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RBSTRACT

In this work we obtain a closed form expression to the
double differential cross section far one step proton-~nucleus re-

action within a field theoretical framework. Energy and momentum

conservation as well as nuclear structure effects are

consistently taken into account within the field theoretical

eikonal approximation. In our faormulation the kinematics of such
reaction is not dominated by the free nucleon-nucleon cross
section but a3 new factor which we call relativistic differen-

tisl cross section in 3 Born Approximation.

Rey-words: Proton-nucleus reaction; Field theory; Glauber approxi
mation.
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INTRODUCTION

Recent experiments in nuclear physics, most of them per-
formed with heavy ion or high precision electron beams at rela-
tivistic anergies ravealed the inadequace of traditional nuclear
theories to describe many aspects of nature (ref.1). Specially,
the important role played by subnuclear degrees of freedom has
become most conspicuous. Inspite of this fact theoretical
description of nuclei based on QCD are still in their infancy.
However simpler field theoretical models which treat nucleons as
Dirac particles coupled to various mesonic fields (ref.2) have
been developed and are quite successful in explaining data as
well as in given strong theoretical basis to some of the impor-
tant characteristics of the traditiomal nuclear forces as the
spin-orbit interaction.

It is our belief that field theoretical description of nu-
clear collisions is 2 very important topic in nuclear theorv and
the aim of the present paper is to develop a method for inelatic
praoton~nucleus scattering wheré the proton is treated as a Dirac
particle and the nuclteus can be treated as a composite particle.
The formulation of such reaction processes of field theory is a
necessary first step for the future description of nuclear

processes with explicit inclusion of quarks and gluons. This work

remaing at the level of nuclteons and mesons as elementary
nuclear constituents even though it serves the purpose of
proving a OGlauber’s multiple diffraction model (ref.3). One

important advantage of our approach is that energy and momentum
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consarvation as well as nuclear structure effects are caorrectly
included. Recently relativistic Coulomb excifation in heavy 1ion
collisions has bean.described in the context of QED (ref.4) and
the total cross sections obtained (ref.S5). 1n the case of high
energy inmtastic profon-nuctaus reaction ( about 1 GeV 1}, the

experimental observations (ref.B8) cannot be accounted for in the

framework of Glauber'’'s theory, In this case, spectra cannot be
obtained since the theory only allows far a description of
angulbar distributions. Therafore Bertsch and Scholten (ref.,7)

developed a phenomenological model to describe spectra in such

reaction. This model for the douﬁle differential cross sectian
contains ingredients of Glauber’s theory , the experimantal
free nucleon-nucleon cross section as- the basic kinematical

factor and & nuclear response function, shoutd describes the

dynamics of the process, Rs shown in ref.(7), the model seems to
be fairly successful for some kinematical regions. Nevertheless,
their hypothesis of factorizing the nucleon-nucleon scattering
cross section at very lLow energy and momentum transfers seems to
us to be inadequate. At excitatiaon energies about 10 MeV, nuclear

structure effects, specifically nuclear mean field affects cannot

be disentangled from the kinematics aof nucieon-nucleon
scattaring. In fact the work of Ref.(7) in this kinematical
region shows discrepancies with the data where they are

attributed to Pauli blocking aeffacts in the nuclear response
function which is introduced in a phenomenologicat way. We show
for Low momentum and energy tranfered that the kinematics of the

reaction is strongly influenced by the mean fiatd of the nucleus
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and that an adequate treatmet of such kinematical effects already
reproduces thefqualitative behaviour ﬁf the data. fAn analysis of
the dynamical part of the cross section (the response function)
together with the <correct kinematicai{ factor caonstitutes an
interesting next step in describing the data gquantitatively,

In our scheme, the proton is treated as a Dirac particle
which interacts with the nucleus via axchange of scalaere and
vectar mesons. When the eikonal approximation is introduced, we
are able to sum up Feynman graph. - contributing to the process
to all orders. The generalization of this scheme to multiple
scattering is tecnically involved but straighforward (ref.3). The
necessary approximations = to retrieve Glauber's multiple
scattering formula {(ref.8) become apparent. We shall here present
the method and focus our attention in the doubte differential
cross section for one step inelastic scattering,

