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ABSTRACT

The problem of the classi�cation of the extensions of the Virasoro algebra is dis-
cussed. It is shown that all H-reduced Ĝr-current algebras belong to one of the following
basic algebraic structures: local quadratic W -algebras, rational U -algebras, nonlocal V -
algebras, nonlocal quadratic WV -algebras and rational nonlocal UV -algebras. The main
new features of the quantum V -algebras and their heighest weight representations are
demonstrated on the example of the quantum V
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1 Introduction

The concept of algebras and groups of symmetries (�nite and in�nite, Lie and non-Lie
etc) is, by no means, the key stone of all the �eld and string theories of uni�cation of
the interactions. An impressive example of the computational power of the algebraic
methods, however, is provided by the theory of the second order phase transitions, in two
dimensions. It turns out [1] that the complete nonperturbative description of the critical
behaviour of a class of 2-D statistical mechanics models is given by the highest weight
(h.w.) unitary representations fc(m);�p;q(m)g of the Virasoro algebra

[Ln; Ll] = (n � l)Ln+l +
c

12
n(n2 � 1)�n+l;0; n; l = 0;�1;�2; ::: (1)

In words, all the physical data of the critical model - the exact values of the critical
exponents, the partition function, all the correlation functions etc - are encoded in the
representation theory of the algebra (1). The exact formulation of the above statement is
as follows:

� Physical data (critical RSOS models on 2-D planar lattice [2]): For each �xed
m = 3; 4; 5; :::, the m � th RSOS model is de�ned by attaching to each site ~i a height
li of length li = 1; 2; :::;m under the condition that the maximal length di�erence of the
nearest neighbours (n.n.) heights is one, i. e., jl~i� l ~i+1j = 1. The only n.n.0s interact and
the energy of a given con�guration is

H = �
X
<ij>

Jijlilj + h
X
i

li:

The partition function Z(T; h) = TrH exp
�
� H

kT

�
(TrH denotes a sum over all allowed

height con�gurations), found in [2] shows that, at a certain critical temperature T =
Tc(m), the m � th RSOS exhibits a second order phase transition. This means that,
at � = T�Tc

Tc
! 0, all thermodynamical characteristics of the model have power-like

singularities:

CV � ���, M � ���, X � ��
 , ...

The critical exponents �(m), �(m), 
(m), ..., turns out to be certain nonnegative rational
numbers [2]. For example, the m = 3 odd lattice (li = 1; 3) model is equivalent to the
Ising model and it has � = 0, � = 1

8; the m = 5 (li = 1; 3; 5) describes the 3-state Potts
model etc.

�Mathematical data ([3]): For each �xed c, the h. w. states j�; c > of the Virasoro
algebra (1) are de�ned by requiring

L0j�; c >= �j�; c >; Lnj�; c >= 0; n > 0: (2)

The h. w. unitary representations3 of (1) are given by

�p;q(m) =
[(m+ 1)p �mq]2 � 1

4m(m+ 1)
; c(m) = 1�

6

m(m+ 1)
; (3)

3The unitary condition was found in ref [6].
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where 1 � p � m� 1, 1 � q � p, m = 3; 4; :::.

� Identi�cation ([1], [4], [5]): The scale invariance of 2-D statistical models, at the
critical point T = Tc, is shown to be a part of a larger group of conformal transformations
(z; �z)! (f(z); �f (�z)), which governes the critical behaviour of these models in the contin-
uous (thermodynamical) limit. Therefore, the critical RSOS models can be described in

terms of certain conformal invariant 2-D �eld theories (CFT 0s) (l~i � l
(m)
i1i2

! l(m)(z; �z)).
The symmetries of these CFT 0s are generated by the two components T (z) and �T (�z) of
the conserved traceless stress-tensor T��. Its short distance operator-product expansion
(OPE) is completely determined by the symmetry

