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Chapter 1

Introduction to quantum general

relativity.

1.1 Introduction.

Many physicists have contributed since P. A. M. Dirac [1], towards a consistent quantized
version of general relativity. In the hands of J. A. Wheeler [2], and B. S. DeWitt [3], all
this material led to the �rst attempt on the quantization of a cosmological model.

The application of the quantum theory of general relativity to the study of models of
the universe is given the generic name of quantum cosmology. Although this is a very
important application of the theory, recently the study of the quantum theory of other
spacetime con�gurations has been developed. We may mention the study of the interior
of Schwarzschild black holes [4], and the Euclidean section of these black holes [5], [6] and
[7]. Here we shall restrict our attention to quantum cosmology.

In this Chapter 1, we shall study few basic points of the formalism of quantum general
relativity and the `no-boundary' boundary conditions [8]. In Sec. 1.2, the variables of the
gravitational �eld that one has to quantize, are identi�ed. The path integral approach
of general relativity is discussed in Sec. 1.3. Finally, in Sec. 1.4 we introduce the `no-
boundary' proposal.

1.2 Variables to be quantized.

The most important concept introduced by Wheeler and DeWitt is the superspace S.
For Wheeler, superspace is the arena for geometrodynamics. In order to understand its
meaning one has to identify the variables describing the gravitational �eld. Wheeler [2],
emphasized that a `dynamical' description of general relativity can be given if one splits
the full four-dimensional metric tensor g, in three parts [9], [10]. This split is known as
the ADM formalism of general relativity.

The �rst part, a three-dimensional tensor h which includes the physical degrees of
freedom of the gravitational �eld, is the metric of space-like hypersurfaces. The `evolution'
of h, in order to recover g, is determined by the two remaining parts of g: a three-
dimensional vector N, the shift vector, and a scalar N , the lapse function. N and N are
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not physical degrees of freedom of the gravitational �eld and their presence in g is due to
the invariance of the theory under coordinate transformations [9], [10].

It is natural, then, that for a `geometrodynamical' description of the theory, very
important for the canonical quantization approach, one identi�es the superspace elements
with the metrics h. In a more mathematical de�nition, each element of S is an equivalent
class of metrics h that are transformable, one into another, by di�eomorphisms [2].

The superspace, as de�ned above, has an in�nite number of components which in a
loose estimate by Wheeler, add up to (13)1

3

[2]. The metrics composing S are not re-
stricted to be regular. Indeed, for D. Brill, singular metrics are essential for the description
of topology changes [11].

As pointed out by DeWitt [3], as one integrates in the spatial coordinates second
derivative terms appearing in the gravitational action, in order to obtain a �rst order
theory, one get surface terms which are expressions of the total gravitational energy. By
simplicity, although some work has been done in this area [4], [12], we shall restrict our
attention to compact space-like hypersurfaces which eliminates all surface terms in the
spatial directions. In particular, it means that the total gravitational energy of these
spacetimes are nill.

Therefore, based upon the above discussion and also in a deeper study [13] one may
identify the variables to be quantized as the metrics h. More precisely, the equivalence
classes of metrics h, mentioned above.

1.3 Path integral quantization.

1.3.1 The formalism

In Hawking's point of view, the two important motivations for the investigation of the
general relativity path integral approach are:
(i) the implementation of a quantum description of general relativity displaying a greater
equivalence between space and time, than the canonical quantization; and
(ii) the possibility of having more complex four-dimensional topologies, than the ones
furnished by the canonical quantization, contributing to transition amplitudes.

We start by writing the amplitude 	, to go from a three-dimensional hypersurfaceM1

with a metric h1ij and matter �elds �1 to another three-dimensional hypersurfaceM2 with
a metric h2ij and matter �elds �2, as a sum of all �eld con�gurations g and � which take
the given values on M1 and M2,

	 �< h2ij ; �2jh
1

ij; �1 >=

Z
D[g��; �] exp(iS[g��; �]); (1.1)

where D[g��; �] is a measure on the space of all �eld con�gurations g�� and �; S[g��; �]
is the action for the �elds; and the integral is taken over all �elds which have the given
values on M1 and M2.

