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Abstract

All orientation preserving isometries of the hyperbolic
three-space are studied, and the probability density of
conjugate pair separations for each isometry is pre-
sented. The study is relevant for the cosmic crystallog-
raphy, and is the theoretical counterpart of the mean
histograms arising from computer simulations of the
isometries.

1 Introduction

Cosmic crystallography is a method to help �nding the
geometry and the topology of the universe [1]. In a
close analysis of the method, a description has been
presented of how each isometry of the universe gives its
individual contribution to a pair separation histogram
(PSH) [2]. More recently, the isometries of the in�nite
3D euclidean space were studied in some detail, and the
expected (theoretical) individual contribution of each
isometry to the PSH was described [3].

The present report investigates the orientation pre-
serving isometries of H3, the 3D in�nite hyperbolic

space with positive de�nite metric and unitary radius
of negative curvature. To generalize for arbitrary nega-
tive curvature one simply needs dividing every quantity
with dimension length by the radius of curvature. All
the results obtained clearly reproduce their euclidean
counterparts when the radius of curvature tends to in-
�nity.

2 The probability density of con-

jugate pair separations

In H3 we assume a spherical solid ball B. Under an
isometry g of H3 the ball occupies a new position Bg ;
we only consider isometries such that the balls B and
Bg intersect. Assuming a point P 2 B and denoting
as Pg 2 Bg its g-transported, we call the pair (P; Pg) a
g-pair. We focus our attention on the g-pairs such that
Pg 2 B \ Bg, and assume an in�nity of points Pg uni-
formly distributed throughout the intersection B \ Bg .
For the given isometry g, we ask for the probability
PBg (l)dl that a randomly selected g-pair has hyperbolic
separation lying between the values l and l + dl; the
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probability density PBg (l) clearly satis�es the normal-
ization conditionZ 2a

0

PBg (l)dl = 1; (1)

where 2a is the diametre of the balls.

3 Some basic formulas

A few useful formulas of the hyperbolic trigonometry
in 2D are worth having at hand. In a geodetic triangle
with sides measuring a; b; c and corresponding opposite
angles measuring �; �; , we have

� the law of sines

sin�

sinh a
=

sin �

sinh b
=

sin 

sinh c
; (2)

� the �rst law of cosines (cyclic)

cosh a = cosh b cosh c

� sinh b sinh c cos� ; (3)

� the second law of cosines (cyclic)

cos� = �(cos � cos 
� sin � sin  cosh a) : (4)

We also need a few 2D relations between lengths of
arcs of geodesics, horocycles and equidistant curves to
a geodesic; see �gure 1 for visualization:

e0 = g cosh r; h0 = h cosh r;

h = 2 sinh (g=2); ef = cosh(g=2);

tanh p0 = tanh p cosh q; (5)

and as a consequence

sinh (g0=2) = sinh (g=2) cosh r : (6)

Figure 1 Some geometric objects in the plane hyperbolic

geometry.
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(a) g; g0, and r are geodetic arcs; h and h0 are arcs of horo-

cycles; e0 is an arc equidistant to g; the arcs r are perpen-

dicular to g and to e0; the geodetic arc f is orthogonal to

both g and h.

(b) a geodetic quadrilateral with three right angles, assum-

ing sinh p sinh q < 1.

We often use the line element of H3 in the cylindrical
coordinates,

dl2 = d�2 + sinh2� d�2 + cosh2� d�2; (7)

we also use

dl2 = �dW 2 + dX2 + dY 2 + dZ2 ;

W =
p
1 +X2 + Y 2 + Z2 ; (8)

where

W = cosh � cosh �; X = sinh � cos �;

Y = sinh� sin �; Z = cosh � sinh � : (9)

In these coordinates the separation l between two points
P1; P2 is given by

cosh l = W1W2 � (X1X2 + Y1Y2 + Z1Z2)

= cosh �1 cosh �2 cosh(�1 � �2)

� sinh �1 sinh �2 cos(�1 � �2) : (10)

For future reference, consider the special situation of
the three points (see �gure 2)

P1 = (�1; 0; 0) = (cosh �1; sinh�1; 0; 0) ;

Q = (0; 0; g) = (cosh g; 0; 0; sinhg) ;

P2 = (�2; �; g) = (cosh �2 cosh g; sinh �2 cos�;

sinh �2 sin�; cosh�2 sinh g) ;

the separation l between the points P1 and P2 is then
given by (10), namely

cosh l = cosh �1 cosh �2 cosh g

� sinh �1 sinh �2 cos � : (11)

Figure 2 Relative position of points P1 and P2 with hyper-

bolic separation l.

