A Simple Renormalization Scheme in Random Surface Theory

Luiz L.C. Botelho
Departamento de Física
Universidade Federal Rural do Rio de Janeiro 23851-180 - Itaguaí, RJ, Brasil

Abstract

We propose a simple Analytical Renormalization Scheme for the self-avoiding interaction of a Random Surface with the origin.

In last years, it was suggested in ref. [1] a new renormalization precedure for the general theory of Gaussian Manifolds with self-avoiding interaction with a fixed hyperplane. Unfortunately, the above mentioned renormalization prescription is somewhat intrincate in its application to the important case of Random Surfaces ([4]).

In this Brief Report we propose the use of the Riesz-Analytical Regularization scheme ([2]) to address the problem of renormalization of the Self-Avoiding Random Surfaces with a fixed hyper-plane in a simple way.

Let us start our analysis by considering the Path Integral Expression for the Partition Functional of the Theory of Self-Avoiding Random Surfaces in an extrinsic Euclidean Space R^{D} interacting with the origin ([1],[4])

$$
\begin{align*}
& Z\left[\lambda_{b}\right]=1 / Z[0] \int D^{F}\left[X^{a}(\xi)\right] \exp \left\{-\frac{1}{2} \int_{R^{2}} d^{2} \xi X^{a}(-\Delta)^{-\alpha} X_{a}(\xi)\right\} \\
& \exp \left\{-\lambda_{b} \int_{R^{2}} d^{2} \xi \delta^{(D)}\left(X^{a}(\xi)\right)\right\} \tag{1}
\end{align*}
$$

where $\left\{X^{a}(\xi), a=1, \cdots, D\right\}$ denotes the Random Surface vector position with $\xi \in R^{2}$ and λ_{b} the (positive) bare self-avoiding coupling constant (the "exclude volume" case).

It is instructive point out that the formal perturbation expansion around the massless 2D fluctuation field $\left\{X^{a}(\xi)\right\}$ is ill defined due to the severe infrared divergence of the associated Laplacean Green function in the surface parameter space (R^{2}) ([3]).

$$
\begin{equation*}
<X^{a}\left(\xi_{1}\right) X^{b}\left(\xi_{2}\right)>=\delta^{a b}\left\{\frac{1}{2 \pi} \ell g\left(\left|\xi_{1}-\xi_{2}\right|\right)+\varepsilon\right\}+C \tag{2}
\end{equation*}
$$

where C is an arbitrary constant related to the zero modes of the Laplacean $-\Delta$ in R^{2}.
At this point we propose our solution for all the above cited problems. We consider the Path integral Eq. (1) to be well defined by means of a distributional limit associated to the Riesz analytical regularized Path integral below

$$
\begin{gather*}
Z^{(\alpha)}\left[\lambda_{b}\right]=\int D^{F}\left[X^{a}(\xi)\right] \exp \left\{-\frac{1}{2} \int_{R^{2}} d^{2} \xi\left(X^{a}(-\Delta)^{\alpha} X_{a}\right)(\xi)\right\} \\
\exp \left\{-\lambda_{b} \int_{R^{2}} d^{2} \xi \delta^{(D)}\left(X^{a}(\xi)\right)\right\} \tag{3}
\end{gather*}
$$

Here $(-\Delta)^{\alpha}$ is the analytical Seeley-Riesz-Hadamard Power for $\alpha>1$ of the two
dimensional Laplacean with Green function given by ([2])

$$
\begin{align*}
& G_{\alpha}\left(\xi_{1}, \xi_{2}\right) \equiv(-\Delta)^{-\alpha}\left(\xi_{1}, \xi_{2}\right)=\frac{e^{-i \pi \alpha} \Gamma(1-\alpha)}{4^{\alpha}(\pi)^{1 / 2} \Gamma(\alpha)}\left|\xi_{1}-\xi_{2}\right|^{2(\alpha-1)} \\
& =\int d^{2} k e^{i k\left(\xi_{1}-\xi_{2}\right)} \frac{1}{k^{2 \alpha}} \tag{4}
\end{align*}
$$

and completelly differing from the dimensional (analitical) regularization of ref. [6].
We, thus, define Eq. (1) from Eq. (3) by means of the renormalization prescription

$$
\begin{equation*}
\lambda_{b}=\lambda_{r} /(1-\alpha)^{D / 2} \tag{5}
\end{equation*}
$$

with λ_{R} denoting the renormalized self-avoiding coupling constant and the distributional (finite-part) limit of the theory partition functional

$$
\begin{equation*}
Z_{R}\left[\lambda_{R}\right] \equiv \lim _{\substack{\alpha \rightarrow 1 \\ \alpha>1}} Z^{\alpha}\left[\lambda_{b}\right] \tag{6}
\end{equation*}
$$

