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I. INTRODUCTION.

The need of di�erent types of space-times with closed spatial sections, in classical [1] and quantum

[2] models of the Universe, has produced over the last years an increasing number of works where one

turns into compact, or compactify, open manifolds [3], [4].

An interesting motivation, at the classical level, for the use of space-times which initially open spatial

sections were compacti�ed, are the works by Fagundes [3]. There, he proposed an explanation to the

so-called quasar redshift controversy (see Ref. [5] for a review), by means of multiply images of a single

source produced in an universe with compact hyperbolic spatial sections.

Another motivation to consider space-times with compact spatial sections comes from quantum cos-

mology [2]. There, one works with these space-times because one does not know, in the general case,

how to treat the contributions coming from boundary terms at the spatial in�nity [2]. However, we may

mention few attempts to write the quantum mechanics of gravitational systems with open spatial sections

[6].

The work of Louko and Ruback is an example, in quantum cosmology, where one has to compactify

the initially open, 
at, spatial sections of a set of space-times in order to compute the `no-boundary'

wave-function [7] for certain universes.

An important property of the compacti�cation process, is that it may cause the development of sin-

gularities of conical, or even more complicate nature in the resulting space-times [4], [8]. And sometimes,

as in the case of the space-times contributing to the `no-boundary' wave-function [7], one is not interested

in the presence of singularities. It means that it would be important to determine what are the conditions

for one obtaining a regular space-time with compacti�ed spatial sections.

Recently, a technique aimed at identifying, in a systematic way, the presence of conical singularities

in a given space-time has been introduced. It is the so-called holonomy method [9].

In the present paper, we would like to apply the holonomy method to investigate the regularity of

space-times with spatial sections which are closed as the result of compacti�cations. The use of the

holonomy method implies that we will treat, here, only the cases where after the compacti�cations the

space-times may have, at most, conical singularities. In particular, we would like to determine if there are
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conditions on the physical constants describing these space-times, when we require them to be regular,

and what these conditions are.

We may divide the space-times to be studied in two sets: the �rst with negatively curved spatial

sections and the second with 
at spatial sections. Here, we shall consider only space-times of the �rst set

leaving the others, belonging to the second set, to a future work.

As a matter of simplicity we shall restrict our attention to space-times which spatial sections have

a constant negative curvature. In order to facilitate the calculations, we shall work in (2+1)-dimensions

and comment, at Sec. V, on the modi�cations needed in order to treat (3+1)-dimensional space-times.

The next section, Sec. II, is devoted to the introduction of the particular space-time studied here.

It is the (2+1)-dimensional anti-deSitter space-time with compact spatial sections. We shall modify the

usual anti-deSitter metric by the introduction of an arbitrary and constant lapse function [10], N , which

will allow us to treat a certain set of cases.

In Sec. III, after demonstrating that the singularities that may be formed by the compacti�cations

are, at most, conical, we apply the holonomy method to the anti-deSitter space-time, written with an

unspeci�ed lapse function. Our �nal result in this section is a holonomy matrix which elements depend

on N , among other quantities.

In Sec. IV, we shall derive the regularity conditions for two elements of the set mentioned above.

The �rst case is treated in Subsec. IVA. It is the usual expression for the anti-deSitter space-time

metric, with N equal to the identity, which is relevant to classical cosmology [3]. The regularity condition,

in this case, is a constraint upon the periods of the parameters introduced to describe the compacti�ed

directions.

In Subsec. IVB, we treat the second case where N is a given function of few constants present in the

chosen space-time. As we shall see, in the Appendix A, this space-time contributes at the semi-classical

level to the `no-boundary' wave-function of a certain universe. It means that this case is relevant to

quantum cosmology. Here, the regularity condition turns out to produce a transcendental equation for

the only free physical parameter of the model, the cosmological constant �. For certain values of the

integration constants, this equation has solutions which form a discrete and �nite set.
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Finally, in Sec. V, we conclude by outlining the main results of the paper and commenting on

generalizations of the present analysis to other (2+1) and (3+1)-dimensional anti-deSitter space-times.