In section 1 wa derive the sikonal Feynman amplitude and in
the section Il we ara presenting the static Ltimit and the
connection with potential scattering theory. The relativistic
features of the theary remain aven in this limit. In section 111
wa give the double differentiaL cross section formuia and discuss
the main differences with available models. Finally, in Sectian

IV we collect some concluding remarks.
I. EIKONAL FEYNMAN RAMPLITUDE

We consider the scattering process of a high energy proton
on a target nucleus interacting via the exchange of scalar and

vector meson accoerding to Walecka’s model (Ref.2), whose
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interaction Lagrangian density is given by

L9 3¥d-q Frawvt a

where \1’ is the nuclear gpinor oparator, Cb is the scalar
meson field and \ﬁ& is the vector boson field. The quantities q@
and C} are the coupling constants of these interactions,
respectﬁvely.

When the four momentum transfer associated to each mescon ex-
changed is smal;, it is a good spproximation to express the scat-
tering amptitude as 23 sum of Feynman diagrams in which meson
fields are exchanged between the world line of the 1incident
proton and the target nucleus without any bubble diagrams. We
define ona step axcitation as those diagrams where the nuclear
excitation is caused at one of the vertices. R typical diagram of
the one step excitation process is illustrated in Fig.(1). There
we are representing a process whera the incident proton and the
target nucleus axchange T .intermediate scalar mesons and
YW\ vector bosons in addition to the one {scalar or vaector) which
causes the nuclesr excitation,indicated in the figure from the
r-th vertex ta s-th vertex by a heavy Lline.

For the scattering processes involving small momentum
transfer, it 1is always possible to choose a reference frame
where the target nucleus can be treated nonrelativistically
during the whale process (ref.4). In such a system, one

can

separate the nuclear center of mass moticn from its intrinsic
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degree of freedom and all nuclear matrix elements can be treated

with the standard nonrelativistic nuclear physics.

The scattaering amplitute ?Y] can be expressed as

h/l,: i i m“’m (1.2

N0 M0

where quyvnrefars to the amplitude corresponding to the sum over

distinct diagrams of the type indicated in Fig.(1). We write it

N=n+m+1

Mwow=] AT (a4 Tty @ 532 )

(2r)

where q, is the four-momentum transfer of the process

()= -(R-%)

and ki’s stand for the four momanta of aexchanged mesons. The
term gi) rapresents a matrix element of a sum of products of
propagators and vertex operators in an appropriate order taken
between the final and initial ;tates of the system.

The E;-function in eq.(l1-3) can be used to eliminate one
af the k-integrais. We choose tha r-th meson momentum to
induce the nuclear excitation, This arbitrariness will ©be
eliminated through a symmetrization process (ref. 9},

Since the nucltear axcitation may take place at any vertex,

we have sum over all possibles contributions as

N
(i)z 2:! qe- (I1.5)
r=4
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The quantity q)r is then written

@ T A(LQ[%(T)I"S(?J-LL,)P Srksk )x

> y=

I, Stk s b T Skrkyrnnk )T .

r-{

SIRL ETH WM] * <PJ;4>|f(L;)lmxa‘;flé(ﬁ-ug IR -

«<12‘-,:|1’5(I2N_1) IR <TG (R-R-E IR <RHH L IR

conrsx SR G R R RIS <R11F (a- LL)\R,@*

) ) fE M ¥
X <R;1S\G(‘rb+ L1+ ""+k_1)"Pb')qs>x ssen <‘Pb'>q“ (L4) \“R,;qs> (1.8
where ZBI) stands for the sum over all distinct diagrams, and k's
are the momenta exchanged mesons in the chrohological order of
absorption in the nucleus world line. In other words, the ordered
set{ké ,ki ...... k& }is a suyitable permutation of{k

PEREREY W
accarding to a particular diagram D. The operators F(k) are

defined as

= (& & [ft:gl e ¥ (¢)

and
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FrR) = Sk p[{EE] Vo Y g 170

for the scalar and vector vertex interaction respectivaly. The

coordinate § are the internal nucleons coardinate in the
nucleus rest frame.

