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ABSTRACT

We propose a simple Analytical Renormalization Scheme for the self-avoiding interac-

tion of a Random Surface with the origin.
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In last years, it was suggested in ref. [1] a new renormalization precedure for the
general theory of Gaussian Manifolds with self-avoiding interaction with a fixed hyper-
plane. Unfortunately, the above mentioned renormalization prescription is somewhat
intrincate in its application to the important case of Random Surfaces ([4]).

In this Brief Report we propose the use of the Riesz-Analytical Regularization scheme
([2]) to address the problem of renormalization of the Self-Avoiding Random Surfaces
with a fixed hyper-plane in a simple way.

Let us start our analysis by considering the Path Integral Expression for the Partition
Functional of the Theory of Self-Avoiding Random Surfaces in an extrinsic Fuclidean
Space RP interacting with the origin ([1],[4])
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where {X“({),a = 1,--- , D} denotes the Random Surface vector position with { € R?

and A, the (positive) bare self-avoiding coupling constant (the “exclude volume” case).
It is instructive point out that the formal perturbation expansion around the massless

2D fluctuation field {X*(£)} is ill defined due to the severe infrared divergence of the

associated Laplacean Green function in the surface parameter space (R?) ([3]).
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where C' is an arbitrary constant related to the zero modes of the Laplacean —A in RZ.

At this point we propose our solution for all the above cited problems. We consider
the Path integral Eq. (1) to be well defined by means of a distributional limit associated
to the Riesz analytical regularized Path integral below
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Here (—A)® is the analytical Seeley-Riesz-Hadamard Power for a > 1 of the two
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dimensional Laplacean with Green function given by ([2])
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and completelly differing from the dimensional (analitical) regularization of ref. [6].

We, thus, define Eq. (1) from Eq. (3) by means of the renormalization prescription
A=A /(1= )PP (5)

with A denoting the renormalized self-avoiding coupling constant and the distributional
(finite-part) limit of the theory partition functional
ZR[)\R] = lim Za[)\b] (6)
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a>1
Let us show that Eq. (6) is well defined in a formal power expansion in the renormalized
coupling constant Ar eq. (5). In order to show this result, we make the power expansion

of the regularized have Partitional Functional
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< denotes the N x N symmetric matrix with the (¢, j) element given
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by Eq. (4) ([1]). "~

The Gaussian {P;} — integrals in RP are easily evaluated with the result
N
Z =11 [ ¢ det™PP(Ga(é, &) (9)
7=1

The finitess of Eq. (9) for each N is a straightforward consequence of the following

properties (see Appendix A)

lim det™"2[(2, (6. )] = (1 — ) F O (1) (10)

a>1

lim Go (&, &) = 0 (11)
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(here C'x(1) is a &-independent constant) and our minimal “finite-part” renormalization
prescription Eq. (5).
As a consequence of the analysis above exposed we obtain our finite result for the

renormalized Partition Functional Eq. (6)
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with A = [ d*¢ denoting the internal random surface area and Cy (1) = % x (—1)N x
(1 — N) (see the Appendix).

In the general case of self-avoiding interaction with the tangent plane at the surface
point X(€), namelly: T,(&) = 1° - & + V¢ + X(€), where {t{9, (D} are the surface
tangent vectors at X*(€) (0 = O, X (€) - Oy Xa(E); 100 = O, X (€) - 0, Xa(E); ([4]) the
associated Partition Functional path integral is now written in the following form
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Let us point out that it takes the same form of eq. (1), after the variable change
X7(€) = X*(€) = T(€), since
DY[X*(§)] = DI [X"(&) — T*(¢)] (14)

and

cap{ 5 [ €~ TYOAX, - T)O ) = eop {5 [ #ex©)a x.(6)}05)
Finally, we point out that in the general self-avoiding case §”(X(¢) — X(¢')), one
should first proceed as in ref. [5] to renormalize by pure geometrical procedure, the case
X&) = X4(¢) with £ = ¢ and consider, thus, the above cited tangent plane interaction
eq. (13) for the remaining non-trivial self-avoiding interaction supported now on surface

self-interaction lines.
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Appendix A

In this Appendix we present detailed calculations leading to eq. (10) in the text.

Firstly,
lim[Ga(ér, )] = lim {%@)2(“‘”} =0=Ci(1) (A1)
Secondly, a b
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Thirdly,
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Finally,
) e~ Nmia 1
%E{ll]\glfjé [Ga(fivfj)] = AN | 77% ) (1 — Oé)N det[AiJ] (A4)
where [A; ;] is the matrix where entries are
0 if ¢#y
[Am]{ Y
1 if ¢4y
which has the general result
det[A; ;] = —(N = 1)(=1)N (A.5)

It is worth to remark the convergence of eq. (12) for all values of the internal random

surface area A.



