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ABSTRACT

We deduce the classical Ohm’s Law in a conductor medium from the Schrodinger equation
associated to classical electron Caldirola-Kanai action with a damping dissipative anomaly

factor.
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It is an interesting problem in Dissipative Quantum Mechanics ([1]) to deduce Ohm’s
law directly from the Schrodinger equation without taking recourse to complicated trans-
port (Maslov) many body formalism.

In this letter, we consider the effective Schrodinger equation associated to the classical
Caldirola-Kanai action associated to the motion of a electron flow in a medium under the
presence of a constant (unidimensional) Elective field and a damping term phenomenolog-
ically associated to electron collisions with ions and deduce in a simple way the classical
Ohm’s law.

Let us start our analysis with the classical one electron Caldirola-Kanai lagrangean in

one dimensional case for the damped electron in the presence of a Electric field £

()] = /OT do (ew [%m (%)2 ¢ E-2(0) ) (1)

According to our previous studies ([1],[2]), and “effective” wave function can be asso-

ciated to the dissipative system with a mass time dependent term involving the damping

reaction of the medium on the quantum electron

mW”;g“):( L +i<ewE>x)W<x,t> (2)

2evtm, dz? m.,

the initial condition

¥ (2,0) = 6(x) (3)

is related to the fact that the electron is in a rest-origin situation at ¢t = 0.
In order to deduce the Ohm’s law by a simple procedure, we should evaluate the

electron velocity quantum operator (the electronic current) in the quantum damped state

eq. (2)

50 = [ de i 1) )

Let us now solve exactly eq. (2)-eq. (3), by considering the new “time” variable on

those equations
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The new Schrodinger equation takes, thus, the form of exactly soluble problem in the

new coordinate system (z, ()

, 8;/7”%:1;,0 B 1 d? e 1 -
ZhT_ _§@+m_eE$(m)‘|¢ (‘er) (6)

with

O, Ocmor = 6(x) (7)

The solution of eq. (6) is well-know ([3]) for the initial condition eq. (7)

Me

F(a () = | e

exp{%?éf[Q jj"/ L(s)-s- ds——/ ds L(s /ds )-3’)”(8)

Here we have introducedd the simplified notation

eE.; 9)

me (1 —mevs)?

L(s) =

It is a straightforward calculation now with m, = 1 to obtain the form of the electronic
current per volume in our theoretical model for quantum dissipative system ([1],[2]) after
disregarding the current associated to the free case of our analysis. It yields the following

result

1 — —vt
—4de I - artgw (10)

j(t) =2e Ev- (1 — evt)2

(1 —evt)2
By taking now, the steady limit (see appendix A) with the dissipative anomaly factor
of ref. [1] eq. (10) with a — b < 0 (the damping case), namelly

- %|a—b|o¢
Tlg{)lo T/ Je do
——|a blor 1 2
:QeEz/(hm T/ U (;) -ﬁ-dﬂ)
~ S.F (11)
v

where ¢ is a v-independent constant (see appendix A), we get the Ohm’s law if one iden-
tities the medium electrical resistence R as proportional to the damping model constant

v, a physical acceptable parameter model’s correspondence.
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Appendix A

In this appendix we give a proof of the following theorem of ours
Theorem: Let f(«) be a integrable function in any internal of the form [0, »T] with
T € Rt,0 <a<v <band such that 1) lim,—_., f(c0)— f(c0) < 0 and the ergodic mean

time average exists

lim l/”T Fla)da = I(v) (A1)

Then the function I(v) is a linear function of the form I(v) = f(oco)v for a < v < b.
In order to show this mathematical result, let us consider the derivative definition at

a point v € (a,b)

(A.2)
u—I—h 1 vT

i (3 {Tl%/ oo — i 1 [ stesie

) u—I—h

in (1 {%EEOT/U @)ia}

ting ({ fim (74 + 7)) Th}) f(eo) (A3)

here we have applied the mean value theorem with 0 < ¢ < h in the last line of our
sequence of equations.
In our case f(oo) = 0, and, thus, leading to the result that for any v > 0.

la— b| b|

. 7 5dp ﬁﬂdﬂ
Tlggof/ 1_6_52 — hmf/ dg e (A4)
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Appendix B — Ohm’s law from Langevin equation

In the classical framework, the Lagrangian equation describing the (one-dimensional)
electronic flux in a Ohm’s resistive medium is given by the following equation for the

electrical current /()

a]_(t):(g(e

. ~ )E—z/]—éf(t) (B.1)

me
where o is an area flux parameter and f() is the stochastic white noise component of the
“Brownian” resistive medium with the following pure Gaussian path integral representing
its characteristic functional

[ DF[f(s)]e 7 Jo BUEN i [T ds ko) 1(2)

ZIk(1)] = [ DF[f(s)]e S o UG

(B.2)

After substituting eq. (B.1) into eq. (B.2) and by taking into account that

det [— — 1/]] = 1, one gets the characteristic functional for the electrical current

dt

zl

2101 = 7 / D[I(s)] - det [%—VJ]

< exp{—%la2 [ s [1‘- (nj) 0E+1/]]2(5)}

xexp{i/ooo ds](s)](s)} (B.3)

Now it is a straightforward calculation to evaluate the current average and obtain the

Ohm’s law in this classical situation (compare with eq. (11) in the text)

[ () = FB{(;)] | sym0 = ¥ (;6) o E/OOO ds [e—u(s—t) l-/@(s - t)]

SERE