Let us now proceed to define all quantities which appear in
eq.(1.8}. In our model, tha incident proton is treated as a
structuretless perticle of mass T which satisfies the Dirac
equation. So, its evolution 1is given by a fermionic Feynman

propagator

S uflam
2 r A
P - M +le
while the nucleus is treated in its proper system, such that its

retativistic Green's function can be expressed as

G(P) s 4}\
- JPP-Huie

Heref th is the nuclear Hamiltonian operator which includes

the nuclear rest mass, h4 (ref.4). It is convenient to say that
we are using the Bjorken-Drell convention (ref.10).

Now let us introduce tha eikonal approximation which consist
of dropping frhy.terms in the numerators of nucleon propagators.

Moreover, we are also neglecting the quadratic terms in momentum
transfer in the denominator of these same propagators, so that we

can rewrite them as (ref.11)
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Within this approximation the spinorial part of proton variables
can be simply reptaced by C-numbers in eq.(I.B8} through the use
of Dirac equation in the same spirit as in section ( of the

ref.(9), Then we will establish a practical rute as following:

'S (1:-}\() 5. and, \SF(?-L)[-'_) 1 (1.8)
ﬁ.;i& '_ﬂ. 4 1€
™" ™

}
where /)\-:’k:a}‘:[[ when the -[1 matrices originate from scalar
s

mesons, an ’x = P ‘ i rom e vector mesons. us
¢ AN) ‘k%‘ (_El;:) f from th t Th

the spinor wavefunctions ilirw and tL(F) commute with all

factors in expression (1.8) up to r-th vertex, where a factor
{Rﬁrﬂ I: 1L(r) is generated.

On the nucleus world Ltine, we also wuse the eikonal
approximatiﬁn for the nuclear propagator, so that they <can be

rewritten as

<P‘=' ‘G(P“‘)\P' $ =R \ |Fes s>~__4__ (1.92)
6} aF \W-ﬂ“*fe 1 'B-(--H‘e
and M
(ﬂ’)-,#lé(?‘-x)\?d-,ﬁcy.;._ <Rs4) A \ rbﬂ

2 2 2 2
where we have used P 2 M and P’ = M' . Inserting (1.8) and
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(1.9) in (1.6), we get

= T T3 wg A (k) <R 1F ) R T A (6
D i=)

w

<R qslt(lz JLALE n A (E;) <mlwz(g) B> % A
_s+1 -&_*‘G

m
A=t Koeer x 2y y ‘\) N |
/{"’(—N‘*LN-\)_ +ie ‘b_h,.ne -PJL+\Q _R_L:_.‘,ie (1.1

WL ™m M M

Here wa have naglacted the nuclear recoil in the propagators of
the form (I.9).

The sum over all Feynman diagrams will be organized in the
following way. First we define a class of diagrams characterized
by a set of numbers {0(11‘, u(1q_’)°({zq’)q29_)) tl,.ﬁ’, (512',(524’ , PQZ’}
which symbolically represent:

14’ ; the total number of scalar mesons amitted before the r-th
vertex and absorved before the s-th vertex;

&12'. the total number of scalar mesons emitted befora the r-th
vartex and absorved after the s-th vertex;

o424’ , the total number of scaltar mesons emitted after the r-th
vertex and absorved beforae the s-th vertex;

tX2T= the total number of scalar mesons emitted after the r-th

vartex and absorved after the s-th vertex.

The numbers for the vector bosonic field are defined in a similar
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manner (Fig.2). These numbers defined above satisfy the

following relations:
N =T o1+ K42’ + A24’ + K22
M= (514’4- qu.‘ 4 (59_4’ + 69.2'
L(e-n)= 04 + a2 1 par' 4 p2
[nem-(r-9]= o2n'+ 22’ + p2d + (szz'
(6-4) = aaa’+ 2174 pAv + po

Im-(s-1)])= 42 + qa2' 4 P12+ P22’

Lat us denote the set of vertices on the wortd Line of the
nucleus before S by T4 and the sat of vertices after S by LA
Analogously, 1(5 and 1“4- correspond to the sets of vertices along
the world line of the incident nucleon bafore and after the r-th
vertex, respectively.