The action S[g��; �], is given by the sum of two factors: one for the gravitational �eld
(SG), and other for matter and/or gauge �elds present in the model (SM).

The action for the gravitational �eld, including boundaries, has the expression [14]:
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SG =
1

16�

Z
M

(R � 2�)(�g)1=2 d4x +
1

8�

Z
@M

Kh1=2 d3x; (1.2)

where R is the curvature scalar, � is the cosmological constant, g is the determinant of the
four-dimensional metric, K is the trace of the extrinsic curvature or second fundamental
form of the boundaries, and h is the determinant of the three-dimensional metrics induced
on the boundaries.

The speci�c expression for the action of the matter and/or gauge �elds SM , will depend
on the particular �elds one chooses to couple to gravity. Its generic form in terms of the
density of Lagrangian Lm, of those �elds is:

SM =

Z
Lm (�g)1=2 d4x: (1.3)

1.3.2 Euclideanization.

Hawking and Gibbons proposed in [15], for the �rst time, the application of the Wick
rotation (in other words the transformation t ! �i� ) in the study of quantum gravita-
tional systems. It means that they were interested only in space-times with the Euclidean
signature (+ + ++), rather than the Lorentzian one (� + ++). They had two basic
motivations:
(i) The hope of transforming the oscillatory terms in the path integral in convergent ones;
and
(ii) The formal analogy between the expressions for the Euclidean path integral and for
the statistical mechanical canonical ensemble partition function [16].

Even though the analytic continuation of the Lorentzian time proved to be a success in
quantum �eld theory [17], some problems appeared in its application for the gravitational
case. The most important of them, as pointed out by Hawking [15], is that the gravi-
tational �eld di�ers from other �elds by the fact that its action is not positive de�nite,
not even for real positive-de�nite metrics. Indeed, the gravitational action can be made
arbitrarily negative by the use of conformal transformations.

One solution to this problem was given by Gibbons, Hawking and M. Perry [18],
who proposed the analytic continuation of the conformal factor and the positive action
conjecture. This conjecture asserts that: any asymptotically Euclidean, positive-de�nite
metric with R = 0, has positive or zero action. This result has two important limitations:
it constraints the spacetimes to have zero curvature scalar, and it does not apply to
space-times with compact spatial hypersurfaces [19].

In order to deal with the case of compact hypersurfaces, J. J. Halliwell and J. B. Hartle
have proposed a more pragmatic procedure to identify physically and mathematically
consistent contours of integration for (1.1) [19]. Among the criteria proposed by them
one can mention the following ones: the integral de�ning transition amplitudes (1.1),
should converge; and the wave-function should imply classical space-time on familiar
scales, when the universe is large. Another important requirement of the Halliwell and
Hartle proposal is the use of complex metrics [19]. This proposal has been successfully
used by some authors in the quantization of some models of the universe, see [20] (and
references therein).
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Another important motivation for the Wick rotation is the possibility of topology
changes of compact three-dimensional hypersurfaces [21]. Unlike the Lorentzian case,
where topology changes imply the development of closed time-like curves [22], and the
impossibility of an SL(2; C) spinor structure [23], one has not found yet comparable
constraints for topology changes in Euclidean spacetimes [21]. This property of Euclidean
space-times gives a more de�nite meaning to Wheeler's idea of taking in account di�erent
topologies when computing the wave-function of the Universe at the Planck scale (space-
time foam) [2].

We may re-write the transition amplitude 	 (1.1), after applying the analytic contin-
uation to Euclidean metrics,

	(h2ij; �2;h
1

ij; �1) =
X
M

Z
D[gE��; �] exp(�I[g

E
��; �]); (1.4)

where,

I[gE��; �] = �
1

16�

Z
M

(RE � 2�)(gE)1=2 d4x �

Z
M

LEm(g
E)1=2 d4x

�
1

8�

Z
@M

Kh1=2 d3x: (1.5)

The superscript E in the last two equations, means that they are evaluated using Eu-
clidean metrics, and the sum is over manifolds of di�erent topologies.