T (z1)T (z2) =
c=2

z412
+
2T (z2)

z212
+
@2T (z2)

z12
+O(1) (4)

and the same for �T (�z). Introducing the corresponding conserved charges Ln =
H
T (z)zn+1dz,

where n = 0;�1;�2; ::: (and the charge �Ln for �T (�z)), and substituting them in (4), we
realize that the algebra of the charges L0ns (and �L0ns) contains two (mutualy commuting)
Virasoro algebras (1). As a consequence, the (Hilbert) space of states of such quantum
CFT can be constructed as a tensor product of two h. w. representation spaces (2), (with
c(m) = �c(m)): j�; ��; c >= P (j�; c > 
j ��; c >), where P is denoting an appropriate
projection on the subspace of states in H�;c
H ��;c, satisfying certain physical conditions
- crossing symmetry, semi-locality etc - see refs [1] and [4]. To each h. w. state, one can
make, in correspondence, a primary �eld ��; ��(z; �z) of spin s = � � �� and dimension
d = �+ �� such that j�; ��; c >= ��; ��(0; 0)j0 >. One of the most important properties of
the primary �elds ��p;q � �p;q, from the Kac-table (3), is that, together with the standard
conformal Ward identities

T (z1)�p;q(z2)j0 >=

�
�p;q

z212
�p;q(z2) +

1

z12
@2�p;q(z2) +O(1)

�
j0 >; (5)

it has to satisfy the so-called null vector conditions, which say for p = 2, q = 1 appears
to be in the form �

L2
�1 �

2

3
(1 + �21(m)L�2

�
j�21; c >= 0: (6)

Eqns. (5) and (6) allow us to calculate the structure constants of theOPE 0s �p1q1(z1)�p2q2(z2),
as well as the exact 4-point (and n-point) correlation functions < �p1q1(1)�p2q2(2) � ::: �
�pnqn(n) >. Finally, the identi�cation with the RSOS models is done by comparing the
ABF -exponents �; �; 
; :::[2], with the Kac-dimensions (3). For the Ising model (m = 3,
c(m) = 1

2), we have � = 0, � = 1
8 and �21(3) =

1��
2�� = 1

2 , �22(3) =
�

2�� = 1
16.

� The problem of classi�cation of 2-D universality classes. The purely alge-
braic description of the critical RSOS models address the question whether one can �nd
appropriate in�nite algebras, which representation theories provide the exact solutions
for all known 2-D critical statistical models having second order phase transition. The
algebras, we are looking for, have to contain the Virasoro algebra (1) as a subalgebra. The
following three examples of extended Virasoro algebras are to ilustrate the main features
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of the new algebraic structures one need to introduce in the description of the universality
classes, in two dimensions.

Example 1.1. N = 1 supersymmetric Virasoro algebra[9]: An in�nite Lie super-
algebra, containing together with the bosonic Virasoro generators Ln, an in�nite set of
fermionic ones Gs (s 2

1
2
Z)

[Ln; Gs] =
�n
2
� s

�
Gn+s; [Gs; Gt]+ = 2Ls+t +

c

2

�
s2 �

1

4

�
�s+t;0; (7)

where [ ; ]+ denotes the anticommutator of G0ts. The h. w. representations of (7)[3]

c(m) =
3

2

�
1 �

8

m(m+ 2)

�
; �pq(m) =

[(m+ 2)p �mq]2 � 2

12m(m + 2)
; (8)

where m = 4; 5; ::: and 1 � p � m� 2, 1 � q � p, give rise to a family of superconformal
minimal models [7], [8] which describe the critical behaviour of k = 2 generalized RSOS
models. The di�erence with the standard (k = 1) RSOS is that now the allowed maximal
length di�erence between n. n. heights l~i and l ~i+1 is k = 2. As it is evident from (7),
the k = 2 critical RSOS possess symmetry larger than the conformal one. The stress-
tensor (T; �T ) and the new spin 3

2
supercurrent (G; �G), Gn =

H
zn+

1
2G(z)dz, generate 2-D

superconformal transformations.
The critical k � RSOS models for k = 3; 4; ::: require fractional spin l

k
extensions of

the Virasoro algebra [10, 11], [12]. Our next example represents the main features of such
\parafermionic type" algebras.