For a given set of numbers (0(‘\1',0(4‘2’,...‘} any other distinct
diagram in this class can E- obtained by interchanging the
emittion and absorption points of the meson lines in it of the
sets 1 , U2, N3 and -\TA. . Therefore the sum of all diagrams
belonging to this class can be obtained as a sum ovar all poss-
ible parmutltions'fm . 7f2 . ’“3 and TMF independently. In this
process wa will obtain some repeted diagrams which can be easily

discounted through the factor

7 - 4 Caan
M Lot} gl 2’ pag' L a2’ | p2n') paz’)
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Finatly, the sum over all distinct Feynman diagrams can bae
obtained as » sum ovar different classes { L ), that is, over
differents numbers ( XM |, ... ) which is denoted as Z‘ followad

by the sum with respect to the two distinct excitation mechanisms

at the s-th vertex:

&=LE%ZEZE a2

d sv iy T MM3T4

The Last identity is applied onty to the product of proton
and nucleus propagators since all other fsctors are invariant
under such permutations for a given class { C }). Then, with the

help of the identity (ref.9)

{ A I A 'Tl" ( )u 13)
1 \Ap

?WZ‘;‘U“'&{';OY\ Aﬂ. (A‘| "f‘AQ) (Aq-{- Azt sond A“) {=
Y 1

we have

%0 D 20w ALk) <Ry B ) Ryqe
sV 4l

$- 1

T AL (E) <Rsgel E(RIIR; a5 T 4 H(E)<R :lF(L,)l?J,bx
i) 1254
-t N (- N

L N A N AU | N
k=) EE'-}.\.E pere .&t-‘rie Ys) P.l'..'.‘l-r"s §=s+ -_Eb_),k'!..i.ie (1.14)
m m M M
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Defining the transition operator as
0= A W) 4% AG) FO orp ik
ﬁs T (QHJQ F S P]j ']

Tea=q" Up) Y,*u(px)gzl“\)nhﬁéb Ff(k opfie] e

can usc the inverse Fourier transfor and the fact that

k\' q Zl L‘ to abtain:

ql‘: ﬁka:mc B) A;(q

and

ch)f:( )lh) Sdﬁ‘!‘mu\,\' (_?’:‘l«)x]u.wa

‘Y

q W) Y W) A (ﬂ"ﬁ Lc)r’*(q-ﬂko.) T(x) exp| r-l .?;]‘,_r )x]“ .18)

iy {3v

where these definitions correspond to scalar and vector mesonic
fields respeactively. Then, we can substitute these exprassions in
eq. (I.14) and find that all k- integrals are completely
factorized. Moreover these k-integrals may be classified into
eight different types according to the nature of the masonic

fields and the positions of emittion and absorption, which are

exprassad as:
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Y *
: e c\&ﬁdﬂ up[day:] A)<E, 14 RO IR, A
* 99 x —
Ry 8 IRY6 g’ 1’“"‘ L +ie fok = 4le
r 4 M
N\

N gk eqTud AW BRI, _ 4,1
gy S IR (2 'hhﬂe Kk

-y v +le
. r »
X L= 0,2564“; ur[{h]A(h.)(Pb-cﬂs]F(b. )R s>_£L , P;
Rigey & 1RiF +i€ b
g7 r ta . Nl
~:; Tj: {;S&L; &T[yh{] 5&)(@,“&6&)'?;'3) , {_ N 4
\R.as, § 163 ' w E..‘E—.He —E"L'rle
| g5y 7 | s v
for the scalar mesons, while for the vector onas, wa have:
[N r %
7= “(S 4
b L ic P..lv_ +it
Ry 3 i | m ™
E Ty= ol dte (“‘*""-4&*1»['&@ SCIARCIACT S I,
Ras> & 184> %) —:%;*'& %4—!‘2

b, ¥ W

Isv‘—‘ﬁt%%# wﬂ_ ’zx]A ) (B ( ) <RsalFrw IR, 9 A A

. ‘P " Bk
Rigo S IR o e SZEvie
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cl‘”u TMINOIEN bﬂch A
(zf)‘*v[ ] U(”‘)G ORI - Wk .. Rk

m

$+1E

In this graphical representation we find that in eq.(I.14)

there are o144 integrals of the type
t r ¥

-

Riqsy 3 81
or a number ©O{12' of the typse

)
4&'}"1\’ . '-—’i}"
[
LY
LY
\
Bgo & 100

and so on. Therefore, coliecting altl of them, wa get

ZM“:W\': S GLAY L%.JP [_ l.q.‘a(] <?h:',‘p‘ :‘\-}Y‘ +:\‘;(X) ‘Pb-lﬂt$> x

O x(:ta) (@™
T

(I&")Wx (Ie‘.')(m; (IS‘)F”; (1) Fﬁ]