1.4 The `no-boundary' boundary conditions.

In the case of quantum general relativity of closed spatial hypersurfaces, we have seen
how to compute quantum states of given systems using the path integrals (1.1) and
(1.4). Due to the mathematical nature of path integrals, the precise determination of
those quantum states requires the speci�cation of boundary conditions. Those boundary
conditions must be given for two di�erent spatial hypersurfaces and they must de�ne,
there, the gravitational and other �elds.

One set of boundary conditions appropriate for the Euclidean path integral approach
is the `no-boundary' proposal, due to Hartle and Hawking [8]. It is a set of instructions
on how to write down the ground-state wave-function of the gravitational system under
investigation. As explained by Hartle and Hawking [8], in the case of quantum general
relativity of closed spatial hypersurfaces the relationship between the ground-state and a
state of lowest energy does not exist. Indeed, for these hypersurfaces the total energy is
zero [3].

Then, another option is trying to use a di�erent property of gravitational systems in
order to de�ne the ground-state wave-function. Hartle and Hawking selected the geometry
to be such property. The ground-state wave-function must be, then, de�ned as a path
integral over geometries of high symmetry because intuitively these geometries should
give rise to a state of minimum excitation [8].

Another feature of classical gravitational systems one generally has to take in account
is the presence of singularities of the gravitational �eld. These singularities may be of
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cosmological or astrophysical nature. One of the main motivations of the quantum version
of general relativity is to try removing these singularities, in analogy with the hydrogen
atom case where the quantum theory removed the singularity present in the classical
theory.

With these two conditions in mind, Hartle and Hawking proposed that the Euclidean
path integral should be performed over four-dimensional, regular, geometries which have
only one boundary, being compact. Any other �eld present in the model should also be
everywhere regular, assuming speci�ed values at the boundary Mb:

	NB[h
b
ij; �b] =

X
M

Z
C

D[gE��; �] exp(�INB[g
E
��; �]); (1.6)

where INB is derived from (1.5), by using the set of geometries (C) allowed by the `no-
boundary' proposal.

Thinking in terms of the three-dimensional spatial hypersurfaces one may interpret
this wave-function as being the probability amplitude for a given hypersurface to evolve
from nothing. As pointed out by Hartle and Hawking, in the case of models where
the cosmological singularity (`big bang') is present, the above proposal would remove
altogether the singularity.

The `no-boundary' proposal has been shown to furnish enough conditions to �x the
general relativity wave-function, at least in some minisuperspace models. For a few ex-
amples and a literature of the applications of this proposal for quantum cosmological
minisuperspace models see [20]. The `no-boundary' boundary conditions have also been
used in the study of the Schwarzschild black hole Euclidean sector [5], [6] and [7].

The application of the `no-boundary' boundary conditions to some models of the uni-
verse has not been restricted to the issue of mathematical consistency. Some predictions
have also been made:
(i) It was shown that some minisuperspace wave-functions correspond, in the classical
limit, to a family of classical solutions which have a long period of exponential or `ina-
tionary' expansion [24], [25];
(ii) As another testable prediction of this proposal, Hawking and Page showed that in
minisuperspace models the probability distribution for the density parameter 
, at a
given density, is entirely concentrated at 
 = 1. Thus, the Universe should have exactly
the critical density [26];
(iii) Using a model which takes in account the full in�nite-dimensional superspace, Hal-
liwell and Hawking have demonstrated how a `no-boundary' wave-function may develop
a scale-free spectrum of density perturbations, which could account for the origin of the
galaxies and other structures in the Universe [27];
(iv) The behavior of the density perturbations, mentioned above, can explain the exis-
tence and direction of the thermodynamic arrow of time [28];
(v) Gibbons and Hartle devised some general statements about the predictions of the
`no-boundary' wave-function for the present large scale geometry and topology of the
Universe [29]. They argued that among the complex solutions of the Euclidean Einstein's
equations, important in the semi-classical limit, the real tunneling ones play a special
role. The simplest example of these solutions occurs in a deSitter model, with a positive
cosmological constant and no matter or gauge �elds. In this model, the real tunneling
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solution is given by the joining of an Euclidean metric with a Lorentzian metric along a
surface characterized by the vanishing of its second fundamental form. One important
point is that the Euclidean region is related to the early Universe, in the sense that the
scale factor assumes its smallest value there. After that, it grows up until one well de�ned
value which depends on the cosmological constant. On the other hand, the Lorentzian
region has the property of starting o� with the �nal scale factor from the foregoing region
and increases up to the value assigned by the �nal boundary condition;
(vi) Finally, S. Coleman proposed a mechanism which by using the `no-boundary' wave-
function of an universe composed of many wormholes at high energies, one may modify
the physical constants of this universe at much lower energy scales [30]. In particular,
he demonstrates that this formalism yields a probability distribution which is in�nitely
peaked in a region of superspace where the cosmological constant is zero.