Example 1.2. ZN Parafermionic algebra [12], [13]: The ZN generalizations of the
Ising (Z2) and Potts (Z3) models are lattice spin models, where each site (i) is occupied
by a \spin variable" �(i) that takes values �l(i) = exp

�
2�{l
N

�
in the discrete group ZN . To

describe (multi) critical behaviour of these models, one has to consider, together with
T (z), a set of N � 1 new conserved currents  +

l (z) =  �N�l(z), where l = 1; 2; :::; N � 1,

of spins sl =
l(N�l)
N

, with OPE 0s in the form [12], [13]

 �1 (z1) 
�
1 (z2) = c11z

� 2
N

12 ( �2 (z2) +O(z12));

 +
1 (z1) 

�
1 (z2) = z

2
N

12

�
1

z212
+
N + 2

N
T (z2) +O(z12)

�
; (9)

where c11 =
q

2(N�1)
N

.Introducing the parafermionic (PF ) conserved charges in (9)

A�1�l
N

+n
�l(0) =

I
dz �1 (z)z

� l
N
+n�l(0);

 �1 (z exp(2�{))�l(0) = exp(
2�{l

N
) �1 (z)�l(0);

we derive the ZN PF -extension of the Virasoro algebra (2)

1X
p=0

Cp

( 2
N )

�
A�3�l

N
�p+mA

�
1�l
N

+p+n
�A�3�l

N
�p+nA

�
1�l
N

+p+m

�
= 0;
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1X
p=0

Cp

(� 2
N )

�
A+
m� 1+l

N
�pA

�
1+l
N

+n+p�1 +A�
n� 1�l

N
�p�1A

+
1�l
N

+p+m

�

=
N + 2

N
Lm+n�1 +

1

2

�
n� 1 +

l

N

��
l

N
+m� 2

�
�m+n�1;0 (10)

of central charge c(N) = 2N�1
N+2

, where N = 2; 3; :::, and structure constants Cp

(r) =
�(p�r)
p!�(�r) .

The h. w. representations of this in�nite associative algebra, found in ref [12], are of

dimensions �l =
l(N�l)

2N(N+2)
and ZN charge - l = 1; 2; :::; N � 1 for the (order parameter)

�elds �l(z; �z); and �j =
j(j+1)
N+2

where j = 1; 2; ::: �
�
N
2

�
are the dimensions for the ZN

neutral (energy operator) �elds �j(z; �z). It is important to note that the origin of the
fact that in the PF -algebra (10), the Lie commutator [a; b] = ab � ba is replaced by an

in�nite sum of bilinears A�A� is in the branch cut singularities z�
2
N (N � 3) in the

OPE0s (9). These types of singularities are a consequence of the fractal spins s�1 = 1� 1
N

of the PF -currents  �1 . Observe that for N = 2 (and for half-integer spins, in general),
the OPE0s have odd poles z�112 (or z�2s�112 ) singularities, which lead to anticommutators
[a; b]+ = ab + ba. For integer spins s = 1; 2; 3; :::, the leading singularities in the OPE0s
are even poles z�2s12 (as in eqn. (4)) and they give rise to the standard Lie commutators.

Example 1.3. W3-Zamolodchikov algebra [15], [14]: The most important property
of the spin 3 extension of the Virasoro algebra (generated by T (z) and W (z) of spin sW =
3) is that the commutator of the charges Wn of the spin 3-current Wn =

H
W (z)zn+2dz

is quadratic in the Virasoro generators L0ns

[Wn;Wl] = (n� l)[d(n; l)Ln+l + b�n+l] +
c

360
n(n2 � 4)(n2 � 1)�n+l;0; (11)

where

�n =
1X

k=�1
: LkLn�k : +

1

5
fnLn; f2s = 1 � s2; f2s+1 = (1 � s)(2 + s)

and

d(n; l) =
1

6

�
2

5
(n+ l + 2)(n+ l + 3)� (n+ 2)(l + 2)

�
; b =

16

22 + 5c
:

The h. w. states j�; w; c > of this non-Lie associative algebra are de�ned by

L0j�; w; c >= �j�; w; c >; W0j�; w; c >= wj�; w; c >;

Lnj�; w; c >= Wnj�; w; c >= 0, n > 0.