(1.9
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We must to remember that we have chosen the r-th vertax as
the one whers the effactive nuclear excitation occurs
arbitrarilly. Then, since the nuclear excitation may be take

place at any vertex, we can use eq.(I.5), Now, noting that the

sum over {C} can be written axplicitely as

2 P Z S(nww),(r-i)):r N E )11 (1.20)

&) wenun Mot Nzzealvoa W= o Whos (’“l‘+ ["-u.'
m=mi+mi

where g(ﬂ4+yw0$r4\ is the kronecker 8 + the successive use of

Newton's binomial formula leads to

M= S eep [-ig¢ ] <R 1700+ IRsas> « L 1

n! wmi

[Ii +15 +13 +L’?]ﬂ* [ﬁ*h"-&lm 14\’] "

(1.21)

Finatlly, doing the Llimit N> > and W\ > 00 we can
perform the sum over the differents mesonic fields, so that the

eikonal Feynmam amplitude becomes defined by tha aq.(1.2}. Thus,

we have

" . .
iW]QL'-'-' Sd“x LYPECQY]Q{:;H_I;(KH_E(X)\R-,&}Q cxr[l' X,(x)]u.zz)

where nxLX) is the relastivistic eikonalt phase factor, and
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defined as

Kolw) = -C_ [U4+Ua_+ Ua*rUz,‘l (1.23)

with the functions Lj given by

Urt sy ) = § e expTelen]<as] | A7) (% &%\L)- fA‘u)?;(L) by A A
f @yt b A hvf ("n)F L f ] _-E:.Y%--He %H&

Ul B= § e v [ak )8 ) (), B ) - AR 2, 4
’ (@ny? P[ ] [VF (M)P ) ' ] -%+ie '%*ie

‘._,;,b_:oﬂ’k ikx QAVL ‘: ’\}d "‘Zc ﬁ 4 x
UiR) S(antup[ l@rs'h’ F( )(g;\)rF'(L) “'sﬁ‘r“‘) Ah)}l‘}‘) v

R

Y

L) = 4 o]l | AW (2} F10 - A RRQID A I
Us T ?) @40 T’[ k*] [arVAf (fm)" v ‘}SAT ) ] %*[e _%*i‘:

'II.'STHTIE LIMIT AND CONNECTIDN TO THE POTENTIAL SCATTERING

In the scattering process of an incident protan on a
relatively heavy nucleus, it is a good approximation to naglect
the recoil kinetic aenergy of the target in the aeikonal phase
factor ?(&X) - Wa will assuma that the nucleon motion into the
target nucleus is nonrelativistic, such that wa may neglect terms

of order (v/c) compared to unity. This nonrelativistic reduction
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leave us with

M

Fo() v S FOY) o

Anothar simplifying assumption is the following. If we consider
that the nuclear daformation is not too targea , it is » good

approximation to take matrix eleaments of the vertex functions as

(11.2)

HIEWIFY ~ <asIFL0 19y = Fall)

where ¥%K(EJ is the form factor of the nucleus in its ground

state, as was shown in eq.(1l.7a}.

Under thaese approximations and following the scheme of

proposed by M.Lévy and J.Sucher (ref.9), we finally get:

')(,U) z Sdg [V(Nh g) + V(?-_Eg)] .3
m

-, ?‘L(F’if_g)] -m| 7 (?4_\?_ g)]
= (&% ot [QE&Q. " _q')-e, ]cu 4)
vm |i"-(?=‘%g)\ S W P28 0)

>
Here, we used the target Laboratory system, P= ( M, 0 ) , and the

energy approximation Ea ¥ Ea
The Last sequation shows the sum of a folded repulsive and
attractive potentials results. They are charactarized by vectar

and scalar parameters, raespactively. We have also defined the
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nuclear density distribution
p)= § &k Fadl) exp[iL?] e
(e

Moreover, we may note that the coupling constant of the repulsive

conteibution is redefined by a Lorentz factor
-1
Y: B - [1-(95)2] *
m ¢

which related to the incident proton energy. S0 when the
incident proton energy is incraasing, most of the contribution to
the eikonal phase factor comes from the repulsive vector field,
as shown in the Fig.{(3). It is interesting to note that tha
behsviour of the static nuclear potential shown in that figure
is essantially connected to the parameters of the nucleon-nucleon
potencial which are retativelly well known such as the ranges of
the attractive and repulsive parts. It is quite independent of

the choice of the nuclesr dansity.