4 The isometries of H3

We are presently interested in the isometries ofH3 that
preserve the orientation. These isometries can be clas-
si�ed as

� hyperbolic, with 5 parametres; these isometries
bear some similarity with the 3-parametric eu-
clidean translations;

� elliptic, also with 5 parametres; they are analogous
to the also 5-parametric euclidean rotations in or-
dinary space;

� screw motions, with 6 parametres; bear some sim-
ilarity with the also 6-parametric euclidean screw
motions;

� parabolic, with only 4 parametres; again they re-
mind us of the euclidean translations.

In each of these isometries the intersection of the balls
B and Bg is a rotationally symmetric solid lens, whose
thickness T , diametre D = 2R, and volume V B

g we
now seek. We denote as a the radius of the balls, and
m = 2M the separation between their centres C and
Cg; then we clearly have M < a and (see �gure 3)

T = 2(a�M ) : (12)

The separation m depends on the isometry g one is
concerned with. Noting that a;M , and R make a right-
angled triangle with hypotenuse a, we �nd

cosh a = coshM coshR : (13)

Figure 3 The balls B and Bg with radius a intersect in a

solid lens with equatorial radius R and thickness T . The

centres of the balls are separated m = 2M .

To have the volume V B
g of the solid lens B \ Bg we

�rst consider a compact cylindrical surface Cy embe-
ded in the lens, and whose axis coincides with that of
the lens (see �gure 4); all points of Cy are at a �xed
distance y from the axis, so the geometry on Cy is 2D-
euclidean. Denoting as e the length of the generatrices
(arcs equidistant to the geodetic axis), the area of Cy is

S(y) = 2�e sinh y : (14)
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Figure 4 Sketch of a compact cylinder Cy inscribed in the

solid lens B \ Bg; it has radius y and generatrices e.

Wemust now relate e with a;M , and the variable radius
y. In �gure 4 we note a right angled triangle with sides
a (hypotenuse), y, and M + x, so we have

cosh a = cosh y cosh(M + x) ; (15)

since from eq. (5a) we have e=2 = x cosh y , then e =

2 cosh y
h
cosh�1

�
cosh a
cosh y

�
�M

i
, and

S(y) = 2� sinh 2y

�
cosh�1

�
cosh a

cosh y

�
�M

�
: (16)

The volume V B
g of the lens is clearly

V B
g =

R R
0
S(y)dy (17)

= 2�
�
(tanh a� tanhM ) cosh2 a� (a�M )

�
:

It can be checked that when M = 0 we get the hy-
perbolic volume �(sinh 2a � 2a) of a solid ball with
radius a, as expected. Also note that for small val-
ues of a and M we recover the euclidean volume
(2�=3)(a�M )2(2a+M ) of the solid lens [3] .

5 Special translations

Preceding the study of the general hyperbolic isometry
of H3 we �rst consider the very special situation in
which the axis L of the isometry g crosses the centre
C of the ball B. With a = the radius of B, and t =
the value of the translation along the axis, we assume
t < 2a to have nonvanishing intersection B\Bg. In this
special isometry we clearly have the equality m = t.
According to eq.(6) and �gure 1, a point P at a dis-

tance r from the axis L is displaced under t to a distance
l given by

sinh (l=2) = sinh (t=2) cosh r ; (18)

this is a relation involving the variable l (displacement
of P ), the variable r (distance from P to the axis L),
and the parametre t (the unique relevant one in this
special isometry).
We next introduce the probability QB

g (r)dr that a
randomly chosen point Pg which is in both B and Bg
be in a radial position between r and r+dr. The prob-
ability density QB

g (r) clearly is proportional to the area

SBg (r) of the cylinder Cr inscribed in the solid lens B\Bg
(see eq.(16)), the coe�cient of proportionality being the
inverse of the volume V B

g of the lens:

QB
g (r) =

SBg (r)

V B
g

=
2�

V B
g

sinh 2r

�
cosh�1

�
cosh a

cosh r

�
� t

2

�
: (19)

The equality of the probabilities PBg (l)dl and QB
g (r)dr

then gives, using r(l) obtained from (18),

PBg (l) =
dr

dl
QB
g [r(l)] (20)

=
1

V B
g

� sinh l

sinh2 t=2

�
cosh�1

�
cosh a sinh t=2

sinh l=2

�
� t

2

�
:

In the �gure 5 we have four instances of PBg (l). Each
plot starts abruptly on l = t and vanishes when
sinh(l=2) = cosh a tanh(t=2). They greatly di�er from
that of an euclidean translation, where PBg (l) = �(l�t),
a Dirac �.

Figure 5 Probability densities PB

g (l) of pair separations for

hyperbolic motions t of a ball B with radius a, when the

axis of the isometry crosses the centre of the ball. In (a)

we took t = 0:3 and a = 1:5; in (b), t = 1 and a = 2; in

(c), t = 3 and a = 4; and in (d), t = 8:5 and a = 4:5.

Plots (a) and (d) loosely resemble a Dirac � mainly because

the corresponding solid lenses B\Bg have volume V B

g small

in comparison with the volume �(sinh 2a � 2a) of B. All

integrated areas are unitary.

6 Special screw motions

It is very simple to generalize the probability density
(20) to further have a rotation ! of B around the axis
L of the translation. See �gure 6.

Figure 6 A screw motion of H3 with axis along the � axis.

Under the preliminary hyperbolic motion t (measured on the

� axis) a point P is displaced to the intermediate position

P 0; then the rotation ! around � brings P 0 to the �nal

position Pg geodetically separated l from P .

The separation l between a point P and the corre-
sponding Pg is now given by (11), where we replace
�1 = �2 ! r; g! t; �! !:

cosh l = cosh2 r cosh t� sinh2 r cos! : (21)
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For �xed t and ! this gives r(l), from which we derive
dr=dl. Since neither the volume V B

g nor the areas SBg (r)
depend on ! in this special screw motion of B, the den-
sity QB

g (r) is again given by (19). The density PBg (l) is
then

PBg (l) =
2� sinh l

V B
g (cosh t� cos!)

(22)

�
"
cosh�1

 
cosh a

r
cosh t� cos !

cosh l � cos!

!
� t

2

#
;

with V B
g as given in (18) with M = t=2 . A few sample

plots of PBg (l) are given in �gure 7.
We clearly recover the equation (20) when ! = 0. On

the other hand, setting t = 0 in (22) gives the PBg (l) for
a special elliptic isometry, namely a pure rotation ! of
the ball B when the axis of the rotation contains the
centre of the ball:

PBg (l) =
� sinh l

V B
g sin2(!=2)

� cosh�1

0
@ cosh a sinh(!=2)q

sinh2(l=2)� sinh2(!=2)

1
A ; (23)

a special PBg (l) with t = 0 is in �gure 7(a).

Figure 7 Probability densities PB

g (l) of pair separations for

special screw motions g = (t; !) of a ball B with radius a,

when the axis of the isometry crosses the centre of the ball.

In (a) we took t = 0 (no translation), a = 1:8, and ! = �;

in (b), t = 0:3, a = 1:5, and ! = �=8; in (c), t = 1:2,

a = 2:0, and ! = �=8; and in (d), t = 3:2, a = 2:0, and

! = �. Each plot starts at l = t, and abruptly except when

we have pure rotation (t = 0; case (a)). All plots end when

cosh l = cosh2 � cosh t � sinh2 � cos!, with cosh � = cosh a

sech(t=2). All integrated areas are unitary.