The semi-classical approximation to the `no-boundary' wave-function (1.6) may be
written in the following way,

	NB[h
b
ij; �

b] = N0

X
i

Ai exp(�Ii); (1.7)

where N0 is a normalization constant, and Ii are the actions of the Euclidean-Einstein's
�eld equations. These solutions are compact and have the given three-metric hbij and
matter and/or gauge �elds con�guration �b on the boundary. The prefactors Ai are given
by determinants of small uctuations about the classical solutions.

In the next chapter we shall compute the `no-boundary' wave-function of a simple
model of the universe. There we shall see some of the above mentioned predictions.



Chapter 2

The `no-boundary' wave-function

for pseudo-spherical universes.

2.1 Introduction.

In this chapter we are interested in compute the `no-boundary' wave-function for universes
of negative constant curvature in a consistent way, such that we could, in the future, use
them to describe a more complete picture, which would take in account contributions com-
ing from general topologies. Examples of `no-boundary' wave-functions, for spacetimes
with constant positive and zero curvatures, have already been examined [8], [31].

We shall restrict our attention to the semi-classical approximation and we shall follow
the logic of the ADM formalism. It means that we shall split the four-dimensional manifold
in compact, three-dimensional, hypersurfaces with metric components q� and a lapse
function N [20].

In order to compute the `no-boundary' wave-function for pseudospherical universes,
�rst, In Sec. 2.2, we introduce a speci�c metric ansatz to foliate the spacetime of constant
negative curvature. Then, we derive the solutions of the classical �eld equations for the
chosen metric. The compacti�cation of the spatial sections of the solutions is done in Sec.
2.3. Sec. 2.4 is devoted to the regularity analysis of those solutions. Finally, in Sec. 2.5,
the `no-boundary' wave-function for pseudo-spherical universes is shown.

2.2 Metric ansatz and solutions to the Euclidean -

Einstein's equations.

The general expression for the `no-boundary' wave-function for the universe [8] is simpli-
�ed by the assumptions that the universe is homogeneous, isotropic and its unique source
of mass-energy is a negative cosmological constant. For simplicity we shall consider the
(2+1)-dimensional case. This leads to a metric ansatz, with the lapse function N and the
scale factor a depending only on t and the spatial sections being two-dimensional surfaces
with constant negative curvature:

ds2 = +N2(t)dt2 + a2(t) [ d�2 + sinh2 �d�2 ] (2.1)

8
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In order to obtain the semi-classical 	NB we must solve the Euclidean-Einstein's
equations for (2.1),

G�� + � g�� = 0 (� < 0); (2.2)

subjected to the `no-boundary' conditions.
For our case they are given by [32]:

(A)The manifold must be regular at every point;
(B) There should be a point where the scale factor vanishes;
(C) We should supply the real valued scale factor of the �nal spatial slice.
The �rst condition we shall tackle after the other two are implemented. The second one
is a particularity of the minisuperspace treatment, and we shall choose the point to be
the zero value of the time scale. With this choice we shall be able to picture our universe
starting at t=0, from this surface of zero volume and evolving until t = t1, where we shall
furnish the other required value of the scale factor, say, a(t1) = a1. Introducing those
quantities in the above equation (2.2), and rescaling the time in order that t1 = 1, we
get the two solutions given below.

