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Abstract

We extend the standard Feynman-Deser approach of �eld theoretical derivation of
Einstein's gravitational theory. We show that it is possible to obtain a theory that incor-
porates a great part of General Relativity (GR) and can be interpreted in the standard
geometrical way like GR, as far as the interaction of matter to gravity is concerned. The
most important distinction of the new theory concerns the gravity to gravity interaction.
This theory satis�es all standard tests of gravity and lead to new predictions about gravi-
tational propagation. Since there is a large expectation that the detection of gravitational
waves will occur in the near future, the question of which theory describes Nature better
will probably be settled soon.
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1 Introduction

1.1 A. Introductory Remarks

There is a general expectation concerning the possibility that we could detect gravitational
waves before the next century is born. Such situation is based on the great number of
new experimental devices that many laboratories, throughout the world, are constructing.
Many scientists are going to become involved into this enterprise. Thus the time is
ripe to theoretical re-examination of gravity theory in order to make predictions on the
propagation of gravitational disturbances that could be tested in the near future.

Although the great majority of physicists expect that the observation of these waves
will con�rm the General Relativity prediction1, it seems worthwhile to remember that
such an expectation may just be one of those prejudgements that sometimes spread into
the scienti�c community. On the other hand, we would like to emphasize that if this
General Relativity result is proven to be false, it does not destroy the remaining and by
far the major part of Einstein's theory that has already been experimentally proved.

The Equivalence Principle - which states that all kinds of matter (including massless
particles as photons) interact in an unique and same way with the gravitational �eld -
gave to Einstein the possibility to treat gravitational phenomena as a sort of modi�cation
of the spacetime geometry.

Does this universal behavior occur also in the case of gravity-gravity interaction?
General Relativity makes an implicit hypothesis by means of which the answer to this
question is a�rmative. Although there is not even a single observational evidence that
this is true, the fact that gravity must carry energy as any other �eld gave a strong
motivation to believe that such an extrapolation concerning gravity-gravity interaction
should be valid.

This assumption, that still today remains beyond any real observation, led to the most
impressive result of General Relativity, that is, that gravitational processes are nothing
but a real universal modi�cation of the spacetime geometry.

However, if we want to keep observation as the true guide of our analysis of Nature,
the whole actual situation can be summarized in two statements:

� As far as matter-to-gravity interaction is concerned, the GR scheme of geometriza-
tion of gravity seems to be a very good procedure.

� There is not any single direct observational evidence that supports that the self-
interaction of gravity can be described in the same way.

Thus, if we limit ourselves to the traditional scienti�c method of submission of theory
to observation, we must say that the universal modi�cation of the geometry proposed by
GR is indeed an extrapolation that is not still con�rmed by experimental means, as far
as the behavior of gravity-gravity coupling is concerned.

We are thus led to take seriously into account the two excludent alternatives concerning
such gravity-to-gravity interaction, to wit:

1The recent spectacular success of the description of pulsar behavior, through loss of gravitational
energy, by General Relativity, increased enormously the status of this theory.
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� Gravity couples to gravity as any other form of energy.

� Gravity couples to gravity in a special way distinct from all di�erent forms of energy.

In the �rst case, the universal modi�cation of the geometry, as proposed in General
Relativity, becomes a natural scenario. Neverthless, the complete absence of any ex-
perimental evidence that could help us to solve this question tells us that the decision
must be dictated by other means, e.g., either by theoretical arguments2 or by some sort
of additional requirements imposed on the interaction mechanism. Einstein's hypothe-
sis that gravitational interaction is the same not only when gravity-matter interaction is
concerned but also for gravity-gravity processes, appeared to be the most natural way.
In those early times, the complete absence of observations postponed the decision on this
for the future. Later, in the �fties, the discovery of a simple way to treat gravity in terms
of a standard �eld theory [1], reducing the gap between GR and all other �eld theories,
made Einstein's hypothesis less questionable.

The purpose of the present work is to show a new way to generate a �eld theoretical
description of gravity.

The fundamental property, that rests on the basis of our theory and that distinguishes
the present program of investigation from GR, can be synthesized by the assertion that we
will examine the possibility of conciliating the universality of matter to gravity interaction
but considering that gravity to gravity coupling is somehow distinct. Since, as we shall see,
the most dramatic consequence of the theory we propose here deals with the modi�cation
of the velocity of the gravitational waves, we limit our analysis here to the exam of this
question.

Just in order to support this statement we note that it is a theoretical prejudice to
argue that GR has already settled this question: only observation could do this.

The new net result (concerning the propagation of gravitational waves) of our model
can be summarized by noting that in this theory gravitational waves propagate in an
e�ective geometry that is not the same as viewed by matter. One can then ask "what is
the true geometry of spacetime"? The answer will be: it depends on the instrumentation
we use to observe it. All forms of energy, except the gravitational, measure the same
universal modi�cation of curved spacetime. However, gravitational waves behave as if
they were imbedded in a distinct geometry. What should the origin of this fact be? We
postpone this question for latter analysis.

Just to provide a simple example of a theory that displays these ideas we will take
as a model a non-linear theory proposed many years ago by Born [4] for spin-one �eld.
We will apply a similar model for the spin-two case. Although in the original proposal
of spin-one �eld such a non-linear theory appeared just as an exotic one, in the case of
spin-two that we treat here the non-linearity is mandatory. We shall see in a subsequent
section that this situation is just a consequence of the fact that spin-two couples to the
energy-momentum tensor and the spin-one �eld couples to a conserved current. The fact
that gravity itself must, for consistency, have energy makes the non-linearity a necessary
requirement of any description of gravity.