Now if we consider small variations on the eikonal phase

factor, it is easy to vnrify‘that thare will be a shift in the
axchanged momentum magnitude. However, this shift is very smatl
compared to |$‘ . such that we can estimate it about Qohﬂddc-

From this, we assume that the esikonal phase factar has a very

small contribution, and it will be neglect in the calculations

that follows.
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I11.DOUBLE DIFFERENTIAL CROSS SECTIONS AND THE NUCLEAR RESPONSE
FUNCTION

First of all, the process that we are considering could be

represented as

whare ) is the excitation energy, whose magnitude is much
smaller than Ea and Eh . Than, defining an effective mass as
MY = Mo W and considering the lLaboratory system, whare P =

»
( M,0 ) , the double differential cross section is given by

.i‘l_‘z_i‘.: .4 (m) l_?‘i ]mak\ig[’;-(&-w)] _tIIl.I‘I.)
M o '

Here we are using , =) from that was explained above.

Furthermore, the YVVAk in this case is
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. A
LW“"‘ESJ“x exp [—iq.{‘] <P E | Toge l'ﬂ; 14> (I11.2)
where
A A A
'1114‘—‘T;(Y) + T (x) C(I11.3)

Now if we assume that UJ<<bq , aquation (111.1) becomes

| 2
ﬁ o ML[E‘lﬁ(')[ a1 ]W)‘S( (TVATS 33 8P}
d\ﬂnd’& 4'“1&'.1) ‘ﬁ’ F %Vm qz__ M:', qz_mz T q )

where the last term is expressed as
i v A 12 .
S(gw)= L \(R;FIE(Q)IR}%)\ S[&"(Ea‘“))] (I111.4)
$

and is called Nuclear Response Function.

The double differential cross section can be rewritten as

Born
oU‘ - ) S( qu) ©(111.8)
JQd.

where

m lﬁ»
jg) fwr( IF)

Notice that eq.(III.7) does not correspond exactly to the usual

2 |
(111.7)

h o ..--‘——-] )

-
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nucleon-nucleon differentiat cross section in the Born
approximation. It is shown in the Rppendix that the Eq.(II1.7)
corresponds to thae scattering of a nucleen by a very heavy
spinless particle. This has consequence of changing the angular
distribution qualitatively. In order to see this effect, in

Fig.4-a, we compare the result of Eq.(III.7) with the nucleon-

nucleon Cross section in the same approximation (Barn

approximation). The parameaters of the model are those of Ref.10.
O

Note that there appears a peak around {Lu:fQO ;although the

free nucleon-nucleon cross section with the same parametaers is
simply forward peaked. This shows that the influence of the
nuclear mean field in the kinematics can be substantial.

In Fig.4-b, wa compare the free nucleon-nucleon cross
section calculated with the same parameters as used in Fig.4-a to
the experimental nucleon-nucleon cross section used in Ref.7. We
nota that although the calculated free nucleon-nucleon cross
section is also forward peaked, it is substantially different.
This <can be either due to the quality of the Born approximation
or to the inadequacy of parameters used which are datermined from
the static properties of nucl{i in the mean-fieltd approximation
(ref.12). On the other hand, by varying the meson masses by a
factor of approximately two in such a way that the ground state
properties of nuclear matter are preserved, we can also fit tha
free nucleon-nucleon scattering cross section in the Born
approximation (Fig.5-3). It is extremely interesting that in this
case, the peak position in the experimental data in Ref.7 can be

salmost perfectly reproduced (Fig.5-b}.
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IV. CONCLUSIONS AND FINAL REMARKS