Let us show that Eq. (6) is well defined in a formal power expansion in the renormalized coupling constant λ_{R} eq. (5). In order to show this result, we make the power expansion of the regularized have Partitional Functional

$$
\begin{equation*}
Z^{\alpha}\left[\lambda_{b}\right]=\sum_{N=0}^{\infty} \frac{\left(-\lambda_{b}\right)^{N}}{N!} Z_{N}^{(\alpha)} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{N}^{(\alpha)}=\prod_{j=1}^{N} \int d^{2} \xi_{j} \int d^{D} P_{j} \exp \left(-\frac{1}{2} \sum_{(i, j)=1}^{N}\left(P_{i}^{a} P_{j, a}\right)\left[G_{\alpha}\left(\xi_{i}, \xi_{j}\right)\right]\right) \tag{8}
\end{equation*}
$$

Here $\left[G_{\alpha}\left(\xi_{i}, \xi_{j}\right)\right]_{1 \leq i \leq N}$ denotes the $N \times N$ symmetric matrix with the (i, j) element given by Eq. (4) ([1]).

The Gaussian $\left\{P_{k}\right\}$ - integrals in R^{D} are easily evaluated with the result

$$
\begin{equation*}
Z_{N}=\prod_{j=1}^{N} \int d^{2} \xi_{j} \operatorname{det}^{-D / 2}\left[G_{\alpha}\left(\xi_{i}, \xi_{j}\right)\right] \tag{9}
\end{equation*}
$$

The finitess of Eq. (9) for each N is a straightforward consequence of the following properties (see Appendix A)

$$
\begin{align*}
& \lim _{\substack{\alpha \rightarrow 1 \\
\alpha>1}} \operatorname{det}^{-D / 2}\left[G_{\alpha}\left(\xi_{i}, \xi_{j}\right)\right]=(1-\alpha)^{+\frac{N D}{2}} C_{N}(1) \tag{10}\\
& \lim _{\alpha \rightarrow 1} G_{\alpha}\left(\xi_{i}, \xi_{i}\right) \equiv 0 \tag{11}
\end{align*}
$$

(here $C_{N}(1)$ is a ξ-independent constant) and our minimal "finite-part" renormalization prescription Eq. (5).

As a consequence of the analysis above exposed we obtain our finite result for the renormalized Partition Functional Eq. (6)

$$
\begin{equation*}
Z_{R}\left[\lambda_{R}\right]=\sum_{N=0}^{\infty} \frac{\left(-\lambda_{R}\right)^{N}}{N!} C_{N}(1) \cdot A^{N}=\lim _{\alpha \rightarrow 1} Z^{(\alpha)}\left[\lambda_{r} /(1-\alpha)^{\frac{D}{2}}\right]<\infty \tag{12}
\end{equation*}
$$

with $A=\int d^{2} \xi$ denoting the internal random surface area and $C_{N}(1)=\frac{e^{-\pi_{i} N \alpha}}{4^{N \alpha} \cdot \pi^{N / 2}} \times(-1)^{N} \times$ $(1-N)$ (see the Appendix).

In the general case of self-avoiding interaction with the tangent plane at the surface point $X^{a}(\xi)$, namelly: $T_{a}(\xi)=t_{a}^{0} \cdot \xi_{0}+t_{a}^{(1)} \xi_{1}+X^{a}(\bar{\xi})$, where $\left\{t_{a}^{(0)}, t_{a}^{(1)}\right\}$ are the surface tangent vectors at $X^{a}(\bar{\xi})\left(t_{a}^{(0)}=\partial_{\xi_{0}} X_{a}(\bar{\xi}) \cdot \partial_{\xi_{0}} X_{a}(\bar{\xi}) ; t_{a}^{(1)}=\partial_{\xi_{1}} X_{a}(\bar{\xi}) \cdot \partial_{\xi_{1}} X_{a}(\bar{\xi}) ;([4])\right.$ the associated Partition Functional path integral is now written in the following form