Its h. w. unitary representations c(m) = 2
�
1� 12

m(m+1)

�
, where m = 4; 5; :::, and

�piqi(m), wpiqi(m) (i = 1; 2) found in ref [14] give rise to a family of Z3 symmetric
CFT 0s that provide the exact solutions for a new class of critical statistical models. The
simplest representative m = 4 of this class is again the critical 3-states Potts model.
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The above examples of three di�erent associative extensions of the Virasoro algebra,
(7), (10), (11), suggest the following organization of the list of all known in�nite algebras
(and their 2-D CFT 0s):

(i) Lie-algebraic extensions: Conformal current (a�ne) Ĝr-algebras [16]:

[Jan; J
b
l ] = {fabcJ cn+l + kn�ab�n+l;0; (12)

where n; l = 0;�1;�2; :::; a; b = 1; 2; :::; dim G; fabc are the structure constants of an arbi-
trary (�nite dimensional) semisimple Lie algebra Gr; k is called the level of Ĝr. Its gener-
ators are the conserved charges of the spin s = 1 chiral current Ja(z) =

P1
n=�1 z�n�1Jan ,

which also satisfy [Ln; Jal ] = �lJan+l. The h. w. representations of (12) (and its CFT 0s )
were constructed in refs [17, 18].

(ii) Lie-superalgebraic extensions: The N = 1 superVirasoro algebra (7); N = 2; 3; 4
superconformal algebras [19, 20, 21]; the a�ne Ĝr-superalgebras, where Gr is an arbitrary
rank r �nite dimensional superalgebra; N = 1 superconformal current Ĝr-algebras [23, 22],
with generators Jan and  a

n determined by (7), (12) and [Jan;  
b
l ] = fabc c

n+l, [ 
a
n;  

b
l ]+ =

k�ab�n+l;0.

(iii) PF -extensions: The ZN (and D2N )-PF algebra (10) and its (p;M)-general-

izations [12], by considering PF currents of spins sl = p l(N�l)
N

+Ml; Gepner0s Gr-parafermions
[24].

(iv) Quadratic W -algebras: The Wn-algebras [25], [27], [26] generated by the charges

of the spin s = 2; 3; :::; n-currents, and the more general WGn [25]; the W
(l)
n -algebras [28],

[29], [35]; the supersymmetricWn-algebras etc.

To complete our table of extended Virasoro algebras, we have to add the family of
the recently discovered classical Poisson brackets nonlocal and nonlinear (quadratic) V -
algebras [31], [32], [33], [34].

(v) V -algebras: The simplest example is given by V (1;1)
3 � V A

(1;1)
2 -algebra [33], [34],

generated by one local spin 2 T (�) (the stress-tensor) and two spin 3
2
-non local currents

V �(�):

fT (�); V �(�0)g =
3

2
V �(�0)@�0�(� � �0) + @�0V

�(�0)�(�� �0);

fV �(�); V �(�0)g = �
2

k
�00(� � �0)�

2

k
T (�0)�(� � �0) +

3

2k2
V �(�)V �(�0)�(� � �0);

fV �(�); V �(�0)g = �
3

2k2
V �(�)V �(�0)�(� � �0): (13)

where �(�) = sign �. The V (1;1)
3 is the �rst member of the V A(1;1)

n -family of V -algebras,
spanned by two non-local currents V �

(n) of spins s =
n+1
2

and n� 1 local currents Wn�l+2

of spins sl = n� l + 2, where l = 1; 2; :::; n. The Bilal0s V B2-algebra [31] is quite similar
to (13), but V �-currents have spin s� = 2 in this case.
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Our main purpose, in what follows, is the construction of the quantum Vn+1-algebras
and their minimal conformal models (i. e., their h. w. representations). The most
important result is that the classical spins scl = n+1

2
, of the nonlocal currents V �, gets

renormalized, i. e., squ = n+1
2

�
1� 1

2k+n+1

�
and their algebra shares the main patterns of

the PF -algebras. While the quantum local currents Wn�l+2 manifest properties similar

to the Wn-algebras. Therefore, the quantum V
(1;1)
n+1 -algebras represent an appropriate

uni�cation of the features of the Z2k+3 PF -algebra with the Wn+1-one.