In the standard geometrical way such self-interaction is described by a non-polinomial
Lagrangian. In our re-exam of gravity from the point of view of �eld theory we will

2At most times such a decision comes from theoretical prejudices.
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take (just as an example of constructing a coherent �eld theoretical model) the Born
non-polinomial Electrodynamics as a paradigm for the gravitational interaction.

Finally, let us note that although we concentrate here all our presentation of the new
theory only to the gravitational waves, we will analyse the properties of the new theory
related to the behavior of the gravitational �eld in two important situations, to wit:

� The static spherically symmetric �eld;

� Cosmology.

In this paper we present a solution concerning the �rst case. We show then that the
standard tests of gravitational processes are satis�ed by our present theory. The second
imortant case of cosmological framework of our theory is left for a subsequent paper.

1.2 B. Synopsis

The presentation of the paper is the following. In Section (2) we present the main de�ni-
tions and symbols that we use.

In Section (3) we discuss briey how and why Feynman [1], Deser [2] and others (see [3]
for a recent review) were led to describe General Relativity in terms of a �eld theory only
based on the universality of gravitational interaction; we revise the Fierz linear theory
and propose a class of non-linear theory of spin-two �eld. We also study the behaviour of
the gravity energy-momentum tensor in the new theory. We present a new derivation of
Fierz equation of motion that is worth of generalization in the non-linear case.

In the Section (4) we propose a speci�c theory and, by analyzing the evolution of the
disturbances in this case, we show that the gravitational waves propagate on the null cone
of an e�ective geometry distinct from that one seen by matter.

In Section (5) we present the gravity-matter interaction process and following the
standard procedure we show how such an interaction can be described in terms of a
modi�cation of the geometry of the spacetime, in the same manner as it occurs in General
Relativity.

In section (6.1) we present a solution for the static and spherically symmetric con�g-
uration. In section (6.2) we show the e�ective geometry that is the observed e�ect of the
previous solution as seen by any non-gravitational form of energy.

In section (7) we evaluate the corresponding distribution of gravitational energy within
our theory.

Finally, in the last Section (8) we make some comments and state future perspectives
of our scenario on gravity.

2 De�nitions and Notations

The auxiliary metric �� of Minkowski geometry3 is written in an arbitrary system of
coordinates in order to exhibit the general covariance of the theory. We de�ne the corre-
sponding covariant derivative by

3We shall see in next sections that this metric is not observable neither by matter nor by gravitational
�eld.
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V� ; � = V� ; � ���
��V� (1)

in which

��
�� =

1

2
�� (�� ;� + �� ;� � �� ;�): (2)

The associated curvature tensor vanishes identically that is

R����(��) = 0: (3)

We de�ne a three-index tensor F���, which we will call the gravitational �eld, in
terms of the symmetric standard variable '�� (which will be treated as the potential) to
describe spin-two �elds, by the expression

F��� =
1

2
('�[�;�] + F[��]�) (4)

where we are using the anti-symmetrization symbol [ ] like

[A;B] � AB �BA: (5)

We use an analogous form to the symmetrization symbol ( )

(A;B) � AB +BA; (6)

The quantity F� is the trace
F� = F���

��

that is,
F� = ';� � '��;�

��

From the above de�nition it follows that this quantity F��� is anti-symmetric in the
�rst pair of indices and obeys the cyclic identity, that is

F��� + F��� = 0; (7)

F��� + F��� + F��� = 0: (8)

The quantity � represents Einstein's constant, written in terms of Newton's constant
GN and the velocity of light c by the de�nition

� =
8�

GNc4
:

We set c = 1:
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3 From the Universal Coupling of Matter to Grav-

ity to the Einstein Geometrization Scheme

In this section we will briey review some points that were used in order to implement
the hypothesis of universality of gravity interaction by the modi�cation of the metrical
properties of the spacetime. We will be interested here not in its historical birth of
Einstein's formulation but, instead in its equivalent �eld theoretical formulation. In other
words, we will follow here the path that led from the linear �eld theory of gravity to its
non-linear processes and consequently to the corresponding geometrization scheme[1], [2].

There is no better and simpler manner to describe this than the one set by Feynman
in his lecture notes of 1962. Let us summarize such standard procedure that led from the
�eld theoretical to the geometrical description of gravitational interaction.

The starting point is the linear massless spin-two �eld theory (Fierz equation), that
reads:

G(L)
�� = �kT�� (9)

in which
G(L)
�� � 2��� � ���;�� � ���;�� + ���;�� � �� (2�

�
� � ���;��): (10)

The quantityG(L)
�� is divergence-free. This implies that, for compatibility, one must impose

the condition that the energy-momentum tensor T�� of matter should also be divergence-
less. Now, since the gravitational �eld contributes to the balance of the conservation
law through its own energy, this imposition faces a di�culty since the matter energy-
momentum tensor cannot be separately conserved.

It is precisely at this point that the hypothesis that gravity-gravity process follows
the same type of behavior as matter-gravity interaction acts as a guide to the choice of
the gravitational contribution to the source of G(L)

�� . This means to add to the energy-
momentum tensor of matter, the corresponding energy-momentum tensor for the gravi-
tational �eld at the right-hand-side of equation (9).

The idea is to proceed step by step. We start by adding to the right-hand-side of
equation (10) the tensor T (1)

�� , that is the energy momentum tensor of the linear equation
for gravity. As a consequence we must add to the original Lagrangian an additional term
of higher order that yields, after variation, the term T (1)

�� to be added to the equation
of motion. This generates a new compatibility condition, which is solved by adding to
the right-hand-side of the equation of motion a new term of higher order, T (2)

�� . This will
impose, once more, that a new term must be added to the Lagrangian. This process
continues inde�nitely, since at each step a new term must be added to the Lagrangian in
order to achieve the compatibility lost at the precedent lower order. To accomplish the
task and to solve completely the compatibility condition, we must deal with a recurrence
procedure such that yields an in�nite series to appear [1]. It is precisely the summation
of such in�nite series that can be described by the equivalent geometrical formulation of
General Relativity. Our purpose in the present work is to re-analyse this �eld theoretical
description and to show that the above traditional procedure of searching compatibility
is not unique.
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3.1 Fierz Linear Theory Revisited

We will now show that the linear theory of spin-2 �eld can be described using the invariants
constructed with the gravitational �eld F���. We will perform this simple exercise here
just in order to present the motivation for our further non-linear theory.