II. (2+1)-DIMENSIONAL ANTI-DESITTER SPACE-TIME WITH COMPACT

SPATIAL SECTIONS.

In (2 + 1)-dimensions the anti-deSitter space-time has the following metric [11],

ds2 = �N2 dt2 + a2(t) ( d�2 + sinh2 �d�2 ); (1)

where,

0 � t � 1 ; 0 � � < 1 ; 0 � � � 2� ; (2)

a(t) = �� sin

�
Nt

�

�
; and �2 =

1

j�j
: (3)

�, in eq. (3), is the negative cosmological constant.

The presence of a constant and arbitrary lapse function in the metric (1), allow us to treat a set of

di�erent expressions of the anti-deSitter space-time, each di�ering from the others by the value of N .

Let us call this set ADS. The physical signi�cance of the possible choices of N can be appreciated in Ref.

[10].

>From the literature [12], we know that for �xed values of t the spatial sections of the anti-deSitter

space-time (1) are two-dimensional one-sheeted hyperboloids. The separation between the origin of the

coordinate system and the pole of the one-sheeted hyperboloid is given by the scale factor, a(t), at that

instant. It means that the spatial sections are open. Therefore, since we are interested in the case where

they are closed we must compactify them.

In what follows, with the aid of few mathematical results we shall introduce the relevant compact

spatial sections.

The one-sheeted hyperboloid mentioned above, is a representation of the two-dimensional hyperbolic

space H2. In two dimensions, every closed orientable surface of genus at least two allows a geometric

structure modeled on the H2 (see the review article Ref. [13] for more details on this result due to
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Poincar�e, among others). Based upon this result and in order to keep our treatment as simple as possible

let us choose our closed orientable surface to be a double torus. Then, the one-sheeted hyperboloid, which

describes the spatial section of the space-time (1), will be compacti�ed into a double torus.

One way to proceed is working in a projection of the H2 onto a plane, which results in a disc called

the Poincar�e Disc (P.D.) [14]. The conformal transformations which takes one from the coordinates (�; �)

to the polar coordinates (r; �) on the P.D., are,

r =
q
�2 � v20 tanh(�=2) ; � is unchanged ; (4)

where

v0 =
p
�2 � a2(t): (5)

This mapping from the H2 to the P.D. induces a non-trivial line element on the disc, given by,

ds2PD = 4 (�2 � v20)
2 (dr2 + r2d�2)

(�2 � v20 � r2)2
: (6)

The next step in the compacti�cation process, is the selection of a fundamental region (in general a

polygon) which tessellates [15] the P.D., and may be transformed into a double torus. Then, we shall take

this fundamental region and construct the double torus, or in other words, the quotient surface H2=�,

where � is a certain symmetry transformation of the H2.

In two dimensions, the unique symmetry transformations of the H2 capable of generating compact

surfaces are the hyperbolic ones [16], in other words, Lorentzian boosts. Our compact surface will be

fabricated by the identi�cation of the sides, through the relevant boost transformations, of the above

selected polygon.

The simplest fundamental region which gives rise to a double torus is the regular octagon [14]. If we

now identify the opposite sides of this polygon, with the aid of four di�erent boost transformations (one

for each relevant direction), we obtain a representation of the desired compact surface.

Therefore, the spatial sections of our space-time will be given by the time evolution of a double torus

with line element (6).
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III. THE HOLONOMY MATRIX.

We start by writing down the line element of the space-time described by the evolution of the double

torus, in Cartesian coordinates, with the aid of eqs. (1), (2) and (6),

ds2 = �N2dt2 +
4 (�2 � v20)

2 (dx2 + dy2)

(�2 � v20 � x2 � y2)2
: (7)

Where the ranges of x and y will depend on the octagon dimensions; the opposite sides of the octagon

are identi�ed; and t has the range given in eq. (2).

Observing eqs. (1) and (3), we notice that the anti-deSitter space-time has a singularity at t = 0.