2 Constrained Gr-current algebras

The list of the �ve known families of extended Virasoro algebras we have made, however,
does not solve the problem of the classi�cation of 2-D universality classes (i. e., all
allowed critical behaviours in two dimensions). We need a method of exhausting all the
possible extensions of the Virasoro algebra. The hint is coming from the fact that all the
considered algebras4 - the Virasoro-one, the PF -, the Wn- and Vn-ones - can be obtained
by imposing a speci�c set of constraints on the currents of certain Ĝr-current algebras
(SL(2; R), for (1) and (10), and SL(3; R), for (11) and (13) etc):

fJa(�); J b(�0)g = {fabcJ c(�0)�(� � �0) + k@�0�(� � �0): (14)

It suggests that the desired classi�cation of the extended Virasoro algebras can be reached
by the methods of the Hamiltonian reduction [29], [36], [30], i. e., by considering all
consistent sets of constraints on the currents Ja(�) 2 Ĝr

Ĵ(�) = g�1@g =
X

allroots

Jf�gEf�g +
rX
i=1

Ji
~�i � ~H

�2
i

where Ef�g, hi = ~�i� ~H
�2i

are the generators of the �nite Lie algebra Gr. Therefore, the

question now is whether and how one can classify all constraints to be imposed on Ĵ(�).
We start with few selected examples of constrained SL(n;R) (n = 2; 3; 4) algebras,

which demonstrate the way the algebraic structure of the reduced algebras depends on
the speci�c choice of the constraints.

Example 2.1. SL(2; R) reductions.
(1a) A1=N+ � Virasoro algebra: Take J� = 1 as a constraint and J1(� J0) = 0

as its gauge �xing (i. e., J1 is the canonically conjugated momentum of J�, since
fJ�(�); J1(�0)g = �J�(�)�(� � �0) � �(� � �0)).5 Under these conditions, the classi-
cal Poisson bracket (PB) algebra of the remaining current J�� � T can be derived from
eqn. (11), by calculating the corresponding Dirac brackets

fT (�); T (�0)gD =
k2

2
�000(� � �0)� 2T (�0)�0(� � �0) + @�0T (�

0)�(� � �0); (15)

4The supersymmetric extensions arise from the constrained superconformal current algebras
5An equivalent explanation of the J1 = 0 condition (which is not a constraint) is that, due to the

residual gauge transformation h = exp(�(z))E��, J 0 = h�1Jh + kh�1@h, which leaves invariant the
constraint J� = 1, one can make J 01 = 0, by an appropriate choice of �(z).
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which is nothing, but the classical PB0s Virasoro algebra. Another form of the Dirac
method, proposed by Polyakov [29] consists in imposing the constraints and gauge �xing
conditions on the in�nitesimal Ĝr-gauge transformations

��J
a(�) = fabcJ c(�)�b(�) +

k

2
@��

a: (16)

Next, we solve the ��J� = �J1 = 0 equations for the redundant gauge parameters �1 and
��

�1 =
k

2
@�; �� = �

k2

2
@2�+ J���; � � ���;

and substituting them in �J��, we �nd

��J�� = �
k2

2
@3�+ 2J��@�+ @J���;

i. e., the functional form of eqn. (15).

(1b) A1=U(1) � classical PF -algebra: Take J0(� J1) = 0 as a constraint (no residual
gauge transformations exists). In this case, as a consequence of eqn. (14), we have
fJ0(�); J0(�0)g = @�0�(� � �0) (k = 2). To �nd the Dirac brackets of the J 0��s, we have
to invert the @�-operator, i. e., @�(@

�1
�0 ) = �(�� �0), hence @�1�0 = 1

2�(� � �0)) and thus to
introduce nonlocal �(�)-terms in the J�� � V �-algebra

fV �(�); V �(�0)gD = �V �(�)V �(�0)�(� � �0);

fV +(�); V �(�0)gD = @�0�(� � �0) + V +(�)V �(�0)�(� � �0): (17)

Following the Polyakov method, we get

�0(�) = �

Z
�(� � �0)(V +(�0)��(�0)� V �(�0)�+(�0))d�0;

and pluging it back in the ���V
�-transformations, we arrive at eqn. (17). The reason

to call this nonlocal PB algebra as a classical parafermionic one is that an appropriate
N ! 1 limit of the (quantum) PF OPE0 (9) reproduces exactly eqn. (17), as we will
demonstrate, in detail, in the next section.