7 Parabolic motions

To describe a parabolic isometry g of H3 we need �rst
announce its 2-parametric apex A, a point at in�nity.
Next we select an arbitrary point C of H3, and draw
the unique horosphere C with centre A and containing
C. Then, starting from C we mark an arc of horocycle
with length �, laying on C; the direction of the arc and
the value of � demand two new parametres and �nally
�x the isometry g. The horocyclic separation between
C and its g-transported Cg being �, the corresponding

geodetic separation m is given by eq.(5c):

� = 2 sinh(m=2) : (24)

We now consider a solid ball B with radius a and
centre C; clearly there is no loss of generality in this last
choice. The two parametres (a;m) su�ce to completely
describe PBg (l).
Denote as r the geodetic altitude of a point P of H3

relative to the horosphere C; r is counted positive if
P is outside C, and negative if inside. Also draw the
horosphere Cr with apex A and intersecting P . Under
the isometry g all points of Cr are equally displaced
along horocyclic arcs laying on Cr, and measuring

� = � er ; (25)

equivalently, the geodetic separation l between P and
Pg is given by (see �gure 8)

sinh(l=2) = er sinh(m=2) : (26)

Figure 8 A parabolic isometry g of H3 brings the points

C and P to Cg and Pg, respectively; m and l are geodetic

arcs, � and � are horocyclic arcs; r are parallel geodetic arcs

orthogonal to both � and �; all arcs lay in a same H2.

For future use we compute dr=dl from (26), with m
�xed:

dr

dl
=

1

2
coth(

l

2
) : (27)

The horosphere Cr intersects each solid ball B and
Bg in at circular disks Dr and Drg , both with radius
�. To have � as a function of r and a we introduce an
auxiliary variable s (see �gure 9) and solve the system

cosh a = cosh s cosh(r � f) ;

ef = cosh s ; � = sinh s ; (28)

which gives

� =
p
2(cosh a � cosh r)er : (29)

Figure 9 Cr and C are equidistant horospheres both inter-

secting the solid ball B with centre C and radius a. We note

a right-angled geodetic triangle with sides a (hypotenuse),
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s, and r� f , where f is the geodetic arc orthogonal to both

the geodetic arc s and the horocyclic arc �.

Our geometric situation is now phrased in the fol-
lowing terms: in a 2D at plane (the horosphere Cr) we
have two circular disks Dr and Drg, both with radius �,
whose centres are separated by �. We ask for the prob-
ability RBg (r)dr that a randomly chosen g-pair (P; Pg),
such that Pg 2 B\Bg , has altitude between r and r+dr.
Clearly the probability density RBg (r) is proportional to

the area SBg (r) of the intersection Dr \Drg , the coe�-
cient of proportionality being the inverse of the volume
V B
g of the solid lens B \ Bg:

RBg (r) =
SBg (r)

V B
g

: (30)

The euclidean area SBg (r) is simple to obtain (see �gure
10), it is

SBg (r) = 4

�
1

2
��2 � �

4

p
�2 � �2=4

�
(31)

with � = 2 sinh(l=2), �(r) as in (29), and cos�(r) =
�=(2�) .

Figure 10 Dr and Drg are coplanar at circular disks with

radius � and with separation � between their centres Cr

and Crg. The area SB

g (r) of the intersection Dr \ Drg is

four times the shadowed area.

Since the probabilities PBg (l)dl and RBg (r)dr are the
same, we �nally have

PBg (l) =
dr

dl
RBg [r(l)] =

dr

dl

SBg [r(l)]

V B
g

=
coth(l=2)

V B
g

"
�2 cos�1

�
sinh(l=2)

�

�

� sinh(l=2)

q
�2 � sinh2(l=2)

#
; (32)

with �(l) =

q
sinh2 a� [cosh a� sinh(l=2)= sinh(m=2)]

2
: (33)

See �gure 11, where examples of PBg (l) for parabolic
isometries are reproduced. In each plot we have
lmax and lmin given respectively by sinh(l=2) =
tanh(m=2)e�R, with coshR = cosh a sech(m=2).

Figure 11 Probability densities PB

g (l) of pair separations

for parabolic isometries g of a solid ball B with radius a.

Under g, the centre of the ball is displaced a geodetic dis-

tance m. In (a) we took a = 1 and m = 0:5; in (b), a = 8

and m = 15; and in (c), a = 4 and m = 3. All integrated

areas are unitary.