This singularity can, at most, be conical. One can see it by noting that for Robertson-Walker space-times

all the scalars, formed out of contractions of the Riemann tensor, are proportional to appropriate powers

of the curvature scalar (R). And from direct calculations one �nds that our space-time has an everywhere

constant curvature scalar,

R = � 6 j�j : (8)

In fact, it is known that this singularity is a coordinate singularity [12].

The same conclusion does not directly apply to the space-time with line element (7) because at the

event t = 0 (v20 = �2), due to the identi�cations mentioned after eq. (7), a conical singularity may have

formed.

Let us, then, apply the holonomy method in order to investigate the presence, or not, of a conical

singularity in the space-time with line element (7), at the event t = 0.

Following the instructions of the holonomymethod [9], we start by writing down the parallel transport

equations for a �ducial vector v, along a closed loop (to be speci�ed), in the space-time represented by

eq. (7).

The easiest way to derive them, from eq.(7), is by working on the orthonormal basis, de�ned by the

transformations,

wt = dt ; wi =
2 (�2 � v20)

�2 � v20 � x2 � y2
dxi ; (9)

where i = x; y and xi = x; y.
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The non-vanishing connection coe�cient components in this basis are,

�txx = �tyy =
�2 _v0v0(x

2 + y2)

(�2 � v20)(�
2 � v20 � x2 � y2)

= ��xtx = ��yty ; (10)

�ijj =
�xi

�2 � v20
= ��iji; (11)

where j = x; y; i 6= j and i and xi vary as in eq. (9).

The parallel transport equation for the �dutial vector v, is given by [9],

dv�

d�
+ v� ���
 





�

dx�

d�
= 0; (12)

where � is an a�ne parameter describing the curve; the Greek indices vary over all the coordinates; and

the matrix 
 relates the non-coordinate basis with the coordinate one.

In order to obtain the explicit expression of eq. (12), we have to introduce the closed loop around

which we shall parallel transport v.

We start by noting that for a given instant t there are four independent, closed directions, one for

each pair of opposite, identi�ed, sides of the octagon. Each one of the four independent, close, direction

gives rise to a set of closed loops, which we shall call Si (i = 1; :::; 4). All closed loops which may be

constructed, taking in account the identi�cations, are made up of at least one element of the four Si.

Therefore, since the space-time event under investigation is in the t direction, the simplest closed loops

we can choose are the elements of the four Si at constant and di�erent values of t. These loops will

collapse to t = 0 when we take the limit t! 0.

Then, the results derived by the use of the elements of the four Si will be enough to draw conclusions

about the regularity of our space-time.

In order to apply the holonomy method to one of the four Si, we must choose an element of this set.

Let us say the closed loop C formed by joining the middle points of each opposite sides. Now, we orient

our axes so that the x axis coincide with C. In terms of our coordinates, the parametric equation of C,

for a certain instant of t, is

t = constant ; y = 0 ; x = g(�); (13)

where � is a periodic parameter varying in the range [�0; �f ]; �f � �0 + p�, and p� is the period of �;

g(�) is a function of �, to be speci�ed, which describes x in terms of � and varies between the extreme
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values of x, [�x0(t); x0(t)]. The extreme values of x are the following time dependent functions from eq.

(4),

x0(t) =
q
�2 � v20 tanh(�0=2) ; � = 0 ; � ; (14)

where �0 is one �xed value of �.

So, with the aid of the relevant 
 components, we may write the parallel transport equations (12),

for C eq. (13),

dvy

d�
= 0; (15)

dvt

d�
+

4
f2(df=d�)

(1� f2)2
vx = 0; (16)

dvx

d�
+

4
f2(df=d�)

(1� f2)2
vt = 0; (17)

where,

f(�) �
g(�)p
�2 � v20

and 
 �
_v0v0p
�2 � v20

: (18)

Observing eq. (14), we note that the main motivation for the introduction of the new parametrization

function f(�), eq. (18), is to restrict all the time dependence of our subsequent results to be concentrated

in 
, eq. (18).