There are only two invariants that can be constructed with the �eld.4 They are:

A � F��� F
���;

B � F�F
�:

General covariance imposes that the Lagrangian that one can construct to describe
the evolution of the gravitational �eld must be a functional of these invariants, that is

L = L(A;B):

The linear theory for the spin-2 �eld is given by the action

SL =
Z
d4x

p� (A�B): (11)

in which  represents the determinant of �� .
The proof of this assertion can be made either by a direct inspection on the equation

of motion obtained from this Lagrangian or by noting that up to a total divergence we
can write

SL =
Z
d4x

p�'��GL
�� : (12)

Indeed, we have from eq. (12),

SL = �
Z
d4x

p�'��F �
(��);� =

Z
d4x

p�'��;�F�(��): (13)

A straightforward manipulation of this expression shows, up to a total divergence,
that

'��;�F�(��) = �2(A�B): (14)

This demonstrates our assertion. What we have learned from this simple manipulation
is that any theory that provides Fierz linear equation of motion in the weak �eld limit
should reduce to the above combination of the invariants A and B. It is tempting then
to examine those theories that are functionals only of this combination. We will limit
thus all our analysis only to this set of theories. Besides, in the present paper we will
consider a speci�c example of dynamics represented by a Lagrangian that is constructed
as a non-polinomial functional of the �eld variables.

Before going into the exam of such a non-linear theory for the gravitational �eld, let
us make a very short r�esum�e of a typical example of a class of non-linear spin-one theory.

4We could use instead of invariant A the one construted with C���, the traceless part of F��� which
employs its irreducible parts. For simplicity of comparison to the traditional Fierz theory we decided
here to make the above choice.
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We shall see that many properties of this example will have a deep analogy to the spin-two
case. This will be useful since it will act as a guide for the analysis of the more complex
case of the gravitational �eld.

3.2 Non-Linear Spin-One Theory

The dynamics is provided by an action5

S =
Z
d4x

p�L(F ) (15)

where the Lagrangian L that depends non-linearly on the invariant F constructed with
the �eld F�� by the product6

F � F��F
��

The corresponding equation of motion that follows is7

fLFF
��g;� =

1

4
J� (16)

where LF represents the functional derivative of the Lagrangian with respect to the in-
variant. Maxwell theory is the case in which this derivative is the constant �1

4.
We will limit our analysis here to the theory that represents a non-linear electrody-

namics, which was suggested by Born and developed by Infeld many years ago. The
Lagrangian is given by

L = �1

4

np
b4 + 2b2F � b2

o
; (17)

in which the constant b has the meaning of the maximum possible value of the �eld.
There are two important properties of such theory that interest us, to wit:

� The theory is non-linear.

� The propagation of the electromagnetic waves can be described as if the metrical
properties of the spacetime were changed by the presence of the non-linear electro-
magnetic �eld.

These two qualities of this type of theory will be explored in the sequence in order to
construct a non-linear spin-two �eld theory.

Using the general form of expressing the energy-momentum tensor T�� , presented in
a previous section, we obtain from the Lagrangian (17) the following:

T�� = �L�� � 4LFF��F
�
� (18)

5The attentive reader should notice that in this section the quantity F�� represents the Electromagnetic
�eld.

6We consider here, just for simplicity the particular form of the theory which does not contain the
invariant constructed with the dual of the �eld.

7We remind the reader that although we deal here with Minkowski background metric, we are using
covariant derivatives just in order to exhibit the general covariance of physics.
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We note that this quantity has basically all algebraic properties and symmetries that
appear in the linear Maxwell case. For our purposes here the interesting property in the
non-linear case is the fact that the interaction of the �eld with external currents remains
the same. This can be seen most easily by a direct evaluation of the exchange of �eld's
energy with its sources. Since we are dealing in the present paper with a most complex
situation for the case of spin-two �eld, let us spend some time here and show this simple
result in detail in the simpler case of spin-one �eld, just in order to get some insight of
what should be expected for the spin-two case.

Thus, our task now is to evaluate the ratio of exchange of energy of the �eld, that is,
the divergence of the symmetric energy-momentum tensor T�� of the class of non-linear
spin-one �eld. From the equation of motion (16) contracted with F�� we obtain

fLFF��F
��g;� � LFF��;�F

�� =
1

4
F��J

�

Using the expression of the tensor T�� we re-write this under the form

T�
�
;� + LFF;� + 4LFF

��F��;� = �F��J�

and thus �nally

T�
�
;� = �F��J� (19)

The remarkable fact that follows from this expression is the well-known result that the
balance of forces trough the exchange of energy of the �eld and the currents is independent
of the form of the dependence of the Lagrangian on the invariant F . This is the lesson
we learn from this simple analysis. Let us pass now to the gravitational �eld.