The Lorentzian Solution:

N = iNI; where NI = �
�

2
� arccos(a1=�); (2.3)

and

a(t) = �� sin(NIt=�); �2 =
1

j�j
; (2.4)

valid for a1 < �. It is important to notice that among the various solutions for N , labeled
by an integer m, we have chosen as a matter of simplicity, the case m = 0 (the same
remark holds for the complex solution given below). This spacetime (2.3), (2.4) is know
in the literature as anti-deSitter spacetime, but we must add that our solution does not
cover the whole of anti-deSitter and there are other coordinate charts which perform this
task in a more complete way [33].

The complex solution:

N = NR + iNI; (2.5)

where

NI = �
�

2
; NR = � arcsin � ; � = �

r
(
a1
�
)2 � 1 (2.6)

and
a(t) = aR(t) + iaI(t) (2.7)

where

aR(t) = �� sin(NIt=�) cosh(NRt=�)

aI(t) = �� cos(NIt=�) sinh(NRt=�) (2.8)

and this solution holds for a1 > �.
One may show that the complex solution (2.5)-(2.8) is a signature change space-time

of the type (�+ ++) ! (+ + ++) [34]. Next to t = 0, this solution is an anti-deSitter
space-time.
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2.3 Compacti�cation of the spatial sections.

>From the line element (2.1) we see that the spatial sections are pseudo-spheres, or H2's,
which are open.

One way to compactify the H2 is projecting it onto a plane, which results in a disc
called the Poincar�e Disc (P.D.) [35]. The conformal transformations which takes one from
the coordinates (�; �) to the polar coordinates (r; �) on the P.D., are,

r =
q
�2 � v20 tanh(�=2) ; � is unchanged ; (2.9)

where
v0 =

p
�2 � a2(t): (2.10)

This mapping from the H2 to the P.D. induces a non-trivial line element on the disc,
given by,

ds2PD = 4 (�2 � v2
0
)2

(dr2 + r2d�2)

(�2 � v2
0
� r2)2

: (2.11)

The next step in the compacti�cation process, is the selection of a fundamental region
(in general a polygon) which tessellates [36] the P.D., and may be transformed into a
double torus. Then, we shall take this fundamental region and construct the double
torus, or in other words, the quotient surface H2=�, where � is a certain symmetry
transformation of the H2.

In two dimensions, the unique symmetry transformations of the H2 capable of generat-
ing compact surfaces are the hyperbolic ones [37], in other words, Lorentzian boosts. Our
compact surface will be fabricates by the identi�cation of the sides, through the relevant
boost transformations, of the above selected polygon.

The simplest fundamental region which gives rise to a double torus is the regular oc-
tagon [35]. If we now identify the opposite sides of this polygon, with the aid of four
di�erent boost transformations (one for each relevant direction), we obtain a representa-
tion of the desired compact surface.

Therefore, the spatial sections of our space-time will be given by double torus evolving
in time, and each having the line element (2.11).

2.4 Regularity Analysis.

In this section, we shall study the regularity of the Lorentzian and the complex solutions
introduced in Sec. 2.2.

We start by writing down the line element of the space-time described by the evolution
of the double tori, in Cartesian coordinates, with the aid of eqs. (2.1) and (2.11),

ds2 = �N2dt2 +
4 (�2 � v20)

2 (dx2 + dy2)

(�2 � v20 � x2 � y2)2
: (2.12)

Where the ranges of x and y will depend on the octagon dimensions; the opposite sides of
the octagon are identi�ed; t 2 [0; 1]; and N was left generic in order to account for both
Lorentzian and complex solutions.
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Observing eqs. (2.1), (2.4), (2.7) and (2.8), we notice that both the Lorentzian and
complex solutions have singularities at t = 0. This singularity can, at most, be conical
because this space-time has an everywhere constant curvature scalar (R),

R = � 6 j�j : (2.13)

In fact, it is known that this singularity is a coordinate singularity [33].
The same conclusion does not directly apply to the space-time with line element (2.12)

because at the event t = 0 (v2
0
= �2), due to the identi�cations mentioned after eq. (2.12),

a conical singularity may have formed.
Let us, then, apply the holonomy method [38] in order to investigate the presence, or

not, of a conical singularity in the space-time with line element (2.12), at the event t = 0.