The solution of eq. (15) is given by,

vy = vy0 ; (19)

where vy0 is the value of vy(�) for � = �0. The two remaining equations (16) and (17), form a coupled

system of �rst order di�erential equations. In order to solve it we shall have to introduce the explicit

value of f(�).

One of the simplest choices for f(�), which gives periodic solutions for the system (16)-(17), is

obtained by demanding that,

4 f2 (df=d�)

(1 � f2)2
= cot(
�): (20)
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Which gives, after an integration, the following implicit equation for f as a function of �,

�
1� f

1 + f

�


exp

�
2f


1� f2

�
= A sin(
�) ; (21)

where A is an integration constant.

Now, introducing our parametrization choice eq. (20), in the system (16)-(17) and solving it, we �nd

the general solutions,

vt(�) =
D

2

�
B2 + sin2(
�)

B sin(
�)

�
and vx(�) =

D

2

�
B2 � sin2(
�)

B sin(
�)

�
; (22)

where B and D are integration constants to be determined by the initial conditions.

Observing the solutions (22), we note that ( for non-vanishing C and D) they are singular whenever

� = 2n�=
, n being an integer. This property comes directly from our choice for the parametrizing

function f(�), eq. (20). This singularity of the solutions do not prevent us from use them in the

holonomy method, because the holonomy matrix is computed by comparing the �ducial vector v at the

same point [9]. Before and after the parallel transport of v around the closed loop. Therefore, we must

only avoid choosing as the initial point of the loop, one of the singular points of the solutions (22).

For the initial conditions,

vj(� = �0) = vj0 ; (23)

where j = t; x, and the solutions (19) and (22), we obtain the following holonomy matrix M ,

0
BBBBBB@

vt(�f )

vx(�f )

vy(�f )

1
CCCCCCA

=

0
BBBBBB@

Mtt

Mxt

0

Mtx

Mxx

0

0

0

1

1
CCCCCCA

0
BBBBBB@

vt0

vx0

vy0

1
CCCCCCA

; (24)

where,

Mtt = Mxx =
sin2(
�0) + sin2(
�f )

2 sin(
�0) sin(
�f )
� M+ ; (25)

Mtx = Mxt =
sin2(
�0) � sin2(
�f )

2 sin(
�0) sin(
�f )
� M� : (26)
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IV. REGULARITY CONDITIONS.

The next step in the holonomy method is the determination of the limit of the holonomy matrix

elements as the closed loops collapse to the event t = 0. It means that we must take the limit of the

non-trivial elements of M , given in eqs. (25) and (26), as t! 0.

The limits of M+, eq. (25), and M�, eq. (26), as t! 0 are easy to determine because they depend

on t only through 
. With the aid of eqs. (5) and (18) we compute the limit of 
 as,

lim
t!0


 = �N : (27)

>From eq. (27), the desired limits of M� are,

lim
t!0

M� =
sin2(N�0) � sin2(N�f )

2 sin(N�0) sin(N�f )
: (28)

where the + and � signs in the right hand side of eq. (28) are associated, respectively, with the limits of

M+ and M�.

Since we would like to obtain the conditions to have regular space-times, following the holonomy

method, we have to impose that the limits of M+ and M� are,

lim
t!0

M+ = 1 and lim
t!0

M� = 0 : (29)

Before we impose that the limits of M+ and M� have the value given by eq. (29), we must rewrite them

in terms of the other free parameter (besides N ) of the model. It is the period p� of the parameter �

which describes the closed loop C, eq. (13).

Using the expression which relates �f with �0 and p�, shown just after eq. (13), we may introduce

p� in the M+ and M� limits eq. (28). If, after doing that, we impose that the resulting expressions have

the values given in eq. (29), we obtain the following independent equations for generic values of �0,

sin2(Np�) = 0 ; (30)

sin(Np�) cos(Np�) = 0 ; (31)

sin(Np�) [ cos(Np�) � 1 ] = 0 ; (32)
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cos2(Np�) � 2 cos(Np�) + 1 = 0 : (33)

The most general solution to this system of equations (30)-(33), in the variables N and p�, is

N p� = 2� n ; (34)

where n is a non-zero, positive, integer.