3.3 A Class of Non-linear Spin-Two Theory

As we saw in the previous section, when passing from the linear theory of gravity to the
general case the standard procedure is to add to the energy-momentum tensor of matter,
the corresponding energy tensor for the gravitational �eld. Proceeding step by step,
the �rst non-linear term contains T (1)

�� , which is the energy-momentum tensor obtained
from the linear part. This procedure is based on the implicit hypothesis that one should
treat the gravitational energy in the same foot as any other form of energy. In other
words, the gravitational �eld generated by the gravitational energy is not distinct from
the �eld generated by any other form of energy. This is a further extrapolation of the
Equivalence Principle, applied to gravitational energy. At this point we take a path which
is di�erent from the one followed by Feynman, Deser [1, 2], and others. Instead of adding
to the source of the �eld the successive energy-momentum tensors of the gravitational �eld
for each order of non-linearity, we make the hypothesis that these terms that represent
gravity-to-gravity interaction must be constructed as a functional of the two invariants A
and B. We thus set our action for the free gravitational �eld to be given by

S =
Z
d4x

p�L(A;B) (20)
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Variation of the potential '�� yields

�S =
Z
d4x

p� ��
��;� �'

�� (21)

giving the equation of motion
��

��;� = 0 (22)

and ��
�� is

���� � LAF�(��) � (LA + LB)[2F��� � F��� � F���] (23)

in which we have used the de�nitions LA � �L=�A. In the special linear case in which
LA = �1=2 and LB = 1=2 this expression reduces to the Fierz case:

�
(L)
��� = �F�(��): (24)

in which the upperscript (L) stands for the linear case. Using the property above (see
Section 2) it follows that the equation of motion reduces to

F �
(��);� = �G(L)

�� = 0: (25)

and G(L)
�� is the Fierz linear operator (see eq. (9)).

Since we would like to impose that our theory should provide the good weak �eld
limit, that is, Fierz linear equation, we will restrict our analysis in this paper to those
Lagrangians whose dependence on the invariants obeys the relationship:

LB = �LA: (26)

Under this hypothesis the equation of motion for the free gravitational �eld within
our scheme, equation (22) takes the form

n
LAF

�
(��)

o
;�
= 0: (27)

Using the properties of F �
(��) we can re-write this expression in a more convenient

form:

G(L)
�� = LA

�1
n
LA;�F

�
(��)

o
(28)

Note that this is an exact equation, that is, it does not contain any sort of approxima-
tion term. We have just isolated the linear Fierz operator on the left-hand side and set all
non-linearity terms to the right-hand side. Besides, under this form one can see directly
that the source of the non-linearity, contrary to the case of GR, is not expressed in terms
of the energy-momentum tensor of the gravitational �eld. We will make this point clearer
when we treat the case of interaction with matter.
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3.4 The Gravitational Energy-Momentum Tensor

The standard de�nition of the energy-momentum tensor for any �eld is provided by the
variation of the Lagrangian with respect to the underlying metric, through the expression

T (g)
�� =

2p�
�L
p�
���

(29)

For the Lagrangians that we examine here (which obey the condition set up trough
equation (26)) we have

T (g)
�� = �L�� + 2LA

(
�A

���
� �B

���

)
(30)

After a rather long although direct calculation we obtain the form:

T (g)
�� = �L�� + 2LA

n
2F��� F�

�� + F���F
��

� � F �F�(��)

� F�F�g ; (31)

in which the symbol g stands for gravity.
This is the form of the gravitational energy-momentum tensor of the gravitational

�eld, obtained from the Lagrangian L.
Take the trace of the above form to arrive at

T g = �4L+ 6LA fA�Bg (32)

It is a direct exercise, left to the reader, to show that in the particular case of the linear
action, (equation (11)), this expression reduces to Gupta energy-momentum tensor.

The tensor T (g)
�� di�ers from the one obtained from Noether's theorem by a total

divergence. For future references it is useful to write the Noether energy-momentum
tensor:

N�� = �L�� � 1

2
'��;� LAF

(��)
� (33)

Under this form the examination of the balance of energy between the gravitational
�eld and its sources assumes a very simple expression

N�
�;� = �T�� '��;� (34)

This can be shown either using an analogous trick as in the spin-one case as described
above or just by direct calculation. Let us remark that, like in the previous case of spin-
one, the balance of energy between the gravitational �eld and its sources is independent
of the form of the Lagrangian one takes to represent the gravitational �eld.

In the next section we will consider a speci�c simple case of gravitational theory by a
choice of the Lagrangian in this scheme.
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4 A Suggestive Model to Gravitation

We have dealt in the precedent sections with the general scenario for our construction
of a theory of gravity. The aim of this section is to produce a speci�c characterization
of the gravitational equations of motion by searching a Lagrangian that satis�es the
requirements set up in the precedent sections. This means that we will undertake now
the task to produce a speci�c example of a �eld theory for the gravitational �eld that
ful�lls both conditions:

� obeys the requirements set up in the precedents section (including that it satis�es
the equation (27)).

� agrees with the observed tests of the gravitational �eld.

Just to simplify our explanation of the properties of our proposal we will take as a
model of our scenario the non-linear theory of electromagnetic �eld proposed by Born
and Infeld that we presented above. We do not intend to solve completely our task of
searching a �eld theory for the gravitational �eld with such a naive model, but only to
present our general scheme to deal with this question.

Taking this theory as an example, let us assume as a toy model for the self-interacting
gravitational �eld the Lagrangian

Lg =
1

�

�q
b4 + b2(�A+B)� b2

�
(35)

The quantity b has the dimension of (lenght)�1. At this level of the theory it is a free
parameter that can be choose either by some speculative consideration (e.g. by setting it
equal to Planck's lenght, for instance) or by future observational requirements. By the
time being we will left it free. Let us remark that, for the class of Lagrangians (eq. (35)),
this quantity does not have the same meaning as in the original Born proposal of the
maximum value possible for the �eld.

In the present presentation we will concentrate our interest on the consequences of
such theory in the propagation of the gravitational waves. We leave the exam of the
consequences of this model to a subsequent paper8.