$$
\begin{align*}
& Z\left[\lambda_{b}\right]=\frac{1}{Z(0)} \int D^{F}\left[X^{a}(\xi)\right] \exp \left\{-\frac{1}{2} \int_{R^{2}} d^{2} \xi X^{a}\left(X^{a}(-\Delta) X_{a}\right)(\xi)\right\} \\
& \exp \left\{-\lambda_{b} \int_{R^{2}} d^{2} \xi \delta^{(D)}\left(X^{a}(\xi)-T^{a}(\xi)\right)\right\} \tag{13}
\end{align*}
$$

Let us point out that it takes the same form of eq. (1), after the variable change $X^{a}(\xi) \rightarrow X^{a}(\xi)-T^{a}(\xi)$, since

$$
\begin{equation*}
D^{F}\left[X^{a}(\xi)\right]=D^{F}\left[X^{a}(\xi)-T^{a}(\xi)\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp \left\{-\frac{1}{2} \int_{R^{2}} d^{2} \xi\left(X^{a}-T^{a}\right)(\xi) \Delta\left(X_{a}-T_{a}\right)(\xi)\right\}=\exp \left\{-\frac{1}{2} \int_{R^{2}} d^{2} \xi X^{a}(\xi) \Delta X_{a}(\xi)\right\}(1: \tag{15}
\end{equation*}
$$

Finally, we point out that in the general self-avoiding case $\delta^{D}\left(X^{a}(\xi)-X^{a}\left(\xi^{\prime}\right)\right)$, one should first proceed as in ref. [5] to renormalize by pure geometrical procedure, the case $X^{a}(\xi)=X^{a}\left(\xi^{\prime}\right)$ with $\xi=\xi^{\prime}$ and consider, thus, the above cited tangent plane interaction eq. (13) for the remaining non-trivial self-avoiding interaction supported now on surface self-interaction lines.

Acknowledgements

This research was supported by CNPq - Brasil. The author is grateful to the referee to point out the general result of eq. (A04) of the Appendix A.

References

[1] B. Duplantier, Phys. Rev. Lett. 62, 2337 (1989).
F. David, B. Duplantier and E. Guilter, Phys. Rev. Lett. 70, 2205 (1993).
B. Duplantier, T. Hwa, M. Kardar, Phys. Rev. Lett. 64, 2022 (1990).
[2] I.M. Guelfan, G.E. Chilov, Les Distributions, vol. 1 (Dunod-Paris), 1962.
[3] Y. Kantor, M. Kardar and D.R. Nelson, Phys. Rev. A35, 3050 (1987).
[4] Luiz C.L. Botelho, J. Math. Phys. 30, 2160 (1989).
Phys. Rev. 41D, 3283 (1990).
Phys. Rev. 52D, 6941 (1995).
Phys. Rev. 56D, 1338 (1997).
[5] Luiz C.L. Botelho, Brazilian Journal of Physics, vol. 22, n. 4, 323 (1992). Mod. Phys. Lett. 6B, n. 4, 203 (1992).
[6] F. David, B. Duplantier and J. Guitter, Nucl. Phys. B394 (1993), 555-664.

Appendix A

In this Appendix we present detailed calculations leading to eq. (10) in the text.
Firstly,

$$
\begin{equation*}
\lim _{\substack{\alpha \rightarrow 1 \\ \alpha>1}}\left[G_{\alpha}\left(\xi_{1}, \xi_{1}\right)\right]=\lim _{\substack{\alpha-1 \\ \alpha>1}}\left\{\frac{e^{-i \pi \alpha} \Gamma(1-\alpha)}{4^{\alpha} \pi^{\frac{1}{2}} \Gamma^{(\alpha)}}(0)^{2(\alpha-1)}\right\}=0=C_{1}(1) \tag{A.1}
\end{equation*}
$$