Let us now consider what conditions eq. (34) will introduce for two elements of the ADS, eq. (7).

They will have de�nite values of the lapse function N .

A. The case relevant to classical cosmology.

For this case, as mentioned in the introduction, the lapse function is equal to the identity,

N = 1 : (35)

It means that eq. (34) is reduced to the below condition upon p�,

p� = 2�n : (36)

>From the discussion on Ref. [9], we know that the closed, or angular, direction must be de�ned in

the range [0; 2�]. Therefore, we can only accept the solution (36) for eq. (34), such that,

n = 1 : (37)

B. The case relevant to quantum cosmology.

Here, as demonstrated in the Appendix A, the lapse function has the following expression,

N = � [�=2 � arccos(a1=�)] ; (38)

where a1 is positive, and is the value of the scale factor, a(t), for t = 1.

In the present case we do not need to restrict n to be given by eq. (37), because from eq. (34) with

N written above eq. (38), we may still have the closed direction in the desired range for a generic value

of n.
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If we introduce N , eq. (38), in eq. (34), we �nd the following equation for the variables p� and x,

a1 x = sin

�
2�n

p�
x

�
; (39)

where x is related with the cosmological constant by,

x =
p
j�j ; (40)

and varies in the range (0; 1=a1).

For given values of a1 and n, eq. (39) furnishes a relationship between p� and the cosmological

constant. It is clear, then, that for a proper choice of p� one may derive from eq. (39) the allowed values

of �, such that, the space-time is regular.

Suppose we adopt the same value of p� as in the Subsection IVA, and for simplicity choose n to be

given by eq. (37). With these choices eq. (39) reduces to,

a1 x = sinx : (41)

Equation (39) has solutions for a1 < 2=�, and they form a discrete set. The number of solutions will

depend on a1 due to its presence in the superior limit of x.

We may write an approximate rule to the solutions of eq. (39), if we separate them in two sets. The

�rst set has the even order solutions and the second the odd order solutions.

Calling m the order of the solutions, we have the following approximate rules for the two sets of

solutions,

Even order : j�jk � (1� a1)
2 (2k � 1)2 �2 ; k = 1; 2; 3; ::: ; (42)

Odd order : j�jl � (1 + a1)
2 (2l�)2 ; l = 1; 2; 3; ::: ; (43)

where k = m=2; l = (m � 1)=2; and we have used eq. (40). For values of n other than 1 we shall also

have equations and solutions similar to eqs. (41) and (42)-(43), respectively.

As we have discussed in Sec. III, the above conditions eqs. (36), (37), (42) and (43), guarantee the

regularity of the two expressions of the anti-deSitter space-time, as investigated by using closed loops of
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one of the four Si. Their regularity can only be assured if we repeat the above procedure to the other

three Si.

We start by choosing as the representative of each of other three Si, the closed loops which join the

middle points of each remaining pairs of opposite identi�ed sides, as we did for the Si studied in Sec.

III. In the next step, we simply rotate our (x; y) axes, so that, the x axis successively coincide with these

three closed loops just introduced. Finally, we separately repeat the analysis above, Secs. III and IV, for

each of the three cases.

The choice of the regular octagon as our fundamental region, means that all four independent closed

loops have the same length at any time. That property implies that after repeating the analysis above, we

shall obtain the same regularity conditions eqs. (36), (37), (42) and (43), for each of the three independent

loops above.

Therefore, we may conclude that those conditions guarantee the regularity of the two examples of

di�erent expressions of the anti-deSitter space-time studied in this paper.

V. CONCLUSIONS.

In the present paper we have applied the holonomy method to investigate the regularity of space-

times which spatial sections are closed as the result of compacti�cations. In particular we were interested

in the conditions to obtain regular space-times.

As a matter of de�niteness and simplicity we have studied a (2+1)-dimensional set of di�erent ex-

pressions of the anti-deSitter space-times (ADS). Each element of the set di�ering from the others by the

value of a constant, lapse function.

The holonomy matrix of that set was constructed in Sec. III. The regularity conditions for two

particular elements of the ADS were derived in Sec. IV.

