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Abstract

In this letter the algebraic renormalization method, which is independent of any kind
of regularization scheme, is presented for the parity-preserving QED3 coupled to scalar
matter in the broken regime, where the scalar assumes a �nite vacuum expectation value,
h'i=v. The model shows to be stable under radiative corrections and anomaly free.
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In the present letter, the model proposed in ref. [1] is renormalized, in the broken regime (where
the scalar assumes a nonvanishing vacuum expectation value), by using the algebraic renormalization
method [2, 3, 4]. This algebraic approach is based on the BRS-formalism [2] together with the Quantum
Action Principle [5], which leads to a regularization independent scheme. The stability of the model
under radiative corrections is analyzed as well as the possible presence of anomalies. The algebraic
renormalization of the model in the symmetric regime was presented in ref. [6].

The gauge invariant action for the parity-preserving QED3 coupled to scalar matter [1, 6] is given by
:

�inv =

Z
d3x

�
�
1

4
FmnFmn + i + =D + + i � =D � �m0( + + �  � �) +

� y( + + �  � �)'
�' +Dm'�Dm' � �2'�' �

�

2
('�')2 �

�

3
('�')3

�
; (1)

where the mass dimensions of the parameters m0, �, �, � and y are respectively 1 ,1, 1, 0 and 0.
The covariant derivatives are de�ned as follows :

=D � � (=@ + iqg =A) � and Dm' � (@m + iQgAm)' ; (2)

where g is a coupling constant with dimension of (mass)
1
2 and q and Q are the U (1)-charges of the

fermions and scalar, respectively. In the action (1), Fmn is the usual �eld strength for Am,  + and  �
are two kinds of fermions (the � subscripts refer to their spin sign [7]) and ' is a complex scalar.

The form of the potential is chosen such as to ensure the broken regime, where h'i=v. Imposing
that it must be bounded from below and yields only stable vacua, we get the following conditions on the
parameters :

� > 0 ; � < 0 and �2 �
3

16

�2

�
: (3)

The vacuum expectation value for the '�'-product, v2, is chosen as the solution

h'�'i = v2 = �
�

2�
+
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�

2�

�2

�
�2

�
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; (4)

of the equation
�2 + �v2 + �v4 = 0 (5)

expressing the minimization of the potential. The complex scalar ' is parametrized by

' = v +H + i� ; (6)

where � is the would-be Goldstone boson and H is the Higgs scalar, both with vanishing vacuum ex-
pectation values. It should be noticed that the parametrization given by Eq.(6) does not introduce
nonrenormalizable interactions, to the contrary of the unitary gauge parametrization [8].

With the parametrization (6), the action (1) reads:

�inv =

Z
d3x

�
�
1

4
FmnFmn + i + =D + + i � =D � �m0( + + �  � �) +

� y( + + �  � �)((v +H)2 + �2) + @mH@mH + @m�@m� +

+ 2vQgAm@m� + 2QgAm(H@m� � �@mH) +Q2g2AmAm((v +H)2 + �2) +

� �2((v +H)2 + �2)�
�

2
((v +H)2 + �2)2 �

�

3
((v +H)2 + �2)3

�
: (7)

The masses arising from the action (7) for  �, Am and H, are respectively given by m=m0 + yv2,
M2
A=2v

2Q2g2 and M2
H=2v

2(� + 2�v2).
In order to quantize the system (7) one has to add a gauge-�xing action �gf { we choose the �-gauge

{ and an action term �ext for the coupling of the BRS transformations to external sources :

�gf =

Z
d3x

�
B@mAm +

�

2
B2 + c2c

�
; (8)
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�ext =

Z
d3x

�

+s + �
�s � � s +
+ + s �
� + s �� + sH �

	
: (9)

The BRS transformations are given by :

sH = �Qc� ; s� = Qc(v +H) ;

s � = iqc � ; s � = �iqc � ;

sAm = �
1

g
@mc ; sc = 0 ;

sc =
1

g
B ; sB = 0 ; (10)

where c is the ghost, c is the anti-ghost and B is the Lagrange multiplier �eld.
The complete action, �, we are considering here is

� = �inv +�gf +�ext : (11)

The QED3-action (11) is invariant under the re
exion symmetry, P , whose action on the �elds and
external sources is �xed as below :

xm
P
�! xPm = (x0;�x1; x2) ;

 �
P
�!  P� = �i
1 � ;  �

P
�!  