8 General translations

We now generalize the special translations of section 5.
We consider a hyperbolic isometry g of H3 whose axis
is �, and value t measured along the axis. The solid
ball B with radius a now has centre C at a distance b
from the axis; in section 5 we assumed the special value
b = 0. Under the isometry g the centre Cg of the new
ball Bg is separated m from C; according to (6), we
have

sinh(m=2) = sinh(t=2) cosh b: (34)

We clearly have nonempty intersection B \ Bg only
when m < 2a; values of the parametres t; b, and a in-
teresting for our purposes then obey the constraint

sinh(t=2) cosh b < sinh a: (35)

The thickness T , radius R, and volume V B
g of the solid

lens B \ Bg are still given by (12), (13), and (18), with
2M = m(t; b) as in (34).
To obtain the probability density PBg (l) we follow the

same four steps as described in ref.[3]. The �rst step
is to investigate the shape of the surface B \ Cr, where
Cr is the in�nitely long cylinder with axis � and radius
r. The surface B \ Cr is either a topological annulus
(if b + r < a), or a topological disk (if a; b, and r can
form a triangle), or is empty (if a < jb � rj). To have
the dimensions of B \ Cr we consider a generic point
B = (r; �; �) of its contour; we note that the distance
from B to the centre C = (b; 0; 0) of B is the radius a,
then (11) gives �(a; b; r; �) according to

cosh a = cosh b cosh r cosh �

� sinh b sinh r cos�; (36)

the variable half width z(�) of the intersection is then
(eq.(5a) with e0 ! z and g ! �)

z = � cosh r = cosh�1(�+ � cos �) cosh r; (37)

where

� =
cosh a

cosh b cosh r
; � = tanh b tanh r: (38)
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For �xed values of a; b; and r, the intersection B \ Cr
lies between the curves z(�) and �z(�). Figure 12(a)
depicts an annulus-like intersection B\Cr, which occurs
whenever 0 < r < a � b (equivalently � > � + 1); note
that the equator of the annulus measures 2� sinh r, due
to the azimuthal factor g�� = sinh2 � in 7. Clearly the
extremes �� and � of � are identi�ed.

Figure 12 Sample intersections with a = 2; b = 1; and

r = 0:9.

(a) The annulus-like intersection B \ Cr.

(b) The (dashed) annulus-like intersection B \Bg \Cr when

t cosh r = 1.

(c) The (dashed) disk-like intersection B \ Bg \ Cr when

t cosh r = 2:5.

On the other hand, �gure 13(a) shows a disk-like in-
tersection B \ Cr, which occurs whenever � < � + 1,
with unequal radii zmax and �max sinh r, with

zmax = cosh�1(�+ �) cosh r;

�max = cos�1
�
1� �

�

�
: (39)

Figure 13 Sample intersections with a = 2; b = 1; and

r = 1:2.

(a) The disk-like intersection B \ Cr.

(b) The disk-like intersection B \Bg \ Cr when t cosh r = 3.

The second step is to investigate the shape of the
combined intersection B \ Bg \ Cr. To examine the
possible occurrence of annulus-like intersections B\Bg\
Cr we project the centres of B and Bg on the � axis,
and consider the midpoint of these projections; if this
midpoint lies inside the solid balls, that is, if cosh a >
cosh b cosh t=2, then annulus-like intersections B \Bg \
Cr may occur. Otherwise all intersections B \ Bg \ Cr
are disk-like. Clearly B \ Bg \ Cr is the intersection
of B \ Cr with Bg \ Cr, and Bg \ Cr is an exact copy
of B \ Cr, only longitudinally displaced a horocyclic
distance t cosh r along Cr. When B \ Cr is annulus-like
(0 < r < a� b), then B \ Bg \ Cr is either annulus-like
(when cosh(t=2) < � � �, see �gure 12(b), or disk-like
(when � � � < cosh(t=2) < � + �, see �gure 12(c),
or is empty (if cosh(t=2) > � + �). In the disk-like
intersections B \Bg \ Cr the disk extends from �'max

to 'max, with (see �gures 12(c) and 13(b) )