The �rst element of the ADS, relevant to classical cosmology [3], will be regular only if the periods

of the compacti�ed directions are equal to 2�, Subsec. IVA.

The second element of the ADS, relevant to quantum cosmology as shown in the Appendix A, was

studied in Subsec. IVB. Here, the space-time will be regular if, for given values of the initial conditions
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and two other free parameters, the negative cosmological constant present in the model has the discrete

values of eqs. (42) and (43).

It is important to add that the discrete spectrum for the cosmological constant has been derived just

by demanding that the space-time be regular. This requirement, following Hartle and Hawking [7], can

be considered a �rst principle.

Our study, in the present paper, may be generalized to other cases. The most obvious generalization

is to consider elements of the ADS (7), with values for N di�erent from the two studied here.

One may also apply the above procedure to investigate the regularity of (2+1)-dimensional anti-

deSitter space-times which closed spatial sections are negative curved surfaces of genus greater than two.

It means that the fundamental regions are not octagons anymore. If the new polygons are regular, the

analysis will be a repetition of what we did here for a greater number of independent closed loops. If, on

the other hand, the polygons are not regular we shall have to consider the regularity conditions derived

for each independent closed loops, separately, and demand that they all agree.

Finally, the use of the holonomymethod to examine the regularity of (3+1)-dimensional anti-deSitter

space-times with closed, negative curved, spatial sections, follows directly from our work. The main

di�erences are the possible uses of di�erents projections of the H3, and the presence of polyhedra, or

complexes, as the fundamental regions [8]. It is not di�cult to show that although we have the di�erences,

mentioned above, between the (2+1) and the (3+1)-dimensional cases, the line element (7) changes only

by the straightforward introduction of an extra dimension, and the modi�cation of the value of � [17].

Therefore, everything we did here may be generalized to this new situation.
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APPENDIX A

In this appendix, we would like to show that the anti-deSitter space-time with line element (7), lapse

function (38), compact spatial sections introduced in Sec. II, and regular as assured by the conditions (42)

and (43), contributes at the semi-classical level to the `no-boundary' wave-function of a certain universe.

The `no-boundary' conditions proposes that only regular, Euclidean spacetimes, with one single

spacelike boundary, should contribute to the path integral leading to the desired wave-function. It means

that in the semi-classical approximation the wave-function is given by the following expression [18]:

	nb[h
b
ij; 'b] = N0

X
k

Ak exp [�Ik] (A1)

where: N0 is a normalization constant; Ik is the action of the k-th solution to the Euclidean-Einstein's

�eld equations; and the sum is over these solutions. These solutions have a unique boundary which is

compact, spacelike, and has the given three-metric hbij and matter or gauge �elds con�guration 'b on

this boundary. The prefactors Ak are given by determinants of small 
uctuations about the classical

solutions.

We want to compute the `no-boundary' wave-function of a (2+1) - dimensional, homogeneous,

isotropic, and constant negatively curved universe. For simplicity the only source of stress-energy is

a negative cosmological constant. We shall restrict our attention to the semi-classical limit.

We start by proposing the Euclidean F-R-W metric ansatz, with the compact spatial sections intro-

duced in Sec. II . In terms of the ADM formalism [10], it is

ds2 = N2(t) dt2 + a2(t) ( d�2 + sinh2 �d�2 ) ; (A2)

where N (t) is the lapse function; a(t) is the scale factor; t and � vary as in eq.(2), Sec. II, and � has a

�nite superior limit due to the compacti�cations.

Introducing eq. (A2) in the general expression for the Euclidean action [19], we obtain the following

result,

I[N; a(t)] = �A

Z
[ _a2(t) � N2 � a2(t)N2� ]

1

N
dt ; (A3)

where: A is a �nite de�ned number proportional to the volume of the compact, spatial sections; and we

chose the gauge where N is a constant.
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The variation of I, eq. (A3), in terms of a(t) and N , will produce the Euclidean-Einstein's equations.