2.4.1 The holonomy method.

The holonomy method aims at identifying if a given singularity is conical or not.
In order to apply this method to our case one has to follow the below steps:

(i) Construct closed loops, taking in account the identi�cations, for di�erent values of t;
(ii) Parallel transport a test vector, v, around the closed loops introduced in (i);
(iii) Write down the holonomy matrix (HM). This matrix relates the values of v at a given
point p, before and after the parallel transport of v around closed loops which contain p;
(iv) Finally, take the limit as t! 0 (singular event) of the closed loops. This limit implies
a certain limit value for the HM. If, in this limit, HM goes to the identity we say that
t = 0 is a regular event, otherwise we say that it is a conical singularity.

Following the instructions of the holonomy method, we start by writing down the
parallel transport equations for a test vector v, along a closed loop (to be speci�ed), in
the space-time represented by eq. (2.12).

The easiest way to derive them, from eq. (2.12), is by working on the orthonormal
basis, de�ned by the transformations,

wt = dt ; wi =
2 (�2 � v20)

�2 � v20 � x2 � y2
dxi ; (2.14)

where i = x; y and xi = x; y.
The non-vanishing connection coe�cient components in this basis are,

�txx = �tyy =
�2 _v0v0(x2 + y2)

(�2 � v20)(�
2 � v20 � x2 � y2)

= ��xtx = ��yty ; (2.15)

�ijj =
�xi

�2 � v20
= ��iji; (2.16)

where j = x; y; i 6= j and i and xi vary as in eq. (2.14).
The parallel transport equation for the test vector v, is given by [38],

dv�

d�
+ v� ��� 



�

dx�

d�
= 0; (2.17)

where � is an a�ne parameter describing the curve; the Greek indices vary over all the
coordinates; and the matrix 
 relates the non-coordinate basis with the coordinate one.
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In order to obtain the explicit expression of eq. (2.17), we have to introduce the closed
loop around which we shall parallel transport v.

We start by noting that for a given instant t there are four independent, closed di-
rections, one for each pair of opposite, identi�ed, sides of the octagon. Each one of the
four independent, close, direction gives rise to a set of closed loops, which we shall call Si
(i = 1; :::; 4). All closed loops which may be constructed, taking in account the identi�ca-
tions, are made up of at least one element of the four Si. Therefore, since the space-time
event under investigation is in the t direction, the simplest closed loops we can choose are
the elements of the four Si at constant and di�erent values of t. These loops will collapse
to t = 0 when we take the limit t! 0.

Then, the results derived by the use of the elements of the four Si will be enough to
draw conclusions about the regularity of our space-time.

In order to apply the holonomy method to one of the four Si, we must choose an
element of this set. Let us say the closed loop C formed by joining the middle points of
each opposite sides. Now, we orient our axes so that the x axis coincide with C. In terms
of our coordinates, the parametric equation of C, for a certain instant of t, is

t = constant ; y = 0 ; x = g(�); (2.18)

where � is a periodic parameter varying in the range [�0; �f ]; �f � �0 + p�, and p� is the
period of �; g(�) is a function of �, to be speci�ed, which describes x in terms of � and
varies between the extreme values of x, [�x0(t); x0(t)]. The extreme values of x are the
following time dependent functions from eq. (2.9),

x0(t) =
q
�2 � v20 tanh(�0=2) ; � = 0 ; � ; (2.19)

where �0 is one �xed value of �.
So, with the aid of the relevant 
 components, we may write the parallel transport

equations (2.17), for C eq. (2.18),

dvy

d�
= 0; (2.20)

dvt

d�
+

4f2(df=d�)

(1� f2)2
vx = 0; (2.21)

dvx

d�
+

4f2(df=d�)

(1� f2)2
vt = 0; (2.22)

where,

f(�) �
g(�)p
�2 � v2

0

and  �
_v0v0p
�2 � v2

0

: (2.23)

Observing eq. (2.19), we note that the main motivation for the introduction of the new
parametrization function f(�), eq. (2.23), is to restrict all the time dependence of our
subsequent results to be concentrated in , eq. (2.23).