P

� = i �

1 ;

Am
P
�! APm = (A0;�A1; A2) ;

�
P
�! �P = � ; � = H; �; c; �c; B ;


�
P
�! 
P� = �i
1
� ; 
�

P
�! 


P

� = i
�
1 ;

�
P
�! �P = � ; �

P
�! �P = � :

(12)

The ultraviolet and infrared dimensions, d and r respectively, as well as the ghost numbers, ��, and the
Grassmann parity, GP , of all �elds and sources are collected in Table 1.

Am H �  � c c B � � 
�

d 1
2

1
2

1
2 1 0 1 3

2
5
2

5
2 2

r 3
2

3
2

1
2

3
2 0 3 3

2
5
2

5
2 2

�� 0 0 0 0 1 �1 0 �1 �1 �1
GP 0 0 0 1 1 1 0 1 1 0

Table 1: UV and IR dimensions, d and r, ghost numbers, ��, and Grassmann parity,
GP .

The BRS invariance of the action is expressed in a functional way by the Slavnov-Taylor identity

S(�) =

Z
d3x
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�
= 0 : (13)

In addition to the Slavnov-Taylor identity (13) the gauge condition, the ghost equation and the
antighost equation read

��

�B
= @mAm + �B ; (14.a)

��

�c
= 2 c ; (14.b)

�i
��

�c
= i2 c� i

��ext

�c
: (14.c)
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We notice that, the right-hand sides of Eqs.(14.a { 14.c) are linear in the quantum �elds, then are
not subjected to renormalizations.

The solution for the Eqs.(14.a { 14.b) is simply

� = ��( �;H; �; Am; c;
�;�;�)+

Z
d3x

�
B@mAm +

�

2
B2 + c2c

�
: (15)

Putting these informations into (13) we �nd that the constraint on �� is given by
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The corresponding linearized Slavnov-Taylor operator for any functional �F reads

�S �F =

Z
d3x

�
�
1

g
@mc

�

�Am
+

� �F

�
+

�

� +
�

� �F

�
�

�

� �
+

� �F

� +

�

�
+

�
� �F

� �

�

�
�
+

�
� �F

�
+

�

� +

+
� �F

�
�

�

� �
�

� �F

� +

�

�
+
+

� �F

� �

�

�
�
+
� �F

��

�

��
+
� �F

��

�

��
+

�
� �F

��

�

�H
�
� �F

�H

�

��

�
: (17)

The following nilpotency identities holds :

�S �F
�S( �F ) = 0 ; 8 �F ; (18.a)

�S �F
�S �F = 0 if �S( �F) = 0 : (18.b)

The operation of �S�� over the �elds and the external sources is given by

�S��� = s� ; � =  �;  �; H; �; Am; c; c and B ;

�S��
+ =
��

� +
; �S��
� = �

��

� �
;

�S��
+ = �
��

� +

; �S��
� =
��

� �
;

�S��� = �
��

��
; �S��� = �

��

�H
: (19)

In order to study the stability [2] of the action (11) under the radiative corrections, we perturb the
classical action by local functional, �c, having the same quantum numbers as �� :

�� �! ��0 = ��+ ��c (20)

where � is an in�nitesimal parameter. Then requiring that the perturbed action �0 satis�es the same
conditions as �� we obtain :

�S���
c = 0 ; (21)

��c

�B
= 0 ;

��c

�c
= 0 ;

��c

�c
= 0 ; (22)

which follow from the Slavnov-Taylor identity and from the conditions (14.a { 14.c), and, moreover:

Wrigid�
c = 0 ; (23)

where Wrigid is the Ward operator of rigid U (1) symmetry de�ned by

Wrigid =

Z
d3x

(
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�

� +
+ q �

�

� �
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�

� +
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�

� �
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�
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+
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+
�

�
+
+ q
�

�

�
�
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+

�

�
+

� q
�
�

�
�
� iQ�

�

��
+ iQ�

�

��

�
: (24)
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Eq.(23) follows from the rigid U (1) invariance of the action1 in the Landau gauge:

Wrigid� = 0 : (25)

The BRS consistency condition in the ghost number sector zero, given by Eq.(21), constitutes a
cohomology problem due to the nilpotency (18.b) of the linearized Slavnov-Taylor operator (17). Its

solution can always be written as a sum of a trivial cocycle �S��
b�, where b� has ghost number �1, and

nontrivial elements �phys belonging to the cohomology of �S�� (17) in the sector of ghost number zero:

�c = �phys + �S��
b� ; (26)

where the trivial cocycle �S��
b� corresponds to �eld renormalizations, which are unphysical. On the other

hand, the nontrivial perturbation �phys corresponds to a rede�nition of the physical parameters { coupling
constants and masses. An explicit computation, yields the following solution for Eq.(26):

�phys = zg

�
g
@

@g
�NA + NB � 2�

@

@�

�
�+ zm m

@�

@m
+

+ zy y
@�

@y
+ zM2

H

M2
H

@�

@M2
H

+ z� �
@�

@�
+ z� �

@�

@�
; (27.a)

�S��
b� = �S��

Z
d3x

�
z 
�
 +
+ � 
+ + �  �
� + 
� �

�
+ zH [�� + (v +H)�]

	
= z 

�
N + +N +

+ N � + N �
�N
+ � N
+

� N
� �N
�

�
�

+ zH

�
N� + bNH �N� � N�

�
� ; (27.b)

where the counting operators are de�ned by

N� =

Z
d3x �

�

��
; � =  �;  �; �; 
�; 
�; �; �; Am and B ;

bNH =

Z
d3x (v +H)

�

�H
: (28)

The stability proof we have given corresponds, at the quantum level, to the multiplicative renormaliz-
ability of the model: all the possible counterterms induced by the radiative corrections correspond to a
rede�nition of the parameters of the starting classical theory. The parameters zg, zm, zy, zM2

H

, z� , z�,
zH and z are then renormalization constants, which are �xed by the following normalization conditions
{ expressed on the vertex functional �, which coincides with the classical action � in the classical limit:

�HH(p
2)

����
p2=M2

H

= 0 ;
@

@p2
�HH (p

2)

����
p2=�2

= 1 ;

�HHHH (p)

����
p=�p(�)

= �� ; �HHHHHH (p)

����
p=�p(�)

= �� ;

� � �
(=p)

����
=p=�m

= 0 ;
@

@=p
� � �

(=p)

����
=p=�

= 1 ;

@

@p2
�ATAT (p

2)

����
p2=�2

= 1 ; � � �HH
(p)

����
p=�p(�)

= �y ; (29)

where � is an energy scale and �p(�) some reference set of 4-momenta at this scale.
To complete the proof of the renormalizability of the model, we show that all the symmetries de�ning

the model can be extended to the quantum level, for the vertex functional �

� = �+ O(�h) : (30)

1Rigid invariance itself follows from the antighost equation (14.c) and from the validity of the Slavnov-
Taylor identity (13).
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Now, it is trivial to verify that the solution of Eqs.(14.a { 14.b), that are linear in the quantized �elds, is
given by

� = ��( �;H; �; Am; c;
�;�;�)+

Z
d3x

�
B@mAm +

�

2
B2 + c2c

�
(31)

As a consequence we have the following conditions on �� { de�ned from � similarly to (15):

���

�B
= 0 ; (32.a)

���

�c
= 0 ; (32.b)

�i
���

�c
= �i

��ext

�c
; (32.c)

