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Abstract

We deduce the classical Ohm's Law in a conductor medium from the Schr�odinger equation

associated to classical electron Caldirola-Kanai action with a damping dissipative anomaly

factor.
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It is an interesting problem in Dissipative Quantum Mechanics ([1]) to deduce Ohm's

law directly from the Schr�odinger equation without taking recourse to complicated trans-

port (Maslov) many body formalism.

In this letter, we consider the e�ective Schr�odinger equation associated to the classical

Caldirola-Kanai action associated to the motion of a electron 
ow in a medium under the

presence of a constant (unidimensional) Elective �eld and a damping term phenomenolog-

ically associated to electron collisions with ions and deduce in a simple way the classical

Ohm's law.

Let us start our analysis with the classical one electron Caldirola-Kanai lagrangean in

one dimensional case for the damped electron in the presence of a Electric �eld E
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According to our previous studies ([1],[2]), and \e�ective"wave function can be asso-

ciated to the dissipative system with a mass time dependent term involving the damping

reaction of the medium on the quantum electron
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the initial condition

 ins(x; 0) = �(x) (3)

is related to the fact that the electron is in a rest-origin situation at t = 0.

In order to deduce the Ohm's law by a simple procedure, we should evaluate the

electron velocity quantum operator (the electronic current) in the quantum damped state

eq. (2)
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Let us now solve exactly eq. (2)-eq. (3), by considering the new \time" variable on

those equations
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The new Schr�odinger equation takes, thus, the form of exactly soluble problem in the

new coordinate system (x; �)
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with

~ (x; �)�!0+ = �(x) (7)

The solution of eq. (6) is well-know ([3]) for the initial condition eq. (7)
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Here we have introducedd the simpli�ed notation

L(s) =
e

me

E �
1

(1 �me�s)2
(9)

It is a straightforward calculation now with me = 1 to obtain the form of the electronic

current per volume in our theoretical model for quantum dissipative system ([1],[2]) after

disregarding the current associated to the free case of our analysis. It yields the following

result
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By taking now, the steady limit (see appendix A) with the dissipative anomaly factor

of ref. [1] eq. (10) with a� b < 0 (the damping case), namelly
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where �c is a �-independent constant (see appendix A), we get the Ohm's law if one iden-

tities the medium electrical resistence R as proportional to the damping model constant

�, a physical acceptable parameter model's correspondence.
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Appendix A

In this appendix we give a proof of the following theorem of ours

Theorem: Let f(�) be a integrable function in any internal of the form [0; �T ] with

T 2 R+, 0 < a � � � b and such that 1) lim�!1 f(1)� f(1) < 0 and the ergodic mean

time average exists

lim
T!1

1

T

Z �T

0
f(�)d� = I(�) (A.1)

Then the function I(�) is a linear function of the form I(�) = f(1)� for a � � � b.

In order to show this mathematical result, let us consider the derivative de�nition at

a point �� 2 (a; b)
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here we have applied the mean value theorem with 0 � " � h in the last line of our

sequence of equations.

In our case f(1) = 0, and, thus, leading to the result that for any � > 0.
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Appendix B { Ohm's law from Langevin equation

In the classical framework, the Lagrangian equation describing the (one-dimensional)

electronic 
ux in a Ohm's resistive medium is given by the following equation for the

electrical current I(t)
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where � is an area 
ux parameter and f(t) is the stochastic white noise component of the

\Brownian" resistive mediumwith the following pure Gaussian path integral representing

its characteristic functional
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After substituting eq. (B.1) into eq. (B.2) and by taking into account that
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= 1, one gets the characteristic functional for the electrical current
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Now it is a straightforward calculation to evaluate the current average and obtain the

Ohm's law in this classical situation (compare with eq. (11) in the text)
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