4.1 Gravitational Waves

The main purpose of this section is to examine the behavior of the gravitational waves
in this theory. In order to do this we will analyse the evolution of discontinuities of the
equation of motion through a characteristic surface �. This analysis give us the velocity
of the gravitational wave that will be the key point to distinguish this kind of theory
from General Relativity. For pedagogical reasons we start by examining the non-linear
spin-one case.

8See Conclusions for other remarks related to the properties of this theory.
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4.1.1 Propagation of the Discontinuities: The Non-Linear Spin-1 Case

Let � be the surface of discontinuity. We set (using Haddamard's condition)

[F��]� = 0; (36)

and

[F��;�]� = f��k�: (37)

in which the symbol [J ]� represents the discontinuity of the function J through the surface
�.

Applying this into the equation of motion (16) we obtain

LF f
��k� + 2LFF �F

��k� = 0; (38)

where � is

F ��f�� � �:

After some algebraic manipulations the equation of propagation of the disturbances is
provided by

(
��(

L2
F

LFF

+ L) + T��
)
k�k� = 0 (39)

In the case of the Born theory this expression reduces to

�
�� +

4

b2
T��

�
k�k� = 0 (40)

In this particular non-linear non-polynomial theory we see that the disturbances prop-
agate in the modi�ed geometry, changing the background geometry �� into an e�ective
one g�� , which depends on the energy distribution of the �eld. We shall see later that the
same structure occurs for spin-2.

4.1.2 Propagation of the Discontinuities: The Non-Linear Spin-2 Case

In an analogous way we set for the spin-2 �eld the discontinuity conditions

[F���]� = 0 (41)

and

[F���;�]� = f���k� (42)

Taking the discontinuity of the equation of motion of the gravitational �eld we obtain

f�(��)k
� = �2LAA

LA

(� �  )F�(��)k
� = 0 (43)

in which the quantities � and � are de�ned by
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� � F���f
���

� � F�f
�

Considering the discontinuity relation and using the cyclic identity (see the Appendix
for some details) we have

f��
�k� + f��

�k� + f��
�k� =

1

2
���f[�k�] +

1

2
���f[�k�] +

1

2
���f[�k�]

Multiplying this equation by F ���K� we obtain

(� �  )K2 � 2F ���f���K
�K� + f�K

�F�K
� + F���F

�K�K� = 0: (44)

Or, after some algebraic manipulations

K�K� [�� + ���] = 0 (45)

in which the quantity ��� is written in terms of the gravitational �eld as:

��� � 2
LAA

LA

[F�
��F�(��) � F�F� ]

We note that in our theory we face a very similar behavior as in the previous spin-1
case. Indeed, the disturbances propagate in a modi�ed geometry, changing the background
geometry �� , into an e�ective one g�� which depends on the energy distribution of the
�eld F���. This fact shows that such a property stems from the structural form of the
Lagrangian.

From the above calculations we conclude that, di�erently from General Relativity, in
the present theory the caracteristic surfaces of the gravitational waves propagate on the
null cone of an e�ective geometry distinct of that observed by all other forms of energy
and matter. This result gives a possibility to choose between these two theories just by
observations of the gravitational waves. This is a challenge that is expected to be solved
in the near future.

5 The Gravity-Matter Interaction

As we pointed out in Section (1) there are strong evidences that matter couples universally
with gravitation in such a way that its net e�ect can be described as if matter is imbedded
in a Riemannian geometry produced by the gravitational �eld. Many authors [2, 3] have
shown that this geometry can be written in terms of an unobservable background geometry
�� and the gravitational �eld through the potential '�� as9

g�� � �� + '�� (46)

9For some practical simpli�cations some authors do not deal with such a de�nition, but instead
with pseudo-tensors obtained by multiplication of these tensors by the square-root of the corresponding
determinants. See, for instance, [3].
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This means that in order to know how matter couples to gravity one must just make
the substitution of the background geometry �� by an e�ective geometry g�� and change
accordingly the derivatives by the covariant derivatives constructed with g�� . Since such
procedure is already a standard one and there are very good reviews on this in the scienti�c
literature we will not enter here in more details on this �eld theoretical equivalence of
description of General Relativity. The reader that is not familiar with this should consult
the review done in [3].

Let us just take here as a very simple example, the case of a scalar �eld 	. The free
�eld equation of motion is provided by the action

S =
Z
d4x

p�	;�	;�
�� (47)

In order to couple the scalar matter �eld with gravity we make the substitution of the
metric �� into the e�ective one de�ned as above. The action takes then the form

S =
Z
d4x

p�g	;�	;�g
�� (48)

It seems worth to remark that in this expression we have set the determinant of the
e�ective metric:

g � det g�� = det(�� + '��):

Note that the quantity g�� is the inverse of g�� and constitutes an in�nite series in terms
of the tensors �� and '�� , that is

g�� = �� � '�� + '��'�
� � '��'��'

�� + ::: (49)

Then the equation of motion of the scalar �eld becomes

2	 � 1p�g
np�g	;�g

��
o
;�
= 0: (50)

We can thus obtain the modi�cation of the equation of motion of the gravitational
�eld in presence of matter. In the above hypothesis (borrowed from General Relativity)
that the matter feels the gravitational �eld only by the combination g�� � �� + '�� it
follows that

�L

���
=

�L

�g��

Thus in the theory developed here the general equation of motion of the gravitational
�eld containing source terms takes the form

n
LAF

�
(��)

o
;�
= �T��; (51)

or the equivalent one

G(L)
�� =

1

2
LA

�1
n
LA;�F

�
(��) + T��

o
(52)

in which T�� represents the energy-momentum tensor of matter.
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Finally, we would like to emphasize that, as we have pointed out before, we can thus
conclude that, in what concerns the matter to gravity interaction the theory proposed
here is indistinguishable of the General Relativity.

In order to show this, in the case of standard tests of gravity we will present now some
explicit consequences of our theory.

