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Abstract

We propose an exactly soluble path integral model for stochastic Beltrami uxes in

three-dimensional space-time with a �xed eddie scale. We show further the appearance

of a three-dimensional self avoiding random surface structure for the spatial vortex loop

in our exactly soluble turbulence reduced model.
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One of the most interesting problems in the path integral formalism for turbulence is

related to the evaluation of the associated turbulence path integral in a perturbative or

non-perturbative framework ([1]). Our aim in this letter is to present an exactly solu-

ble path integral model for stochastic hydrodynamic motions de�ned here to be random

regime of the physical Navier-Stokes equation in the incompressible case dominated by

generalized Beltrami uxes de�ned by the condition rot ~v = �~v with � a positive parame-

ter ([2]) and according to Leonardo da Vinci who described turbulence of uid uxes (low

viscosity � ! 0) as an amalgamation of \rough" roll up (�xed scale) uid motions.

Let us, thus, start with the usual Navier-Stokes equation, i.e.,

@~v

@t
+

�
1

2
grad(~v2)� (~v � rot~v

�
= �gradP

�
+ ��~v + ~F ext (1)

where, the random stirring force is such that its satis�es the following spatially non-local

Gaussian statistics in our reduced model for turbulence, i.e.,

h(F ext)i(~r; t)(F
ext)j(~r

0; t0)i = �2�ij((�
�1)�(r � r0))�(t� t0) (2)

where ��1
r denotes the Laplacean Green function.

At this point we take the curl of Eq. (1) and consider the already mentioned Beltrami

ux condition and its direct consequence, namelly:

�2~v = rot(rot ~v) = grad (div ~v)��~v = ��~v (3.a)

~v � rot ~v = ~v � (�~v) = 0 (3.b)

in order to replace the Navier-Stokes equation, Eq. (1), by the exactly soluble Langevin

equation for the uid ux stirred by the external force ~
ext = rot(~F ext) in our proposed

model of Navier-Stokes turbulence dominated by generalized Beltrami uxes.

@~v(~r; t)

@t
= ���2~v(~r; t) + 1

�
~
ext(~r; t): (4)

The new external stirring ~
ext = rot(~F ext)(~r; t) satis�es a Gaussian process with the

following two-point correlation function
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It is obvious that eq. (5) satis�es the incompressibility condition necessary for the in-

compressibility consistency of our Brownian-Langevin uid equation (4) and its stochastic

version below.

It is important to remark that the formal wave vectors of the Beltrami hydrodynamical

motions have eddies of a �xed scale j~kj =  in our reduced model. As a consequence of

this fact, we assume implictly the same wave vector constraint in our random stirrings

eq. (2) and eq. (5).

A simple functional integral shift leads to the exactly generating functional path inte-

gral for our Brownian reduced model, where we have used the incompressibility constraint

@
(r)
i vi(~r; t) = 0 to see that the spatially non-local piece of eq. (5) does not contributes to

the �nal path integral weight eq. (6).
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(6)

At this point it is worth to compare the exactly soluble path integral above written

(note the �xed wave vector j~kj =  imposed implicitly on eq. (6)) with that one associ-

ated to the complete Navier-Stokes equation for ultra-local random external stirring with
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strengh D namelly: hFi(~r; t)Fj(~r 0; t0)i = D�(3)(~r � ~r 0)�(t � t0)�ij and full range scale

0 � j~kj <1 ([3]).
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(7.a)

Let us remark that it is possible to eliminate the pressure term �1
�
gradP in this path-

integral framework by using the incompressibility condition div(~v) = 0, which, by its turn

leads one to consider only the transverse part of the external force and of the non-linear

term in the e�ective action in eq. (7.a) ([3]).

Z[~j(~r; t)] =

Z
DF [~v(~r; t)]
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(7.b)

Here the transverse part of a generic vector �eld is de�ned by the expression

( ~W (~r; t))Tr = ~W (~r; t)� 1

4�
gradr(�

�1(div ~W )) (8)

Note that now one should postulate the non-local two-point correlation function in

order to get eq. (7.b) hF Tr
i (~r; t)F Tr

j (~r(~r 0; t0)i = D�(3)(~r � ~r 0)�(t� t0)�ij.

It is worth remark that eqs. (7.a)-(7.b), applied to the Burger equation leads to a

di�erent path integral than that proposed in ref.[1] since in the path-integral framework

the viscosity is not a perturbative parameter which, in our case, is
p
D. Besides, the

propagator in the free case for the time parameter in the range 0 � t � 1 is given by

([3])  �
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(9)

and di�ering signi�cantly from the Dominicis-Martin propagator suitable for the range

�1 � t �1 ([1]): �
@

@t
� ��

��1

�
�
� @

@t
� ��

��1
!
(k; t; t0) =

Z +1

�1

dw(eiw(t�t0))
1

w2 + �2j~kj4
(10)



{ 4 { CBPF-NF-067/98

Let us now evaluate the vortex phase factor de�ned by a �xed-time spatial

loop ` = f~̀(�); a � � � bg in our exactly soluble model eq. (6) in order to see the

connection with strings (random surfaces) ([7])�
exp(i

I
~v(~̀(�); t)d~̀(�))
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�
�1

2

Z +1

�1

d3~r

Z +1

0

dt

�
@~v

@t
+ ��2~v

�2

(~r; t)

