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ABSTRACT

We propose an exactly soluble path integral model for stochastic Beltrami fluxes in
three-dimensional space-time with a fixed eddie scale. We show further the appearance
of a three-dimensional self avoiding random surface structure for the spatial vortex loop

in our exactly soluble turbulence reduced model.
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One of the most interesting problems in the path integral formalism for turbulence is
related to the evaluation of the associated turbulence path integral in a perturbative or
non-perturbative framework ([1]). Our aim in this letter is to present an exactly solu-
ble path integral model for stochastic hydrodynamic motions defined here to be random
regime of the physical Navier-Stokes equation in the incompressible case dominated by
generalized Beltrami fluxes defined by the condition rot ¥ = A¥ with A a positive parame-
ter ([2]) and according to Leonardo da Vinci who described turbulence of fluid fluxes (low
viscosity ¥ — 0) as an amalgamation of “rough” roll up (fixed scale) fluid motions.

Let us, thus, start with the usual Navier-Stokes equation, i.e.,

o7 (1 P _
a—: + <§grad(172) — (¥ x mw> = I A4 B (1)
P

where, the random stirring force is such that its satisfies the following spatially non-local

Gaussian statistics in our reduced model for turbulence, i.e.,
(P () (F);(7, 1)) = A8((AT)8(r — 1))s(t — 1) (2)

where A~! denotes the Laplacean Green function.
At this point we take the curl of Eq. (1) and consider the already mentioned Beltrami

flux condition and its direct consequence, namelly:

N = rot(rot ¥) = grad (div ©) — AT = —AT (3.a)

dxrot v =10x(A0)=0 (3.b)

in order to replace the Navier-Stokes equation, Eq. (1), by the exactly soluble Langevin
equation for the fluid flux stirred by the external force Qest = rot(ﬁeﬂ) in our proposed
model of Navier-Stokes turbulence dominated by generalized Beltrami fluxes.

0% (7, 1)
ot

1=
= —u (1) + T3 ). (4)

The new external stirring Qeet = rot(ﬁ”t)(f’,t) satisfies a Gaussian process with the

following two-point correlation function
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(Q (7, )2 (1)) =
= (7RO AV B (L E ()
= N2 64 — 64§79 (AT F — 7)) x 6(t — 1)
= A28 8O (e — 8t — 1) = N2 ATIS(F— TNt — 1) (5)

It is obvious that eq. (5) satisfies the incompressibility condition necessary for the in-
compressibility consistency of our Brownian-Langevin fluid equation (4) and its stochastic
version below.

It is important to remark that the formal wave vectors of the Beltrami hydrodynamical
motions have eddies of a fixed scale |E| = 7 in our reduced model. As a consequence of
this fact, we assume implictly the same wave vector constraint in our random stirrings
eq. (2) and eq. (5).

A simple functional integral shift leads to the exactly generating functional path inte-
gral for our Brownian reduced model, where we have used the incompressibility constraint

a(T)vi(F,t) = 0 to see that the spatially non-local piece of eq. (5) does not contributes to
the final path integral weight eq. (6).

Z[j(7 1)) = /D[ (7, 1) exp</+oo / di(j - rt))

det [Q — 1/)\2] s )(dw v)e:z;p{ —/ &7 &P / dt dt’
ot 2 J 0

(%@ + sz) (7 D[ D — )s(t — ') — 0T ATV6(F — 7))6(t — 1')]

(a; -+ m%,) (m')}
= / DI[&(F, t)]exp <@ / e / " di(j - 17)(m)>
e:z;p{——/+oo /+Oodt< H—I—zx)\%)z(ﬁt)} (6)

At this point it is worth to compare the exactly soluble path integral above written

(note the fixed wave vector |E| = ~ imposed implicitly on eq. (6)) with that one associ-

ated to the complete Navier-Stokes equation for ultra-local random external stirring with
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strengh D namelly: (Fi(7, 1) F;(F’,1")) = DSG(F — 7 ")é(t — t')é;; and full range scale
0 < [k] < o0 ([3]).

(7, 1)] = /D[E(F,t)]det K% - m) S+ VD m(( ﬁ)v)k]
NS (5 o)
{Z\/_/Jroo /+°° . } (7.a)

Let us remark that it is possible to eliminate the pressure term —% gradP in this path-

integral framework by using the incompressibility condition div(¢) = 0, which, by its turn
leads one to consider only the transverse part of the external force and of the non-linear

term in the effective action in eq. (7.a) ([3]).