6 The Static Gravitational Field of a Spherically

Symmetric Body

In this section we will improve the exam of the above theory of gravity that satis�es
the Einstein Equivalence Principle (EEP) for any kind of matter/energy, except for the
gravitational energy. This is part of a research program that intends to re-examine the
standard Feynman-Deser approach of �eld theoretical derivation of Einstein's General
Relativity. The hypothesis implicit in such precedent derivations [1, 2] concerns the uni-
versality of gravity interaction. Although there is a strong observational basis supporting
the universality of matter to gravity interaction, there is not an equivalent situation that
supports the hypothesis that gravity interacts with gravity as any other form of non-
gravitational energy. We analyse here a kind of gravity-gravity interaction distinct from
GR but, as we shall see, that conforms with the actual status of observation. We ex-
hibit the gravitational �eld produced by a spherically symmetric static con�guration as
described in our �eld theory of gravity. The values that we obtain for the standard PPN
parameters (� = � =  = 1), supported by observations, coincide with those of General
Relativity. Thus, as we pointed out above, the main di�erent aspect of our theory and
GR concerns the velocity of the gravitational waves. Since there is a large expectation
that the detection of gravitational waves will occur in the near future, the question of
which theory describes Nature better will probably be settled soon.

The starting point of our analysis rests on the well-known fact that Einstein's Equiv-
alence Principle (EEP) is supported by experiment by at least10 one part in 1011. This
statement should be understood in the very limited sense that it concerns observed e�ects
of gravity restrained to the coupling of matter (that is, any non-gravitational form of en-
ergy) to the gravitational �eld. However, many theories of gravity, starting from General
Relativity, go far beyond such limited domain of observation and assume a generalized
form which states that the EEP comprises absolutelly all forms of energy (including
gravitational). This, of course, is a speculation that still nowadays remains beyond any
experimental test. The recent general excitation among the scienti�c community concern-
ing the possible detection of gravitational waves led to the belief that the observation of
these waves could act as a crucial test on gravity-gravity interaction and to provide for a
decision concerning which, among the rivals gravity theories, is the best one.

In the precedent sections an alternative model for gravity was presented. Our purpose
here is to proceed with such an investigation on the consequences of our theory. We
will describe a solution of our set of equations of the gravitational �eld produced by a

10See the status of the STEP (Satellite Test of the Equivalence Principle), an international tentative
of improving this result to one part in 1017.
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spherically symmetric and static con�guration. We shall show that as far as the post-
Newtonian approximation is concerned, the behavior of matter (i.e. any form of non-
gravitational energy), in our theory is indistinguishable from General Relativity (GR).

From the experimental standard tests we can state the following results11

� � = 1

�  = 1:000 � 0:002

� 1
3(2 + 2 � �) = 1:00� 0:02

� � < 10�3

� �2 < 4� 10�4

� 2
3
�2 � �1 < 0:02

� 49�1 � �2 � 2:2� < 0:1

We shall prove in this paper that, for the new theory of gravity that we are examining,
like in the very same manner as General Relativity, the unique non vanishing parameters
are �, � and . The extra parameters, present in others theories describe strange non-
usual properties of the gravitational interaction12.

This result supports a remarkmade previously which states that the crucial distinction
of ours gravity theory and GR should be made in evidence from the detection of the
gravitational waves.

6.1 Field Theory of Gravity: A Solution

Let us make a pause and see what we have done. We deal here with a �eld theoretical
model of gravitational interaction. In the standard traditional way this �eld is represented
by a symmetric second order tensor that we denote by '�� . This �eld is supposed to
propagate in an auxiliary background Minkowski geometry13 and obeys the equation of
motion

G(L)
�� =

1

2
LA

�1
n
LA;�F

�
(��) + T��

o
(53)

in which we have added the source term represented by the energy-momentum tensor of
matter.

In the theory of General Relativity the corresponding equation of motion of the grav-
itational �eld in the geometrical representation takes the form:

11We are following the standard notation for the PPN parameters. The reader not aware of this
formulation should consult the Appendix and the references.

12Like, for instance, possible deviation from Lorentz symmetry, e�ects of prefered frames, non conser-
vation of energy-momentum at the post-Newtonian limit and an eventual spatial anisotropy of three-body
interaction.

13We shall see that this metric is not observable neither by matter nor by the gravitational �eld.
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R�� � 1

2
Rg�� = �T��

in which the curvature of the associated Riemannian metric appears explicitly. However
there is an equivalent way to describe the equation of motion in GR that seems worth
to mention here just in order to exhibit the similarity and the distinction between both
theories. Indeed, many authors (see, for instance [2]) have shown that it is possible
to re-write Einstein's equation of motion by isolating the linear operator G(L)

�� from the
non-linear terms, showing explicitly the form of the self-interacting terms. It is given by:

G(L)
�� = �T�� � T�� (54)

in which T�� is a complicated non-linear expression constructed with the metric tensor
and its derivative14 A simple inspection on both theories thus exhibits very clearly the
particular characterization of the self-interacting terms in each theory. Let us emphasize
that in both cases of equations (53) and (54) they represent the full theory. There is no
approximation of any sort in these expressions.

Let us just make one more comment on the properties of these rivals theories of gravity.
Since both theories satisfy the restricted EEP, the behavior of matter (or any form of non-
gravitational energy) is precisely the same in both theories. Matter follows geodesics in
an e�ective Riemannian geometry. Only the gravity-gravity processes are distinct. Since
we are not dealing in the present paper with gravitational waves we will not consider any
longer such distinction here.

So much for these general considerations. Let us now look for a solution of our equation
(53), in the absence of matter.

