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Abstract

The Ruderman-Kittel interaction in one dimension is presented for ar-
bitrary coupling constant as a byproduct of previous considerations for
three-dimensions. For coupling constants which are smaller than or even
comparable to the Fermi energy, the interaction oscillates as a function of
distance like the perturbation result, however, with a reduced amplitude.
The interaction between two parallel magnetic lines in two dimensions is

also discussed.
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The Ruderman-Kittel interaction in one dimension has a curious history: Kittel [1]
used standard perturbation theory and obtained a result with infinite range. In a ad-
dendum (quoted by Yafet [2]) he indicated a different way to treat a singularity which
leads to a finite range. Yafet [2] later justified this method with a delicate argument.
Actually, the point is that an attractive Dirac é-function in one dimension has a bound
state. Therefore the problem has an essential singularity at vanishing coupling constant,
and perturbation theory does not apply. A recent paper [3] discusses the role of the bound
states in the interaction of two magnetic layers. It contains an alternative derivation of
formulas first obtained by Bruno [4] and valid for arbitrary coupling constant. The one
dimensional case is obtained by trivial modifications. While this extends the previous re-
sult to finite coupling constant, we stress that the weak coupling limit can only be derived
consistently by a non perturbative method. The interaction of magnetic layers in three
dimensions is different in this respect, since the weak coupling result can be obtained from
the Ruderman-Kittel interaction integrating over the positions of the spins, one on each
plane [2,5].

Now we translate the formulas of ref. [3] to the one dimensional case using its notation
and equation numbers. The Hamiltonian, Eq. (31), remains valid, just as the bound state
energies Fy, Ey and E5 given by Eqgs. (32-36) and plotted in Fig. 1 of [3]. The grand
potential por the parallel spin configuration (+ sign in Eq. (31)) corresponding to Eq.

(62) becomes
_ F 1
=V =B+ By - WF /0 dy y Qsp(ykr) (1)

with Q;, given by Eq. (55). For the antiparallel spin configuration Eq. (83) translates

into
Jo
=M =28 — 7F/0 dyy Qs a(ykr) (2)

with Qy, given by Eq. (78). The energy difference between the two configurations,

AZM = =1 _ =) determines their relative stability. Fig. 1 shows AZ(") as a function
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of the distance L between the two spins for the same values of the reciprocal coupling
constant lp as in fig. 3 of ref. [3]. The shape of the curves looks quite similar. Note,
however, that the amplitudes of the oscillations decrease more slowly with distance in the
one dimensional case. The dimensions of AZM and AZ, and therefore the units in the
two figures are different.

The two dimensional system analogous to that of ref. [3] consists of two parallel mag-

netic lines in a plane. The formulas of the grand potentials per unit length are:

= = etefy — (1 - 2)" po(r - o) |1 - (1- &)™

— 2 Jo dyyvT =7 Q,(yky) } (3)

for parallel magnetizations and

2k EsN?? 3
(2) - 2278 2—2(1——3) ——/d 1— 42 Qu(yk 1

[1]

s

[1]

for antiparallel magnetizations. AZ®?) = =) — =) is plotted in Fig. (2). The weak

P a
coupling limit of AZ(® can be obtained either from Eqs. (3-4), or by integrating the
Ruderman-Kittel coupling [Eq. (4) of Ref. [6]] over the positions on the two lines.

It is noteworthy that for the Ruderman-Kittel interaction in three dimensions only the
weak coupling limit exists. The spectrum of an electron in an attractive 6 potential has
no lower bound. This becomes evident when a Gaussian function is used as variational
function: the energy goes to minus infinity as the range of the function vanishes. In
general, when a §*-function is used in solid state physics to represent a highly localized
potential, it is understood that only the first Born approximation applies. In contrast, the
coupling of a magnetic plane to conduction electron spins is represented by a é-function

which depends on one coordinate only, which allows an exact treatment and actually

requires it so that the bound states are obtained.



CBPF-NF-068/95 3

FIGURES
FIG. 1. Energy difference AZ(1) between the parallel and antiparallel configurations of two
spins on a line as a function of their separation L for various values of the coupling constant.
AEM in units of 2¢/m, and L in units of kz'. Tor vanishing coupling constant (full line)
AEM = —7 at L = 0 in these units. This curve differs little from a case of weak coupling,
krly = 8, corresponding to Fr/eg = 32 (long dashes). Intermediate dashes belong to interme-
diate coupling: kply = /2 i.e. Ep/ey = 1. Strong coupling (short dashes) with kply = 0.5,

Er/ep = 0.125 leads to a rapidly damped interaction.

FIG. 2. Energy difference per unit length AZ(2) for two parallel lines in a plane as a function
of their separation I for various values of the coupling constant. AZ®) in units of 2c0kp /72,
and L in units of k', In these units for vanishing coupling constant (full line) AZ(?) = —x at

L = 0. The parameter values are the same as in Fig. 1.
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