Example 2.2. Constrained SL(3; R)-algebras.
(2a) A2=N+ � W3-algebra: In this case, N+ = fE�1; E�2; E�1+�2g and J�i = 1,

J�1+�2 = 0 are the constraints; Ji = J��1 = 0 are the gauge �xing conditions, in Drinfeld-
Sokolov gauge. The classical W3-algebra, generated by one spin 2 T (z) � J��2(z) and
one spin 3 W3(z) = J��1��2 �

1
2@J��2 currents, has the form (k = 2)

fT (�);W3(�
0)g = 3W3(�

0)@�0�(� � �0) + 2@�0W3(�
0)�(� � �0);

fW3(�);W3(�
0)g = �4�(v)(� � �0) + 5T (�0)�000(� � �0)�

15

2
@�0T (�

0)�00(� � �0)

�

�
T 2(�0)�

9

2
@2�0T (�

0)
�
�0(� � �0) + @�0

�
1

2
T 2(�0)� @2�0T (�

0)
�
�(� � �0): (18)
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(2b) A2=N 1
+ 
 U(1) � V

(1;1)
3 -algebra: Take N

(1)
+ = fE�2; E�1+�2g, U(1) = f~�1 � ~Hg;

J�2 = 1, J�1+�2 = 0,
P2

i=1 �
(i)
1 Ji = 0 are the constraints and J��1 =

P2
i=1 �

i
2Ji = 0 are

the gauge �xing conditions. The remaining currents V + = J�1, V
� = J��1��2, of spin

3
2

(nonlocal), and T = J��2 , of spin 2 (local), generate the following nonlocal V (1;1)
3 -algebra

(k = 2) (13). We have to mention that if one relaxes the U(1)-constraint J = ~�1 � ~J = 0,
then the local currents V � (s = 3

2), T (s = 2) and J (s = 1) span the well known local

quadratic (in J) Bershadsky-Polyakov A2=N
(1)
+ � W

(2)
3 -algebra [28].

(2c) A2=N
(2)
+ 
 U(1) 
 U(1) � V3 -algebra: In this case, N

(2)
+ = fE�1+�2g, the

constraints are Ji = 0, J�1+�2 = 0 and the gauge �xing (g. f.) conditions are J��1��2 = 0,
Ji = 0. The nonlocal V3-algebra, of the four spin 1 currents V �

i = J��i (i = 1; 2), has the
form [37]

fV �
i (�); V �

j (�0)g =
1

2k2
[V �

i (�)V �j (�0) + V �
i (�0)V �

j (�)]�(�� �0);

fV +
i (�); V �

j (�0)g = �ij@�0�(� � �0) �
1

2k2
[V +

i (�)V �
j (�0)

+ �ij

2X
s=1

V �
s (�)V +

s (�0)]�(� � �0): (19)

The stress-tensor T (�) = 1
2

P2
s=1 V

+
s (�)V �s (�) satis�es the standard Virasoro algebra

(15), but without a central term.

(2d) A2=N
(2)
+ 
U(1) � V

(2)
3 -algebra: N (2)

+ is the same as in (2c), U(1) = (�1��2)iJi;
the constraints are J�1+�2 = 1,

P2
i=1(�1 � �2)

iJi = 0 and the g. f. conditions are

(�1 + �2)iJi = 0. The V
(2)
3 -algebra, of the local spin 2 stress-tensor T = J��1��2 �

1
2(J�1J��1 +J�2J��2), and four nonlocal currents V +

1 = J�1 (s
+
1 = 1

2), V
�
1 = J��1 � 2@J�2

(s�1 = 3
2), V

�
2 = J�2 (s

�
2 = 1

2) and V
+
2 = J��2 + 2@J�1 (s

+
2 = 3

2), takes the form [37]

fV �
i (�); V �

j (�0)g = (i� j)[V �1
2 (i+j�1)