'max = cos�1
�
cosh(t=2) � �

�

�
: (40)

When B\Cr is disk-like, then B\Bg \Cr is either disk-
like (when cosh(t=2) < � + �, see �gure 13(b) ), or is
empty (if cosh(t=2) > �+ �).
The third step is to evaluate the area SBg (r) of the

surface B \Bg \Cr. To this end we de�ne the auxiliary
function

A(�; �; 'max) =

Z 'max

0

cosh�1(�+ � cos �)d�; (41)

in terms of which the areas such as in �gures
12(b); 12(c), and 13(b) are

SBg (r) = [2A(�; �; 'max)� t'max] sinh 2r: (42)

The fourth and last step is to compute

PBg (l) =
dr(l)

dl

SBg [r(l)]

V B
g

; (43)

where r(l) is found from (18), and V B
g from (18) and

(34). In �gure 14 we reproduce three examples of
the density PBg (l) for general hyperbolic translations;
clearly all plots start abruptly at lmin � t.

Figure 14 Sample PB

g (l) for general translations of H
3; all

integrated areas are unitary.

(a) Here a = 3:5; b = 3:1; and t = 2; all intersections B \Cr
and B \ Bg \ Cr are disk-like; lmin = t + 0:002.

(b) Here a = 3:5; b = 2:5; and t = 2; there are disk-like

and annulus-like intersections B\Cr, but all B\Bg \Cr are

disk-like; lmin = t.

(c) Here a = 3:5; b = 2:5; and t = 1; there are both types of

intersections of both B \ Cr and B \ Bg \ Cr ; lmin = t.

9 General screw motions

We already have all elements needed to obtain the prob-
ability density PBg (l) of conjugate pair separations for
a general screw motion, thus generalizing the results of
the preceding sections 5, 6, and 8. We now make use
of all four independent parametres, namely

� a = radius of the solid balls B and Bg ,
� b = distance from the centres of the balls to the
axis � of the isometry,

� t = translation of the isometry, measured along the
axis, and

� ! = angle of rotation of the isometry, around the
axis.

We shall further write all mathematical expressions in a
form appropriate for automatic calculation of PBg (l) in a
computer . Without loss of generality for our purposes
we assume t � 0 and 0 � ! � �.
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The separation 2M between the centres of B and Bg
is now given by (10)

cosh 2M = cosh2 b cosh t� sinh2 b cos!; (44)

and the conditionM < a is necessary to have nonempty
intersection B\Bg . Assuming this condition is ful�lled,
the solid lens B \ Bg has thickness T , radius R, and
volume V B

g given by (12), (13), and (18), respectively,
with M given by (44). The centre of the lens is at a
distance � from the axis �,

tanh� =
tanh b cos !=2

cosh t=2
; (45)

and there always exists one diametre of the lens which
is directed perpendicular to the axis �. The lens in-
tersects the axis whenever � < R, or equivalently
cosh b cosh t=2 < cosh a.
We next imagine an in�nite family of su�ciently long,

coaxial (axis �), cylindrical surfaces Cr with variable
radius r. We are interested in the intersection of each
Cr with the solid lens B \ Bg ; clearly only values of r
in the range (rmin; rmax) give nonempty intersections
B \ Bg \ Cr , where

rmin = (� � R)�(� �R) ; rmax = � + R: (46)

Here � is the step function with values 0 and 1. Our
strategy to approach B \ Bg \ Cr is �rst study B \ Cr ,
then Bg \ Cr, and �nally the intersection of these two.
For a given r 2 (rmin; rmax) we note that B \ Cr is

annulus-like when r < a� b, and disk-like otherwise, so
we de�ne �max =

��(a � b� r) + cos�1
�
1� �

�

�
�(r + b� a) ; (47)

where �(a; b; r) and �(b; r) were given in (38). Each
intersection B\Cr is nonempty for � 2 (��max; �max),
and lies between the two curves

z1 = cosh�1(�+ � cos�) cosh r

��(� + �max)�(�max � �); z2 = �z1; (48)

these two curves are drawn on the geometrically at
cylinder Cr.
The intersection Bg \ Cr is identical to B \ Cr, but

is displaced t cosh r longitudinally on Cr , and ! az-
imuthally. It thus lies between the curves

z3 = � + cosh�1 [�+ � cos(�� !)] cosh r

�
h
�(� � ! + �max)�(�max � �)

+�(�max � �+ ! � 2�)�(� + �max)
i
;

z4 = �z3 + 2�; (49)

where

� = t cosh r�(� + �max)�(�max � �); (50)

the term with the � function containing 2� in eq. (49)
is included to allow automatic computing.