We set for the auxiliary metric of the background the form

ds2 = dt2 � dr2 � r2(d�2 + sin2 �d'2) (55)

This means that all operations of raising and lowering indices are made by this Minkowski
metric ��15.

We search for the simple solution in such a way that the only non-identically null
gravitational potential components '�� are only

'00 = '00 = �(r)

and
'11 = '11 = ��(r):

The trace ' is then given by
' = � + �:

From this we obtain the gravitational �eld F���. The only non-null terms are

14The reader not acquainted with this formulation should consult [3] for a very didactic presentation
of it.

15The reader should be attentive to the fact that matter (massive or massless particles {photons, for
instance { that is, any form of non-gravitational energy) feels a modi�ed geometry. See the previous
sections.
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F100 = ��
r

F122 =
1

2
�r � 1

2
�0r2

F133 = sin2 �F122:

in which we have used a prime 0 to symbolise the derivative with respect to the radial
variable r.

Thus the unique component of the trace that remains is F1 which is given by:

F1 = �
0 � 2

�

r

From these we can evaluate the associated quantities

� The invariant A.

� The invariant B.

We obtain directly the following values:

A = �3�
2

r2
� �

02
+ 2

��
0

r
(56)

B = � 1

r2

�
�

0

r � 2�
�2

(57)

Under the above hypothesis of spherically symmetry of the solution, there remain only
two non-trivially satis�ed equations, which are given by

�
LA

�

r

�0

+ 2LA

�

r2
= 0: (58)

and

�
0

r � � = 0: (59)

It seems worth to remark that the above set of equations (58) and (59) are the same
for any theory that satis�es the fundamental condition, that is, for functionals only of the
quantity Z de�ned by

Z � 1

b2
(�A+B):

Let us now especialize this for our theory characterized by equation (53).
We have

LA = �1

2
(1 + Z)�

1

2 (60)

Substituting the above tentative form of a solution in the expressions of the invariants
we �nd for the quantity Z:

Z =
1

b2
�2

r2
: (61)
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Using this value in the equation (58) we �nd the solution

� =
2M

r

�
1� (

rc
r
)4
�� 1

2

: (62)

in which the constant rc is given by

rc
2 � 2M

b
:

The remaining function � is given in terms of the elliptic function F (�;
p
2
2
) by

� =
1

2

p
bM

(
F (�;

p
2

2
) + �0

)
(63)

in which the constant �0 must be chosen to yield the correct assymptotic limit. The
quantity � is given by

� � arcsin

(
cosh x� 1

cosh x

) 1

2

and x is de�ned by

cosh x �
�
r

rc

�2

:

At this point let us make a preliminary comment concerning the value of the constant
b. At the value r = rc the �eld has apparently a singularity. We shall see in a subsequent
section that we deal here with a true singularity once the associated gravitational energy
is singular at point rc. Although the quantity b is a free parameter of the theory, its
value must be such that it provides that the domain r < rc should be hidden inside all
known celestial bodies. A typical example associates b to the inverse of Planck length.
This provides a good possible value that satis�es the above requirement. We leave the
actual value of b, for the time being, as an open parameter, the true value of which is to
be decided later on.

6.2 The E�ective Geometry

In this section we will turn our attention to a geometric representation of the present
theory. Following the standard procedure [1, 2] we de�ne a Riemannian metric tensor in
terms of the gravitational potential as16

g�� � �� + '�� (64)

It seems worth to call attention to the reader that this de�nition has a deep meaning,
once for all forms of non-gravitational energy the net e�ect of the gravitational �eld is felt
precisely as if gravity was responsible of changing the metrical properties of the spacetime

16The reader should note that one can make di�erent forms of geometric representation. For instance
one can uses the contravariant representation to set g�� = �� +'�� ; or use pseudo quantities by means
of the determinant  in the de�nition of the geometry. Each one of these choices provides non-equivalent
representations.
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Table 1: PPN Parameters

GR LN

� 1 1
� 1 1
 1 1

from the atness structure to a curved one that is related to the gravitational �eld precisely
by the above expression. This means that any material body (or photons) follows along
the geodesics (null, in the case of photons) as if the metric tensor of spacetime was given
by the above expression.

From the previous calculation we �nd for the e�ective geometry the form

ds2 = g00dt
2 � g11dr

2 � r2(d�2 + sin2 �d'2) (65)

with
g00 = 1 + �:

and
g11 = �(1 + �):

Expanding for rc << r we have

g00 � 1� 2M

r
� 1

10

�
rc
r

�4

+ :::

and

g11 � �1� 2M

r
� M

r

�
rc
r

�4

+ :::

We see that the modi�cation of the atness of spacetime, as seen by matter, beyond
the order O(M

r
), occurs only at order O(M

3

r5
). This is radically di�erent from the results

of General Relativity and should provide the basis for a future test.
Before this, however let us look into the corresponding post-Newtonian parameter of

our theory. Using the isotropic coordinate system (see the Appendix) we can re-write our
e�ective geometry under the form

ds2 = (1� 2�
M

�
+ 2�

M2

�2
+ :::)dt2� (1 + 2

M

�
)
n
d�2 + �2(d�2 + sin2 �d'2)

o

It then follows from a direct inspection on this form of the e�ective geometry the values
of the PPN parameters corresponding to our solution. We can use the associated table in
order to compare the values of our model and those obtained from General Relativity.

A direct inspection on this table led us to conclude that, at the PPN level of obser-
vation, both theories provide the same answer for the efects of the gravitational �eld on
matter.



{ 21 { CBPF-NF-066/96

7 Gravitational Energy

The fact that we are dealing with a �eld theory in the conventional way provide us
directly as a by-product, with a well-de�ned de�nition of the energy. We can arrive at the
expression of the energy-momentum tensor either by a direct variation of the associated
background metric or by means of Noether's theorem17.

