption from atoms. The connection with the
detector puzzle shows how is intricate the analysis. We conclude that the Sagnac's e�ect
can detect the angular velocity of the apparatus but not conclude that the mapping that
connect inertial and the non-inertial frame is the galilean one.

In conclusion, in this paper we have attemp to show that the Minkowski and a rotating
vacuum are not the same. Although the Bogoliubov coe�cients �k� between the inertial
and the non-inertial modes are non-zero it is very di�cult to calculate them. We are
forced to admit that we fail to �nish our interprize since we meet a basic di�culty to
calculate the number of rotating particles in the Minkowski vacuum. Is it possible to go
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further?
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Appendix A

In this appendix we will present the solution of Eq. (46):

�
@2

@r2
+ (

1

r
� 4i!
�r)

@

@r
+

1

r2
@2

@�2
+ (q2 � 4i!
�)

�
f�(r; �) = 0:

Let us de�ne g(r; �) by the following equation:

f�(r; �) = ei��g�(r; �):

A direct substitution gives the equation for g(r; �):
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�
@2

@�2
+ 2i�

@

@�

�
� ��

�
r
@

@r
+ 1

��
g�(r; �) = 0;

where � = 4i!
. De�ne the new quantity y = qr and l = �=q2 the equation becomes

��
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1
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� �2
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+ 1

�
+
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�
@2

@�2
+ 2i�

@

@�

�
� l�

�
y
@

@y
+ 1

��
g�(y; �) = 0:

There appear to be no way of solve the above equation exactly. Consequently let us
try a perturbative solution given by

g�(y; �) = J�(y) +

1X
k=1

lkP (k)
� (y; �):

By considering only the �rst order term in the above expansion and for simplicity using
the notation P

(1)
� (y; �) � P�(y; �) we obtain:

�
@2

@y2
+
1

y

@

@y
� �2

y2
+ 1

�
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1

y2

�
@2

@�2
+ 2i�

@

@�

�
P�(y; �)� �

�
y
@

@y
+ 1

�
J�(y) = 0:

De�ning
1

2
y3J��1(y) + y2J�(y)� 1

2
y3J�+1(y) = h(y);

we get: ��
y2
@2

@y2
+ y

@

@y
� �2 + y2

�
+

@2

@�2
+ 2i�

@

@�

�
P�(y; �) = �h(y):
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It is possible to use the Green's functions method to �nd the general solution for P�(y; �).
Thus,

P�(y; �) = P (0)
� (y; �) +

Z
d�

0

Z
dy

0

G(y; �; y
0

; �
0

)�
0

h(y
0

);

where P
(0)
� (y; �) is the solution of the homogeneous equation, and G(y; �; y

0

; �
0

) satisfy��
y2
@2

@y2
+ y

@

@y
� �2 + y2

�
+

@2

@�2
+ 2i�

@

@�

�
G(y; �; y

0

; �
0

) = �(y � y
0

)�(� � �
0

):

It is straightforward to �nd the solution of the homogeneous equation using separation of
variables method de�ning:

P (0)
� (y; �) = ei��Q(0)

� (y):

Then,
Q(0)

� (y) = J�+�(y):

Finally the general solution is given by:

f(y; �) = ei��
�
J�(y) + lei��J�+�(y)

�
+

l

2

Z
d�

0

Z
dy

0

G(y; �; y
0

; �
0

)�
0

h
y

03J��1(y
0

) + 2y
02J�(y

0

)� y
03J�+1(y

0

)
i

Appendix B

An orthonormal set is de�ned through a scalar product in the vector space of the solutions
of some equation of motion. In the case of Klein-Gordon �eld this scalar product is
Hermitian but not positive de�nite. Let be f(x) and g(x) two elements of F , where F
is the vector space of the solutions of the Klein-Gordon equation with the scalar product
de�ned by

(f; g) = �i
Z
�

p�gd�� [f(x)(@�g
�(x))� (@�f(x))g

�(x)]

where d�� = ��d� with �� a future directed unit vector orthogonal to the space-like
hypersurface � and d� is the volume element in �. An orthonormal set (uk; u�k) is said
to be complete if every solution f(x) of F can be written as

f(x) =
X
k

akuk(x) + bku
�
k(x)

where the coe�cients ak and bk are given by

ak = (uk; f)

and
bk = �(u�k; f):

Let G be a subset of F . If(vj; v�j ) and (ui; u�i ) are two orthonormal sets such that the
expand every element of G, then they are called equivalents. In this case

vj(x) =
X
i

�jiui(x) + �jiu
�
i (x)
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and
ui(x) =

X
j

��jivj(x)� �jiv
�
j (x):

They are said to be complete only if F = G. The quantum �eld '(x) can be expanded
using either of the two complete sets (ui; u�i ) or (vj; v

�
j ) that would lead to two diferent

vacua j0 > and j00 > respectively. When
P

ij j�ijj2 converges, the representations are said
to be unitarily equivalent. If it diverges they are non-unitarily equivalents and they are
not related to any unitary operator in the Fock space. For a very interesting introduction
to this subject see for example the Miransky [64] and also the Umezawa book [65].
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