As in ref.[3], the area SBg (r) of the intersection B \
Bg \ Cr is

SBg (r) = sinh r
R �max
��max

�(z1 � z4)

� [min(z1; z3) �max(z2; z4)] d�: (51)

Finally, the probability density PBg (l) is given by (43)
with r(l) coming from (21); we �nd that

dr

dl
=

sinh l csch2r

cosh t� cos!
: (52)

In �gure 15 a few sample plots of PBg (l) for screw mo-
tions in H3 are given.

Figure 15 Sample PB

g (l) for general screw motions of H3;

all integrated areas are unitary.

(a) Here a = 4; b = 3; t = 1:5, and ! = �=2.

(b) Here a = 4; b = 2:5; t = 1, and ! = �=2.

(c) Here a = 4; b = 2:5; t = 0:5, and ! = �=4.

10 Conclusion

The three plots in �gure 15 are the output of a computer
program whose inputs are the values of a; b; t, and !;
given these inputs, the program proceeds without any
intervention.
The three parametres (t; !; b) related to the screw

motion can be extracted from a 4�4 matrixMg, which
expresses the motion in terms of the minkowskian coor-
dinates (W ;X;Y; Z) [4]. Indeed, it can be shown that
the trace T , the sum � of the principal minors of order
2, and the time-time coe�cient U of the matrixMg are

T = 2(cosh t+ cos!);

� = 2(1 + 2 cosh t cos !);

U = cosh t cosh2 b� cos ! sinh2 b; (53)

if we de�ne V =
p
8 + T 2 � 4� then we obtain

cosh t = 1

4
(T + V ); cos ! = 1

4
(T � V );

cosh 2b =
4U � T

V
: (54)

To close this report we show through a concrete ex-
ample how to use the functions PBg (l) to get information
about the topology of the universe. We need �rst briey
recall the theory that underlies the subject; for details
see [2], [5], [6].
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Expected (or theoretical) normalized histograms �(i)
of pair separations are decomposed as

�(i) = �un(i) +
1

n� 1

X
g

�g [�
g(i) � �un(i)] ; (55)

where �un(i) is the expected normalized histogram of
the uncorrelated pair separations, the i denotes an in-
terval of separations (a bin in the histogram), n is the �-
nite number of objects in the solid ball B, �g = Ng=n =
�g�1 with Ng the number of g-pairs with both mem-
bers inside B, and �g(i) is the expected normalized his-
togram of the g-pairs. These �g(i) are the histogramic
counterparts of the functions PBg (l) of [3] and of this
report. From (55), and accepting a suggestion by Fa-
gundes and Gausmann [7], we write

(n� 1)[�� �sc] = (n� 1�P �g)[�un � �sc]

+
P

�g[�
g � �sc]; (56)

where �sc(i) is the expected normalized histogram of
pair separations in a simply connected ball with same
radius and geometry as B; it is the histogramic coun-
terpart of the function FH (a; l) of [8] and of FH(a; s) of
[9]. In the limit n!1 the products n[�� �sc] =: 'B

and n[�un� �sc] =: 'Bun remain �nite, and we write

'B(l) = 'Bun(l) + 'B
�
(l);

'B
�
(l) :=

P
�g[PBg (l)� PBsc(l)]: (57)

To go from the various histograms f(i) to the corre-
sponding functions f(l) we have simply made the num-
ber of bins tend to in�nity. The function 'B(l) has been
called the topological signature of a ball B in a multiply
connected space; since in practice the function 'Bun(l)
is usually small valued when compared with both 'B(l)
and 'B