Using the de�nition

T�� = 2p�
�L
p�
���

(66)

we �nd, from the above Lagrangian,

T�� = �L�� + 2LA

n
2F���F�

�� + F���F
��

� � F �F�(��) � 2F�F�
o

(67)

Let us specialize this for the case of a static and spherically symmetric con�guration.
Since in our theory the Lagrangian is given by eq. (35) we have, under the conditions of
the above solution,

L =
b2

k

�
(1 � (

rc
r
)4)�

1

2 � 1
�
: (68)

Note that it then follows that
L > 0:

Finally we obtain, for the density of energy, the expression

k

b2
T g

00 = 1� 1� 2( rc
r
)4q

1� ( rc
r
)4

(69)

8 Conclusion

Einstein's theory of General Relativity is one of the most beautiful, comprehensive and
deeply important achievements of classical �eld theory. Not only it contains and exhibits
such a simplicity and internal coherence but, more than this, it provides a sound step
towards the understanding of gravitational processes which has had no rival since the
early times of Newton hypothesis concerning the existence of the universal gravitational
atraction. Thus, any theory that dares to propose even a small modi�cation on its scenario
faces not only the challenge to present a sound new argument -but besides, it has to deal
with the enormous di�culty of intending the substitution of a successful paradigm.

Thanks to the work of many physicists as Feynman, Deser and others, we have learned
that Einstein's geometric vision of General Relativity admits an equivalent �eld theoreti-
cal presentation. In such a formulation, the phenomenon of gravity becomes more similar
to the rest of Physics and, besides (and by far the more important) we obtain a deeper

17The reader should note that many di�erents forms of the energy-momentumtensor of the gravitational
�eld have been described in the literature. Most of then su�er from the disease of being pseudo quantities
and not true tensor. Some others, like the one described in [3], are true tensors but have a hidden gauge
symmetry. We note that our expression does not seem to su�er of any of these di�culties.
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comprehension on the mechanism of self-interaction of the gravitational �eld. It is pre-
cisely the analysis of this mechanism that we think is worth to re-examine. We can thus
realize that there are two reasons for this:

� The theoretical challenge of providing another coherent manner to describe gravi-
tational self-interaction process.

� The perspective of test alternative theories by the observation, in the near future,
of gravitational waves.

In the present paper we describe a new program of analysis of gravitational interaction
that has a very similar geometrical interpretation as General Relativity as far as matter to
gravity processes are concerned. However, it becomes distinct from GR in the description
of gravity to gravity interaction. We have exhibited a speci�c example of a theory in
order to show how these ideas can be implemented. We have found the exact solution of
a compact spherically symmetric and static con�guration. We have shown that, although
the general system of equations is highly non linear, the system reduces, for this symmetry,
to a very simple one that allows a direct integration to be done. An analysis of the
properties of our solution shows many points in common with GR. The PPN parameters
do not allow a distinction between these theories. In order to exhibit a crucial observable
di�erence between them, we should look for the propagation of gravitational disturbances.
Indeed, (see the Appendix) the velocity of the gravitational waves is not the same in
these two theories. We have evaluated the propagation of gravitational waves within
such a theory and shown that the velocity of the waves does not coincide with the GR
prediction. Once there is a large expectative that these waves will be detected in the next
few years, we could test this aspect of these theories soon.

Finally, we should mention that we have found a cosmological solution of the theory.
We can anticipate that such solution is in good agreement to actual observations. This is
matter for a future work.

9 Appendix

9.1 The Velocity of Gravitational Waves

We have shown that the gravitational waves travel in di�erent cones than the photons.
This means that the gravitational waves feel a geometry of the spacetime that is not the
same as the one felt by matter. The propagation of the gravitational disturbances follow
along trajectories k� that satisfy the equation

�
�� +

2LAA

LA

(2F���F�
�� + F���F

��
� � F�F�)

�
k�k� = 0:

This is one of the most important distinctions between the present �eld theory of
gravity and General Relativity. The consequences of this, in respect to future observations,
will be discussed elsewhere.
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9.2 PPN Formalism

The standard form of the metric in the PPN form is given by

g00 = 1 � 2�
M

�
+ 2�

 
M

�

!2

:

gij = (�1� 2
M

�
� �

M2

�2
)�ij:

We make a coordinate transformation to pass from this isotropic system (t; �; �; ') to
the spherical one (t; r; �; '):

� = r

(
1� 

M

r
� 1

2
(� � 2)

M2

r2

)

It then follows that in the new system the metric takes the form

ds2 =

(
1� 2�

M

r
� 2(� � �)

M2

r2

)
dt2 �

(
1 + 2

M

r
+ (2� + 2)

M2

r2

)
dr2

� r2(d�2 + sin2�d'2):

9.3 Some Useful Formulae

9.3.1 The Traceless Part of the Gravitational Field

The traceless tensor C��� is de�ned by

C��� � F��� � 1

3
F��� +

1

3
F���

The invariant constructed with this quantity C is given by

C � C���C
���

It then follows that between this quantity and the invariants dealt with in the paper
(A and B)there is the following relation

C = A� 2

3
B:

We could then use the irreducible parts of the gravitational �eld to describe its dy-
namics. In this case the generic form of the Lagrangian should be

L[B;C]:

.
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9.3.2 Variational Formulae

The evaluation of the energy-momentum of the gravitational �eld needs some technical-
ities concerning the dependence of F ��� on the background metric �� . There are some
expressions that simplify this manipulation. Let us present here some of these.

We have

�A

���
= 2F � �F�

���
� F �F�(��) + 2F���F�

�� + F���F
��

� ;

in which we used the relation,

F ����F���
���

= F � �F�
���

� F �F�(��)
2

:

And, for the invariant B we obtain

�B

���
= 2F � �F�

���
+ F�F�:
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