The solution of eq. (2.20) is given by,

vy = vy0 ; (2.24)
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where vy0 is the value of v
y(�) for � = �0. The two remaining equations (2.21) and (2.22),

form a coupled system of �rst order di�erential equations. In order to solve it we shall
have to introduce the explicit value of f(�).

One of the simplest choices for f(�), which gives periodic solutions for the system
(2.21)-(2.22), is obtained by demanding that,

4 f2 (df=d�)

(1 � f2)2
= cot(�): (2.25)

Which gives, after an integration, the following implicit equation for f as a function of �,

�
1� f

1 + f

�
exp

�
2f

1� f2

�
= A sin(�) ; (2.26)

where A is an integration constant.
Now, introducing our parametrization choice eq. (2.25), in the system (2.21)-(2.22)

and solving it, we �nd the general solutions,

vt(�) =
D

2

�
B2 + sin2(�)

B sin(�)

�
and vx(�) =

D

2

�
B2 � sin2(�)

B sin(�)

�
; (2.27)

where B and D are integration constants to be determined by the initial conditions.
Observing the solutions (2.27), we note that ( for non-vanishing C and D) they are

singular whenever � = 2n�=, n being an integer. This property comes directly from our
choice for the parametrizing function f(�), eq. (2.25). This singularity of the solutions
do not prevent us from use them in the holonomy method, because the holonomy matrix
is computed by comparing the test vector v at the same point [38]. Before and after the
parallel transport of v around the closed loop. Therefore, we must only avoid choosing as
the initial point of the loop, one of the singular points of the solutions (2.27).

For the initial conditions,

vj(� = �0) = vj
0
; (2.28)

where j = t; x, and the solutions (2.24) and (2.27), we obtain the following holonomy
matrix M ,

0
@ vt(�f )

vx(�f )
vy(�f )

1
A =

0
@ Mtt

Mxt

0

Mtx

Mxx

0

0
0
1

1
A
0
@ vt

0

vx
0

vy0

1
A ; (2.29)

where,

Mtt = Mxx =
sin2(�0) + sin2(�f )

2 sin(�0) sin(�f )
� M+ ; (2.30)

Mtx = Mxt =
sin2(�0) � sin2(�f )

2 sin(�0) sin(�f )
� M� : (2.31)
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2.4.2 Regularity conditions.

The next step in the holonomy method is the determination of the limit of the holonomy
matrix elements as the closed loops collapse to the event t = 0. It means that we must
take the limit of the non-trivial elements of M , given in eqs. (2.30) and (2.31), as t! 0.

The limits of M+, eq. (2.30), and M�, eq. (2.31), as t ! 0 are easy to determine
because they depend on t only through . With the aid of eqs. (2.10) and (2.23) we
compute the limit of  as,

lim
t!0

 = �N : (2.32)

>From eq. (2.32), the desired limits of M� are,

lim
t!0

M� =
sin2(N�0) � sin2(N�f )

2 sin(N�0) sin(N�f )
: (2.33)

where the + and � signs in the right hand side of eq. (2.33) are associated, respectively,
with the limits of M+ and M�.

Since we would like to obtain the conditions to have regular space-times, following the
holonomy method, we have to impose that the limits of M+ and M� are,

lim
t!0

M+ = 1 and lim
t!0

M� = 0 : (2.34)

Before we impose that the limits of M+ and M� have the values given by eq. (2.34), we
must rewrite them in terms of the other free parameter (besides N) of the model. It is
the period p� of the parameter � which describes the closed loop C, eq. (2.18).