�
(l), the function 'B

�
(l) is generally a good ap-

proximation of the topological signature 'B(l).
We now turn to a speci�c example: that of a ball B

in the Seifert-Weber dodecahedral space. This multi-
ply connected hyperbolic three-space is obtained from
a regular solid dodecahedron D by pairwise identifying
opposite faces using twists of 3/10 of a revolution [10].
We make the centres of B and D coincide (a rather
uncopernic assumption), and choose B tangent to the
edges of D.
Computer simulations of (n�1)[�(i)��sc(i)] for the

hyperbolic ball B are given in the literature (see �gure
7 in [6] or �gure 3 in [11]), and we now construct its
approximate expected counterpart 'B

�
(l), eq.(57).

We �rst select two of the 12 matrices of face-pairing
isometries of D:

M1 =

0
BB@

3:736 0 0 3:600
0 �0:309 �0:951 0
0 0:951 �0:309 0

3:600 0 0 3:736

1
CCA ; (58)

M2=

0
BB@

3:736 �3:220 0 �1:610
�3:220 2:927 0:425 1:618

0 �0:425 �0:309 0:851
�1:610 1:618 �0:851 0:500

1
CCA; (59)

su�cient for our purposes. Applying (54) to any ofM1

orM2 we �nd the values

t1 = 1:992; !1 = 108o; b1 = 0; (60)

for the translation, the rotation, and the distance from
the axis of the isometry to the centre of B (the origin
of coordinates). From (44) and (60) we obtain half
separation M1 = 0:996 between the centres of B and
Bg, a value smaller than the radius a = 1:439 of B.
We also need consider 60 other isometries, whose

common prototype matrix is M3 =M1M2 =0
BB@

8:163 �6:205 �3:062 �4:215
0:995 �0:500 0:162 �1:309
�3:062 2:915 0:500 1:276
7:434 �5:545 �3:178 �3:927

1
CCA ; (61)

each such isometry gives, from (54),

t3 = 1:746; !3 � 147o; b3 = 0:999: (62)

These 60 isometries also contribute to the sum in (57),
since from (44) and (62) we �nd half separation M3 =
1:395, a value smaller than a. All other isometries seem
to give M > a, so they do not contribute to the sum in
(57).
For the 12 fundamental isometries (60) we �nd in-

tersections B \ Bg with volume V B
1 = 1:377 as given

by (18); all produce the same spectrum PB1 (l), which
has nonzero values only in the interval l 2 (1:99; 2:79).
On the other hand, for the 60 isometries (62) we �nd
V B
3

= 0:011433, and a spectrum PB
3
(l) with nonzero

values only when l 2 (1:75; 1:99). Finally, the prob-
ability density PBsc(l) for pair separations in a hyper-
bolic ball is the function FH(a; l) of [8], or the function
FH(a; s) of [9]; for unitary curvature of the space, the
volume of the ball with radius a = 1:439 is V B

sc = 18:8.
From (57) we then have (see �gure 16)

'B
�
(l) =

12V B
1

V B
sc

�PB
1
(l) �PBsc(l)

�
+
60V B

3

V B
sc

�PB3 (l)� PBsc(l)� : (63)

Figure 16 Approximate topological signature 'B

�(l) for an

observed universe endowed with the Seifert-Weber dodeca-

hedral topology and unitary negative curvature. The centre

of observation and that of the dodecahedron coincide, and

the event horizon is supposed a = 1:44 away. The discon-

tinuities observed at l = 1:75 and l = 1:99 derive from

isometries, as described in the text. Their localization and

strength are good indicators of the topology of the universe.
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The approximate signature 'B
�
(l) of �gure 16 bears

close similarity with the corresponding histograms �g-
ure 7 in [6] and �gure 3 in [11]. However, some small
distortion can be seen, probably arising because the
uncorrelated contribution 'Bun(l), present in (57), was
not taken into account. As a matter of fact, we have
not been able to obtain the expected 'Bun(l) neither for
the present Seifert-Weber space nor for any simpler 3D
nontrivial manifold, such as the three-torus. Even for
the two-torus that function has been eluding our ef-
forts; only for the one-torus (a circle) we have already
succeeded in �nding the 'Bun(l) [12].
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