2.0 = / D7 )]

cxp {—% /_:o r /;Oo dat (%17 AT+ \/5((17.6)5)““)2} (7.b)

Here the transverse part of a generic vector field is defined by the expression

(W)™ = W(Ft) — ﬁ grad, (A~ (div W) (8)

Note that now one should postulate the non-local two-point correlation function in
order to get eq. (7.b) <FZ»TT(F,t)FJTT(F(F’,t’)> = DOV (F — F)o(t — )63

It is worth remark that eqs. (7.a)-(7.b), applied to the Burger equation leads to a
different path integral than that proposed in ref.[1] since in the path-integral framework
the viscosity is not a perturbative parameter which, in our case, is v/D. Besides, the

propagator in the free case for the time parameter in the range 0 < t < oo is given by

(3D

and differing significantly from the Dominicis-Martin propagator suitable for the range

—oo <t < oo ([1]):

LN _1* 9 A B (ktt’)—/+ood (fw(f—”); (10)
at " at " B wie w2—|—1/2|l_€|4
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Let us now evaluate the vortex phase factor defined by a fixed-time spatial
loop ( = {Z(U),a < o < b} in our exactly soluble model eq. (6) in order to see the

connection with strings (random surfaces) ([7])

<e:1;p(if ﬁ(“(a),t)di(a))>ﬁz /DF[E(F,t)]exp{—% " ;oo dt
(Z: + m?*)z (m)} exp(ifﬁ(?a),t)di(a)) (11)

Since the flux is of a Beltrami type in our soluble model eq. (6), we propose to re-write
the circulation phase factor as a sum over all surfaces bounding the fixed loop ¢ by making

use of Stokes theorem and by taking into account again the Beltrami condition, i.e.,

A s

By observing now that the two-point correlation of our Brownian-Beltrami turbulent flux

is exactly given by

o . —vA2|t—'|
B R A e (13)

[Fi= vA
with ¢,#'; € [0,00] and #(0) = 1/2 in this initial value problem, we can easily evaluate the
average Eq. (6) and producing a strongly coupled (v — 0) area dependent functional for

the spatial vortex phase factor ([5]), in our proposed turbulent flux regime

Wi, 7] = <ei92 ﬁ<f7t>~df> _ > exp{__// Se”;ﬁ;m senMe =yl 7, )} (14)

The above obtained results rise hopes that a strongly coupled string theory, as used to
understand Q.C.D. and Quantum Gravity ([5], [6]) may be relevant to modelling structures
with non trivial geometry in turbulence ([4], [7]) at least for the restrict family of stochastic

Beltrami motions (with a eddie of a fixed scale |]2| = )) (see Appendix A for a toy model
for |k| # X).
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Appendix A — The case of non fixed eddies scale

Just for completeness of our study and in order to generalize the Beltrami flux tur-
bulence analysis represented in the main text, for the physical case of the complete wave
vector range () < |]2| < oo in our turbulent path integral soluble model studies, we propose
to consider a kind of generalized Beltrami condition to overcome this possible drawback

of our turbulence modeling, namelly:
rotv(r,t) = A(r)v|r, 1| (A.15)

where A(7) is a positive function varying in the space and to be determined from a
phenomenological point of the view ([4]). Note that the Fourier transformed (wave-vector)

condition takes now the general form

(k[ - [k, £)] = /RS EHNT = DI 19(5, )] (A.16)
which, by its turn, leads to the full range scale 0 < |E| < oo for the eddies hydrodynamical
motions under study. By supposing that the "vortical” stirring eq. (5) is a pure white

noise process with strenght D,
Q' (7 ) (7 1) = D - 67 8O (7 — 7 st — 1) (A.17)

It is a straightforward deduction by following our procedures as exposed in the text
to arrive at an analogous Gaussian path integral for the Generalized Beltrami random
hydrodynamical defined by equation (A.15). The generalized effective motion equation is

given, in this new situation, by

K% -7 (%) ()= )\E/F) agg) aie * ”AQ(F)> o
o (af’“ag—f)] ok(F, 1) = QL (7, 1) (A18)

The Gaussian path-integral, thus, is exactly written below

Z[5:(7, 1)) = /ZliDF[vi(F,t)] exp <@ /O:OO di”F/ooo dt (jivi)(F,t)>

1 +oo 00 ) )
[—— B[ dt (O (M M, (F t)] (A.19)
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Here, the differential operators entering in the kinetic term of the our turbulent path

integral are

a 14 6)\() a v .
*kt __ v ‘
M ( ot TN o, o + NG AN(T)
_ F 2 —* k1 a)\(F)
)\() AN r>5 e (A.20)
and
s (0 v OXP) O s ANP)Y s ON(F)

e <+6t ) oae gw, TN O TS ) (A.21)

It is worth point out that the exact evaluation of the variance eq. (A-19) depends on
the exact form of our rotation function A(7') defining the Beltrami condition (A.15).

The vortex phase factor eq. (11), takes now a form closelly related to the pure self-
avoiding string theory of refs. [5]-[7] in the case of a slowly varying function |grad \(r)| <<

A(F) and A(F) ~ 1 (a very slowly r-varying function: for instance as A(r') = Ag exp(—107°|7*))

, - - 1
<el3g17(€,t)d€> e:z;p {—— / / dA (x—y)- dA(y)} ~ exp (——area(9))
(5} Y
(A.22)
Now, if we follows refs. [5] and [6], it is an easy task to deduce that the above written
time-fized vortex phase factor satisfies the famous loop wave equation for Abelian Q.C.D.

at very low energy and a large number of colors. It may be written in the geometrical

(infinitely differentiable loops Z(U) notation of ref. [7] as the following

.0 i § F(L,t)dl
8“5%(1;) <<e >>

1 - 7
L i - e e (A.23)

v
The above obtained results rise hopes again that a string theory may be relevant to
understand turbulence modeled as an amalgamation of “though” roll up of random stirred

fluid motions. Namelly: rotv(r,t) = A(7)J(7, t).
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