In this work we have constructed a Field Theoretical

Framework to treat the inmelastic scattering of composite
particles. It can be viewed as 3 generalization of M.Levy and
J.Sucher's work which studied a simpler process, namely the

elastic scattering of two structureless and spinlaess particles.
In this way, we succeadad in including the energy-momentum
consarvation as well as nuclear structure effects in the proton-
nucleus scattering process. As discussad in text, for proton-
nuclaeus reactions we find that the relativistic structure of the
theory survives in tha static Limit and is reflected by an snergy
dependence in the folded nuclear potentiat. Also the contribution
of the elastically scattered mesons is estimated to be small and
a simple closed form exprassion for the double differential cross
section 1is given. This cross section differs from the one based
on the OGlauber's theory in an essential point: the energy-
momentum transfer may be absorved by the nucleus as a whole and
not by a single nucleon. In the kinematical region where this
happens the nuclear mean field plays an important role. The
kinematical consaquences of this fact are disptayed in figures 4
and 5. We come to the conclusion that in this kinematical region,
proton spectra may besr strong influence of the relativistic
kinematics aof the elastic nucleon-nucleus scattering.

Finally a word about the perspectives that we hasve is in
order. It would be very interesting to generalize this work to

multiple scattering and to derive tha cross section for particle
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production in the same scheme. Work along these lines are in
progress.

APPENDIX A

We could see from ag. (I1.1) that the term W)Y, W) witt
appear in the double differentialt cross section. Then, our
intention is to get an more appropriate form. We start from the

identities

TM.Y‘) ‘P'U'LF) < TL(_F) [(P_;‘_H Kk + . 0&!&:2(?‘- P) "] u,(r)
m m

and

YFY'\"*' Y-‘ le. ‘Q%F.\I

so that

L (worg o){.)] wp)

Here we assume that the excitation energy, @[o:w , is too

{-A.(P') Yo u,(f) = ﬁ,(r‘) [EE-:E_ +
m

smaller than the nucleon rast m}ss enargy. Therefore, we have

W) Yo Wep) ~ E+E () Ulp)
Tm |
Now wusing the snergy consarvation and the fact that E=t+w '

wae finaliy get

W) Yo Uep) ~ E UpY W)
, m

whera the term (E!?ﬂ) will appear multiplying the vector coupling

constant .
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Now, let us considear the nucleon-nucleon scattering

amplitude in the ona-boson exchange limit, which is rapresented

by the following figura

»
av
ol

v

We then have

M= 2 g wepy A TURYUY, )4 4 WE) Vi) A gy ¥Tucy)

‘-‘r-W\s 9wy

Nota that, in the limit where an* Yo . the second term on

the right side becomes

Wy ) w1 W (4,5 )10)

a-m‘f

which is well different from that obtained in the equation
(I11.7). Here, wa can see that if we have the particle b as a

heavy particle, the lLlast expression becomes

" (&) Q(F)ETLT ) @) IR

- M,

A
whare F( g ) is the vertex operator an the line of the particle

b.
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W

IRy 108> P>
FIGURE 1

R typicat exchange-type Feynman diagram of the one step excita-
tion process. The scalar mesons are represented by crossed lines.
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A suitable class { C )} from general Feynman diagrams.
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FIGURE 3

Behaviour of the static potential when the praton's incident
energy is incresing, according as following:

graphics 1 2 3 4 S B8 7
Lorentz factor 1.0 1.1 1.2 1.3 1.4 1.8 1.8
It was used a Fermi nuclear distribution to pltot Eqg.(II.4), in

agreement with Eisenberg and Greiner, Nuclear Physics (Vol.Il).
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FIGURE 4a

Eurva (1) represents the ex i
perimental data of the elatic L
nucleon cross section from Ref.{7), which was normalized t:uznzon

The curve (2) represents the E
q.{III.7) wh '
parameters were used in agreement with Ref.?Z?TE Walecka's free
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% W % @ h @ W
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FIGURE 4b
Curve (1) represents the experimental dats of the etastic

nucleon-nucleen cross section fram Ref.[7] and the curve (2)
is the nucleon-nucleon cross section from the Born Rpproximation
using the Walecka's parameters,
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FIGURE 5a

Fit between the axperimental {(curve 1) and the Born ﬂpproximatioﬁ

(curve 2) elatic nucleon-nucleon cross section, where the Llast

one was calculated with new values to the free parameters,
16,
14|
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0.2
0

0 10 20 30 40 50 80 0 8 90
L {IY
FIGURE 5b
Angular distribution 1in accordance with Eq.(III1.7) with the

parameters which fit the nucleon-nucleon elastic scattering in
Barn Rpproximation (Appendix R).
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