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Abstract

The Ruderman-Kittel interaction in one dimension is presented for ar-

bitrary coupling constant as a byproduct of previous considerations for

three-dimensions. For coupling constants which are smaller than or even

comparable to the Fermi energy, the interaction oscillates as a function of

distance like the perturbation result, however, with a reduced amplitude.

The interaction between two parallel magnetic lines in two dimensions is

also discussed.
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The Ruderman-Kittel interaction in one dimension has a curious history: Kittel [1]

used standard perturbation theory and obtained a result with in�nite range. In a ad-

dendum (quoted by Yafet [2]) he indicated a di�erent way to treat a singularity which

leads to a �nite range. Yafet [2] later justi�ed this method with a delicate argument.

Actually, the point is that an attractive Dirac �-function in one dimension has a bound

state. Therefore the problem has an essential singularity at vanishing coupling constant,

and perturbation theory does not apply. A recent paper [3] discusses the rôle of the bound

states in the interaction of two magnetic layers. It contains an alternative derivation of

formulas �rst obtained by Bruno [4] and valid for arbitrary coupling constant. The one

dimensional case is obtained by trivial modi�cations. While this extends the previous re-

sult to �nite coupling constant, we stress that the weak coupling limit can only be derived

consistently by a non perturbative method. The interaction of magnetic layers in three

dimensions is di�erent in this respect, since the weak coupling result can be obtained from

the Ruderman-Kittel interaction integrating over the positions of the spins, one on each

plane [2,5].

Now we translate the formulas of ref. [3] to the one dimensional case using its notation

and equation numbers. The Hamiltonian, Eq. (31), remains valid, just as the bound state

energies E1, E2 and E3 given by Eqs. (32-36) and plotted in Fig. 1 of [3]. The grand

potential por the parallel spin con�guration (+ sign in Eq. (31)) corresponding to Eq.

(62) becomes

�(1)
p = E1 + E2 �

EF

�

Z 1

0
dy y
f;p(ykF ) (1)

with 
f;p given by Eq. (55). For the antiparallel spin con�guration Eq. (83) translates

into

�(1)
a = 2E3 �

EF

�

Z 1

0
dy y
f;a(ykF ) (2)

with 
f;a given by Eq. (78). The energy di�erence between the two con�gurations,

��(1) = �(1)
p � �(1)

a , determines their relative stability. Fig. 1 shows ��(1) as a function
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of the distance L between the two spins for the same values of the reciprocal coupling

constant l0 as in �g. 3 of ref. [3]. The shape of the curves looks quite similar. Note,

however, that the amplitudes of the oscillations decrease more slowly with distance in the

one dimensional case. The dimensions of ��(1) and ��, and therefore the units in the

two �gures are di�erent.

The two dimensional system analogous to that of ref. [3] consists of two parallel mag-

netic lines in a plane. The formulas of the grand potentials per unit length are:

�(2)
p = 2EF kF

3�

n
1�

�
1� E1

EF

�3=2
+�(L� l0)

�
1�

�
1� E2

EF

�3=2�

� 3
2�

R 1
0 dy y

p
1� y2
p(ykf)

o
(3)

for parallel magnetizations and

�(2)
a =

2EF kF

3�

(
2 � 2

�
1�

E3

EF

�3=2

�
3

2�

Z 1

0
dy y

q
1� y2
a(ykf)

)
(4)

for antiparallel magnetizations. ��(2) = �(2)
p � �(2)

a is plotted in Fig. (2). The weak

coupling limit of ��(2) can be obtained either from Eqs. (3-4), or by integrating the

Ruderman-Kittel coupling [Eq. (4) of Ref. [6]] over the positions on the two lines.

It is noteworthy that for the Ruderman-Kittel interaction in three dimensions only the

weak coupling limit exists. The spectrum of an electron in an attractive �(3) potential has

no lower bound. This becomes evident when a Gaussian function is used as variational

function: the energy goes to minus in�nity as the range of the function vanishes. In

general, when a �3-function is used in solid state physics to represent a highly localized

potential, it is understood that only the �rst Born approximation applies. In contrast, the

coupling of a magnetic plane to conduction electron spins is represented by a �-function

which depends on one coordinate only, which allows an exact treatment and actually

requires it so that the bound states are obtained.
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FIGURES

FIG. 1. Energy di�erence ��(1) between the parallel and antiparallel con�gurations of two

spins on a line as a function of their separation L for various values of the coupling constant.

��(1) in units of 2�0=�, and L in units of k�1F . For vanishing coupling constant (full line)

��(1) = �� at L = 0 in these units. This curve di�ers little from a case of weak coupling,

kF l0 = 8, corresponding to EF =�0 = 32 (long dashes). Intermediate dashes belong to interme-

diate coupling: kF l0 =
p
2 i.e. EF =�0 = 1. Strong coupling (short dashes) with kF l0 = 0:5,

EF =�0 = 0:125 leads to a rapidly damped interaction.

FIG. 2. Energy di�erence per unit length ��(2) for two parallel lines in a plane as a function

of their separation L for various values of the coupling constant. ��(2) in units of 2�0kF =�
2,

and L in units of k�1F . In these units for vanishing coupling constant (full line) ��(2) = �� at

L = 0. The parameter values are the same as in Fig. 1.
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