Using the expression which relates �f with �0 and p�, shown just after eq. (2.18), we
may introduce p� in the M+ and M� limits eq. (2.33). If, after doing that, we impose
that the resulting expressions have the values given in eq. (2.34), we obtain the following
independent equations for generic values of �0,

sin2(Np�) = 0 ; (2.35)

sin(Np�) cos(Np�) = 0 ; (2.36)

sin(Np�) [ cos(Np�) � 1 ] = 0 ; (2.37)

cos2(Np�) � 2 cos(Np�) + 1 = 0 : (2.38)

The most general solution to this system of equations (2.35)-(2.38), in the variables
N and p�, is

N p� = 2� n ; (2.39)

where n is a non-zero, positive, integer.
Equation (2.39) introduces conditions upon p� and N . Since N depends on �, this

equation introduces conditions on �.
Depending whether a1 is smaller or greater than �, we have to solve eq. (2.39) for the

appropriate Lorentzian or complex solution.
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As an example, if we set n = 1 and p� = 2� in eq. (2.39), we get the following equation
for the Lorentzian solution (2.3),

a1
p
j�j = sin

p
j�j: (2.40)

Equation (2.40) has solutions for a1 < 2=�, and they form a discrete set. The number
of solutions will depend on a1 due to its presence in the superior limit of x.

We may write an approximate rule to the solutions of eq. (2.40), if we separate them
in two sets. The �rst set has the even order solutions and the second the odd order
solutions.

Calling m the order of the solutions, we have the following approximate rules for the
two sets of solutions,

Even order : j�jk � (1 � a1)
2 (2k � 1)2 �2 ; k = 1; 2; 3; ::: ; (2.41)

Odd order : j�jl � (1 + a1)
2 (2l�)2 ; l = 1; 2; 3; ::: ; (2.42)

where k = m=2; l = (m� 1)=2.
Therefore, we can have regular space-times, for appropriate values of p� and j�j, from

the solutions (2.3)-(2.4) and (2.5)-(2.8).

2.5 Wave-function.

Since we saw that the Lorentzian and the complex solutions satisfy all the `no-boundary'
conditions, we may write down the semi-classical `no-boundary' wave function 	NB (1.7).
Due to equations (2.41) and (2.42), we understand that our wave-function must be a
sum over all Complex and Lorentzian solutions with di�erent and allowed values for the
cosmological constant. As a matter of simplicity we shall consider here the wave-function
for just one generic value of the cosmological constant, say, j�jk.

For the present situation, the Euclidean action (1.5) is given by,

Ik[N; a(t)] = �A

Z
[ _a2(t) � N2 + a2(t)N2j�jk ]

1

N
dt; (2.43)

where: A is a �nite de�ned number proportional to the volume of the compact, spacelike
hypersurfaces.

The 	NB (1.7), valid for a1 smaller than �, which corresponds to the Lorentzian
solution is, (up to normalization)

	L
NBk = cos

�
2A

j�jk
(1 � j�jka

2

1)
3=2

�
: (2.44)

The 	NB (1.7), valid for a1 greater than �, which corresponds to the complex solution
is, (up to normalization)

	C
NBk = exp

�
�
2A

j�jk
(a1j�jk � 1)3=2

�
: (2.45)
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Let us describe the behavior of the two wave-functions above in terms of the variable
x � a1j�jk. Note that for a �xed value of the cosmological constant this variable gives a
direct measure of the scale factor size.

We notice that each of the wave-functions above correspond to a distinct region,
whether x is smaller or greater than 1. The 	L

NBk, corresponds to the region where
x < 1. The 	C

NBk, corresponds to the region where x > 1.
Since 	L

NBk is a oscillatory function of x and 	
C
NBk is a decreasing exponential function

of x, we may interpret the above result in the following way.
The universe has a probability proportional to 	L�

NBk	
L
NBk of be in the region where

x < 1. This probability varies with cos2, from (2.44). On the other hand, the universe has
an exponentially decreasing probability, proportional to 	C�

NBk	
C
NBk (2.45), to be found

in the region where x > 1.
As an example, for �xed value of j�jk, we would say that it is easier to �nd pseudo-

spherical universes with a1 < �, than with a1 > �.
It is not di�cult to see that 	NB, derived here, correctly represents the anti-deSitter

space-time [33]. This space-time is the classical vacuum solution of highest symmetry.
For this reason 	NB is sometimes called the ground-state wave-function.

Present address: Departamento de Fisica Teorica, Instituto de Fisica,

UERJ, Rua Sao Francisco Xavier 524, Maracana, CEP 20550-013, Rio de

Janeiro, Brazil.
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