Wrigid
�� = 0 ; (32.d)

where Wrigid has already been de�ned by (24), and where (32.c) is the quantum extension of Eq.(14.c).
According to the Quantum Action Principle [4, 5] the Slavnov-Taylor identity (13) gets a quantum

breaking
S(�) = �S(��) = � � � = �+O(�h�) ; (33)

where � is a local integrated functional with ghost number one.
The nilpotency identity (18.a) together with

�S�� = �S�� +O(�h) (34)

implies the following consistency condition for the breaking � :

�S��� = 0 : (35)

In order to identify other constraints for �, we use the following algebraic relations, valid for any
functional �F with zero GP :

� �S( �F)

�B
� �S �F

� �F

�B
= 0 ; (36.a)

� �S( �F)

�c
+ �S �F

� �F

�c
= 0 ; (36.b)

�i

Z
d3x

�

�c
�S( �F) + �S �F

Z
d3x

�
�i

�

�c
�F + i

��ext

�c

�
= Wrigid

�F ; (36.c)

Wrigid
�S( �F)� �S �FWrigid

�F = 0 : (36.d)

Taking into account Eqs.(32.a { 32.d), Eq.(33) and assuming �F=�� in Eqs.(36.a { 36.d), the following
consistency conditions on the breaking � are found :

��

�B
= 0 ; (37.a)

��

�c
= 0 ; (37.b)Z

d3x
�

�c
� = 0 ; (37.c)

Wrigid� = 0 : (37.d)

The Wess-Zumino consistency condition (35) constitutes a cohomology problem like in the zero ghost

number case (21). Its solution can always be written as a sum of a trivial cocycle S� b�(0), where b�(0)

has ghost number 0, and of nontrivial elements belonging to the cohomology of S� (17) in the sector of
ghost number one:

�(1) = b�(1) + S� b�(0) ; (38)

where �(1) must be even under P -symmetry and obey the conditions imposed by Eqs.(37.a { 37.d). The

trivial cocycle S� b�(0) can be absorbed into the vertex functional � as a local integrated noninvariant
couterterm �b�(0).
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Now, from the condition (37.c), we conclude that

�(1) =

Z
d3x K(0)

m @mc : (39)

By analyzing the Slavnov-Taylor operator �S�� (17) and the Wess-Zumino consistency condition (35), we

see that the UV and IR dimensions of the breaking �(1) are bounded by d�7
2 and r�2. Therefore, K

(0)
m ,

of ghost number 0, has dimensions bounded by d�5
2 , r�1.

Now, rewriting K
(0)
m as a linear combination

K(0)
m =

8X
i=1

ai K
(0)i
m ; (40)

where

K(0)1
m = Am ; K(0)2

m = AmA
nAn ;

K(0)3
m = Am(A

nAn)
2 ; K(0)4

m = Am( + + �  � �) ;

K(0)5
m = AmA

nAn((v +H)2 + �2) ; K(0)6
m = Am((v +H)2 + �2) ;

K(0)7
m = Am((v +H)2 + �2)2 and K(0)8

m =  +
m + +  �
m � ; (41)

and solving all the conditions it has to ful�l, we can easily show, with the help of Eqs.(19), that there

exist local functionals b�(0)i such thatZ
d3x K(0)i

m @mc = S� b�(0)i ; i = 1; � � � ; 8 : (42)

This means that b�(1) = 0 in (38), which implies the implementability of the Slavnov-Taylor identity to

every order through the absorbtion of the noninvariant counterterm �
P
i ai

b�(0)i.
In conclusion, the algebraic method of renormalization allowed us to show that the model is pertur-

batively renormalizable to all orders. The study of the possible counterterms has led to the conclusion
that the model is multiplicatively renormalizable, namely that the counterterms can be reabsorbed by
a rede�nition of the initial parameters. Finally, we have proven that anomalies are absent. We stress
that our algebraic analysis does not involve any regularization scheme, nor any particular diagramatic
calculation.
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