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Abstract

We propose a simple Analytical Renormalization Scheme for the self-avoiding interac-

tion of a Random Surface with the origin.
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In last years, it was suggested in ref. [1] a new renormalization precedure for the

general theory of Gaussian Manifolds with self-avoiding interaction with a �xed hyper-

plane. Unfortunately, the above mentioned renormalization prescription is somewhat

intrincate in its application to the important case of Random Surfaces ([4]).

In this Brief Report we propose the use of the Riesz-Analytical Regularization scheme

([2]) to address the problem of renormalization of the Self-Avoiding Random Surfaces

with a �xed hyper-plane in a simple way.

Let us start our analysis by considering the Path Integral Expression for the Partition

Functional of the Theory of Self-Avoiding Random Surfaces in an extrinsic Euclidean

Space RD interacting with the origin ([1],[4])
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where fXa(�); a = 1; � � � ;Dg denotes the Random Surface vector position with � 2 R2

and �b the (positive) bare self-avoiding coupling constant (the \exclude volume" case).

It is instructive point out that the formal perturbation expansion around the massless

2D uctuation �eld fXa(�)g is ill de�ned due to the severe infrared divergence of the

associated Laplacean Green function in the surface parameter space (R2) ([3]).
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where C is an arbitrary constant related to the zero modes of the Laplacean �� in R2.

At this point we propose our solution for all the above cited problems. We consider

the Path integral Eq. (1) to be well de�ned by means of a distributional limit associated

to the Riesz analytical regularized Path integral below
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Here (��)� is the analytical Seeley-Riesz-Hadamard Power for � > 1 of the two
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dimensional Laplacean with Green function given by ([2])
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4�(�)1=2�(�)
j�1 � �2j
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(4)

and completelly di�ering from the dimensional (analitical) regularization of ref. [6].

We, thus, de�ne Eq. (1) from Eq. (3) by means of the renormalization prescription

�b = �r=(1� �)D=2 (5)

with �R denoting the renormalized self-avoiding coupling constant and the distributional

(�nite-part) limit of the theory partition functional

ZR[�R] � lim
�!1
�>1

Z�[�b] (6)

Let us show that Eq. (6) is well de�ned in a formal power expansion in the renormalized

coupling constant �R eq. (5). In order to show this result, we make the power expansion

of the regularized have Partitional Functional
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Here [G�(�i; �j)]1�i�N
1�j�N

denotes the N �N symmetric matrix with the (i; j) element given

by Eq. (4) ([1]).

The Gaussian fPkg { integrals in RD are easily evaluated with the result

ZN =
NY
j=1

Z
d2�j det

�D=2[G�(�i; �j)] (9)

The �nitess of Eq. (9) for each N is a straightforward consequence of the following

properties (see Appendix A)

lim
�!1
�>1

det�D=2[G�(�i; �j)] = (1� �)+
ND
2 CN (1) (10)

lim
�!1

G�(�i; �i) � 0 (11)
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(here CN (1) is a �-independent constant) and our minimal \�nite-part" renormalization

prescription Eq. (5).

As a consequence of the analysis above exposed we obtain our �nite result for the

renormalized Partition Functional Eq. (6)

ZR[�R] =
1X

N=0

(��R)N

N !
CN (1):A

N = lim
�!1

Z(�)[�r=(1 � �)
D
2 ] <1 (12)

with A =
R
d2� denoting the internal random surface area and CN (1) =

e��iN�

4N���N=2
�(�1)N�

(1 �N) (see the Appendix).

In the general case of self-avoiding interaction with the tangent plane at the surface

point Xa(�), namelly: Ta(�) = t0a � �0 + t(1)a �1 + Xa(��), where ft(0)a ; t(1)a g are the surface

tangent vectors at Xa(��) (t(0)a = @�0Xa(��) � @�0Xa(��); t(1)a = @�1Xa(��) � @�1Xa(��); ([4]) the

associated Partition Functional path integral is now written in the following form
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Let us point out that it takes the same form of eq. (1), after the variable change

Xa(�)! Xa(�) � T a(�), since

DF [Xa(�)] = DF [Xa(�)� T a(�)] (14)

and
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Finally, we point out that in the general self-avoiding case �D(Xa(�) �Xa(�0)), one

should �rst proceed as in ref. [5] to renormalize by pure geometrical procedure, the case

Xa(�) = Xa(�0) with � = �0 and consider, thus, the above cited tangent plane interaction

eq. (13) for the remaining non-trivial self-avoiding interaction supported now on surface

self-interaction lines.
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Appendix A

In this Appendix we present detailed calculations leading to eq. (10) in the text.

Firstly,
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Secondly,
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Finally,
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det
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where [Ai;j] is the matrix where entries are

[Ai;j] =

8><
>:

0 if i 6= j

1 if i 6= j

which has the general result

det[Ai;j] = �(N � 1)(�1)N (A.5)

It is worth to remark the convergence of eq. (12) for all values of the internal random

surface area A1.