Secondly,

$$
\begin{align*}
& \lim _{\substack{\alpha \rightarrow 1 \\
\alpha>1}} \operatorname{det}_{N=2}\left[\begin{array}{cc}
G_{\alpha}\left(\xi_{1}, \xi_{1}\right) & G_{\alpha}\left(\xi_{1}, \xi_{2}\right) \\
G_{\alpha}\left(\xi_{2}, \xi_{1}\right) & G_{\alpha}\left(\xi_{2}, \xi_{2}\right)
\end{array}\right]=\lim _{\substack{\alpha \rightarrow 1 \\
\alpha>1}}\left\{(0 \times 0)-G_{\alpha}\left(\xi_{1}, \xi_{2}\right) G_{\alpha}\left(\xi_{2}, \xi_{1}\right)\right\} \\
& \lim _{\substack{\alpha \rightarrow 1 \\
\alpha>1}}\left[\frac{-e^{-2 \pi i \alpha}}{4^{2 \alpha} \cdot \pi}\left(\frac{\Gamma(1-\alpha)}{\Gamma(\alpha)}\right)^{2}\right]\left(\left|x_{1}-\xi_{2} \| \xi_{2}-\xi_{1}\right|\right)^{2(\alpha-1)} \\
& \lim _{\substack{\alpha \rightarrow 1 \\
\alpha>1}} \frac{\left(\left|\xi_{1}-\xi_{2}\right|\left|\xi_{2}-\xi_{1}\right|\right)^{0}}{16 \pi(1-\alpha)^{2}}=\frac{C_{2}(1)}{(1-\alpha)^{2}} \tag{A.2}
\end{align*}
$$

Thirdly,

$$
\begin{align*}
& \lim _{\substack{\alpha \rightarrow 1 \\
\alpha>1}} \operatorname{det}\left[\begin{array}{ccc}
0 & G_{\alpha}\left(\xi_{1}, \xi_{2}\right) & G_{\alpha}\left(\xi_{1}, \xi_{2}\right) \\
G_{\alpha}\left(\xi_{2}, \xi_{1}\right) & 0 & G_{\alpha}\left(\xi_{2}, \xi_{3}\right) \\
G_{\alpha}\left(\xi_{3}, \xi_{1}\right) & G_{\alpha}\left(\xi_{3}, \xi_{2}\right) & 0
\end{array}\right]= \\
& \lim _{\substack{\alpha \rightarrow 1 \\
\alpha>1}}\left\{-G_{\alpha}\left(\xi_{1}, \xi_{2}\right)\left(-G_{\alpha}\left(\xi_{2}, \xi_{3}\right) G_{\alpha}\left(\xi_{3}, \xi_{1}\right)\right) G_{\alpha}\left(\xi_{1}, \xi_{3}\right)\left(G_{\alpha}\left(\xi_{2}, \xi_{1}\right) G_{\alpha}\left(\xi_{3}, \xi_{2}\right)\right)\right\}= \\
& \frac{-e^{-3 \pi i \alpha}}{4^{3 \alpha} \cdot \pi^{\frac{3}{2}}}\left(\frac{\Gamma(1-\alpha)}{\Gamma(\alpha)}\right)^{3}(1+1)=\frac{e^{-\pi i}}{32 \pi^{\frac{3}{2}}} \cdot \frac{1}{(1-\alpha)^{3}}=\frac{C_{3}(1)}{(1-\alpha)^{3}} \tag{A.3}
\end{align*}
$$

Finally,

$$
\begin{equation*}
\lim _{\substack{\alpha \rightarrow 1 \\ \alpha>1}} \operatorname{det}\left[G_{\alpha}\left(\xi_{i}, \xi_{j}\right)\right]=\frac{e^{-N \pi i \alpha}}{4^{N \alpha} \cdot \pi^{\frac{N}{2}}} \cdot \frac{1}{(1-\alpha)^{N}} \operatorname{det}\left[A_{i, j}\right] \tag{A.4}
\end{equation*}
$$

where $\left[A_{i, j}\right]$ is the matrix where entries are

$$
\left[A_{i, j}\right]=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j \\
1 & \text { if } & i \neq j
\end{array}\right.
$$

which has the general result

$$
\begin{equation*}
\operatorname{det}\left[A_{i, j}\right]=-(N-1)(-1)^{N} \tag{A.5}
\end{equation*}
$$

It is worth to remark the convergence of eq. (12) for all values of the internal random surface area A_{∞}.