)
exp(i

I
~v(~̀(�); t)d~̀(�)) (11)

Since the ux is of a Beltrami type in our soluble model eq. (6), we propose to re-write

the circulation phase factor as a sum over all surfaces bounding the �xed loop ` by making

use of Stokes theorem and by taking into account again the Beltrami condition, i.e.,
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S

~v(x; t) � d ~A(x))
!
; (12)

By observing now that the two-point correlation of our Brownian-Beltrami turbulent ux

is exactly given by

hvi(~r; t)vj(~r 0; t0)i
v
=

Z
j~kj=�

e�i~k�(~r�~r0) e
���2jt�t0j

��2
�(t� t0)�ij; (13)

with t; t0;2 [0;1] and �(0) = 1=2 in this initial value problem, we can easily evaluate the

average Eq. (6) and producing a strongly coupled (� ! 0) area dependent functional for

the spatial vortex phase factor ([5]), in our proposed turbulent ux regime

W [~̀; ~v] �
D
ei

H
`

~v(`;t)�d~̀
E
=
X
fSg

exp

�
��

�

ZZ
S

d ~A(x)
sen(�jx� yj)

jx� yj d ~A(y)

�
(14)

The above obtained results rise hopes that a strongly coupled string theory, as used to

understand Q.C.D. and QuantumGravity ([5], [6]) may be relevant to modelling structures

with non trivial geometry in turbulence ([4], [7]) at least for the restrict family of stochastic

Beltrami motions (with a eddie of a �xed scale j~kj = �) (see Appendix A for a toy model

for j~kj 6= �).
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Appendix A { The case of non �xed eddies scale

Just for completeness of our study and in order to generalize the Beltrami ux tur-

bulence analysis represented in the main text, for the physical case of the complete wave

vector range 0 � j~kj <1 in our turbulent path integral soluble model studies, we propose

to consider a kind of generalized Beltrami condition to overcome this possible drawback

of our turbulence modeling, namelly:

rot~v(~r; t) = �(~r)~vj~r; tj (A.15)

where �(~r) is a positive function varying in the space and to be determined from a

phenomenological point of the view ([4]). Note that the Fourier transformed (wave-vector)

condition takes now the general form

j~kj � j~~v(~k; t)j =
Z
R3

d3~pj~�(~p � ~q)j � j~~v(~p; t)j (A.16)

which, by its turn, leads to the full range scale 0 < j~kj <1 for the eddies hydrodynamical

motions under study. By supposing that the "vortical" stirring eq. (5) is a pure white

noise process with strenght D,

h
ext
` (~r; t)
ext

`0 (~r; t0)i = D � �``0�(3)(~r � ~r 0)�(t� t0) (A.17)

It is a straightforward deduction by following our procedures as exposed in the text

to arrive at an analogous Gaussian path integral for the Generalized Beltrami random

hydrodynamical de�ned by equation (A.15). The generalized e�ective motion equation is

given, in this new situation, by��
@
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ext

i (~r; t) (A.18)

The Gaussian path-integral, thus, is exactly written below

Z[ji(~r; t)] =

Z 3Y
i=1

DF [vi(~r; t)] exp
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0
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�
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�
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2D
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d3~r
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0

dt vk(~r; t)(M
�ki �M is)vs(~r; t)

�
(A.19)
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Here, the di�erential operators entering in the kinetic term of the our turbulent path

integral are

M�ki =
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+
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(A.20)

and
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(A.21)

It is worth point out that the exact evaluation of the variance eq. (A-19) depends on

the exact form of our rotation function �(~r) de�ning the Beltrami condition (A.15).

The vortex phase factor eq. (11), takes now a form closelly related to the pure self-

avoiding string theory of refs. [5]-[7] in the case of a slowly varying function jgrad�(~r)j <<
�(~r) and �(~r) � 1 (a very slowly ~r-varying function: for instance as �(~r) = �0 exp(�10�5j~rj2))

hei
H
~v(`; t)d~̀i =

X
fSg

exp

�
�1

�

Z
S

Z
S

d ~A(x) � �(3)(x� y) � d ~A(y)
�
� exp (�1

�
area(S))

(A.22)

Now, if we follows refs. [5] and [6], it is an easy task to deduce that the above written

time-�xed vortex phase factor satis�es the famous loop wave equation for Abelian Q.C.D.

at very low energy and a large number of colors. It may be written in the geometrical

(in�nitely di�erentiable loops ~̀(�) notation of ref. [7] as the following

@x
�

�

����(x)

�
hei

H
~v(`;t)d~̀i

�
1

�

I
d~y�(3)(~x� ~y)hei

H
~v(`;t)d~̀i (A.23)

The above obtained results rise hopes again that a string theory may be relevant to

understand turbulence modeled as an amalgamation of \though" roll up of random stirred

uid motions. Namelly: rot~v(~r; t) = �(~r)~v(~r; t).
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