We shall solve these equations under the `no-boundary' conditions, suitably adapted for minisuperspaces

[7]. For our case these conditions are,

(1) There must be an instant when the scale factor vanishes;

(2) The solution must have the scale factor speci�ed at the boundary;

(3) The space-time must be regular.

We obtain two solutions satisfying the three conditions above.

The space-time which is important to the present study is the Lorentzian solution,

N = iNI ; where NI = �
�

2
� arccos(

a1
�
) ; (A4)

a(t) = �� sin(NI

t

�
) ; �2 =

1

j�j
; (A5)

valid for a1 < �.

The solution eqs. (A4) and (A5) satisfy all the three conditions above. More speci�cally it satis�es

condition:

(1) because a(t) vanishes for t = 0;

(2) because a(t) is equal to the given value a1 at the boundary, which is characterized by t = 1;

(3) when the conditions (42) and (43), Subsec. IVB, are valid.

Therefore, we conclude that the anti-deSitter space-time with the line element (A2), lapse function

(A4), scale factor (A5), compact spatial sections given in Sec. II, and for which conditions (42) and (43),

Subsec. IVB, are valid, contributes to the `no-boundary' wave-function (A1) of this universe.

In order to complete our proof, we must identify the above solution with the anti-deSitter space-time

introduced in Subsec. IVB.

We start by renaming NI in eqs. (A4) and (A5), calling it N . It leads us to eq. (38), Subsec. IVB.

This transformation also makes the scale factor eq. (A5) identical to the one in eq. (3), Sec. II. Then, we

apply the coordinate transformations (4), Sec. II, to the line element (A2). Finally, we write the resulting

line element in Cartesian coordinates which produces eq. (7), Sec. III, concluding our demonstration.



CBPF-NF-067/97 16

REFERENCES

[1] G. F. R. Ellis, Gen. Rel. Grav. 2, 7 (1971).

[2] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).

[3] H. V. Fagundes, Ap. J. 291, 450 (1985); Astrophys. J. 338, 618 (1989).

[4] J. Louko and P. J. Ruback, Class. Quantum Grav. 8, 91 (1991).

[5] G. Burbidge, Ann. N Y Acad. Sci. 375, 123 (1981).

[6] T. Regge and C. Teitelboim, Ann. of Phys. 88, 286 (1974); and K. V. Kucha�r, Phys. Rev. D 50,

3961 (1994).

[7] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).

[8] W. P. Thurston, The Geometry and Topology of Three-Manifolds (Princeton University Press,

Princeton, 1982), pp. 3.6-3.9.

[9] G. Oliveira-Neto, J. Math. Phys. 37, 4716 (1996).

[10] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (W. H. Freeman, New York, 1973).

[11] S. Deser and R. Jackiw, Ann. Phys. (NY) 153, 405 (1984).

[12] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time (Cambridge University

Press, Cambridge, 1973), pp. 124-134.

[13] P. Scott, Bull. London Math. Soc. 15, 401 (1983).

[14] N. L. Balazs and A. Voros, Phys. Rep. 143, 109 (1986).

[15] C. Series, in Dynamical Chaos, Proceedings of a Royal Society Discussion Meeting, edited by M. V.

Berry, I. C. Percival and N. O. Weiss (Princeton University Press, Princeton, 1987), p. 171.

[16] S. Nag, The Complex Analytic Theory of Teichm�uller Spaces (Wiley and Sons, New York, 1988);

and R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry (Universitext) (Springer-Verlag,



CBPF-NF-067/97 17

New York, 1992), p. 65.

[17] G. Oliveira-Neto, Pre-print University of Newcastle-Upon-Tyne - U. K. NCL-93/TP-5, (1993).

[18] S. W. Hawking, in Relativity, Groups and Topology II, Les Houches 1983, Session XL, edited by B.

S. DeWitt and R. Stora (North Holland, Amsterdam, 1984), p. 333.

[19] S. W. Hawking, in General Relativity, An Einstein Centenary Survey, edited by S. W. Hawking and

W. Israel (Cambridge University Press, Cambridge, 1979), p. 746.