(�)]2�(� � �0) +
3

8
V �
i (�)V �

j (�0)�(� � �0);

fV �
i (�); V +

i (�0)g = 2V �
1 (�)V +

2 (�)�(�� �0)�
3

8
V �
i (�)V +

i (�0)�(� � �0);

fV �
1 (�); V +

2 (�0)g = �4@2�0�(� � �0)�
3

8
V �
1 (�)V +

2 (�0)�(� � �0)

+ 3[V +
1 (�)V �2 (�0) + V +

1 (�0)V �
2 (�)]@�0�(� � �0)

+ fT (�) +
3

2
[V +

1 (�)V �
1 (�) + V +

2 (�)V �
2 (�)]g�(�� �0);

fV �
2 (�); V +

1 (�0)g = �(� � �0)�
3

8
V �
2 (�)V +

1 (�0)�(� � �0): (20)
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Thus, V
(2)
3 is an example of nonlocal quadratic (non-Lie) algebra.

(2e) A2=N
(1)
+ �W

(1;1)
3 -algebra: In this case, the constraints are J�2 = J�1+�2 = 1 and

the g. f. conditions are �i2Ji = (�1+�2)iJi = 0. The algebra W (1;1)
3 , of the local currents

J� = J��1 (s
� = 1) and T2 = J��2 (s2 = 2), T12 = J��1��2 (s12 = 2), appears to be a

local quadratic algebra [37], of W -type.
Example 2.3. Constrained SL(4; R)-algebras.
(3a) A3=N+ � W4-algebra: N+ = fE[�] : [�]are all positive rootsg, the constraints

are J�i = 1 (i = 1; 2; 3), J�1+�2 = J�2+�3 = 0, J�1+�2+�3 = 0 and the g. f. conditions
are Ji = 0, J��1 = 0, J��2 = 0, J��1��2 = 0. The algebra of the remaining currents
T = J��3 , W3 = J��2��3 and W4 = J��1��2��3 is the standard quadratic W4-algebra [25],
[26], [27].

(3b) A3=N
(1;1)
+ 
 U(1) � V

(1;1)
4 -algebra: N

(1;1)
+ = fE[�]1g, where [�]1 are all positive

roots, but �1, U(1) = �1 � H, the constraints are J�2 = J�3 = 1, J�1+�2 = J�2+�3 = 0,
J�1+�2+�3 = 0, �i1Ji = 0 and the g. f. conditions are �i2Ji = �i3Ji = 0, J��2 = J��1��2 =
0, J��1 = 0. The spin 2 currents V + = J�1 and V � = J��1��2��3 are nonlocal and
W3 = J��2��3 (s3 = 3), T = J��3 (sT = 2) are local ones. Their algebra is a nonlocal
extension of the W3-one (18)

fV +(�); V �(�0)g = @3�0�(� � �0)� T (�0)@�0�(� � �0)�W3(�
0)�(� � �0)

+
1

3
V +(�)V �(�0)�(� � �0);

fW3(�); V
�(�0)g = �

10

3
V �(�0)@2�0�(� � �0)� 5@�0V

�(�0)@�0�(� � �0)

�
1

3
[T (�0)V �(�0)� 6@2�0V

�(�0)]�(�� �0);

fV �(�); V �(�0)g = �
1

3
V �(�)V �(�0)�(� � �0); (21)

and the remaining PB fW3(�);W3(�0)g has the same form as in (18), but T 2, in the
quadratic terms, is replaced by T 2 + 6V +V �.

(3c) A3=N
(1;2)
+ � U

(1;2)
4 -algebra: N (1;2)

+ = fE[�]2g, where [�]2 are all positive roots,
but �2, the constraints are J�1 = J�3 = 1, J��1��2 = J��2��3 = 0, J��1��2��3 = 0 and
the g. f. conditions are �i1Ji = 0, �i3Ji = 0, J�1+�2 = J�2 = 0, J�2+�3 = 0. The nonlocal

quadratic U
(1;2)
4 -algebra is generated by one spin 1 current J = �i2Ji, three local spin 2

currents V + = J�2, V
� = J��1��2��3 , T = J��1 + J��3 + 4J2 and one nonlocal spin 2

current U = J��3 � J��1 [37]

fU(�); J(�0)g = fV �(�); V �(�0)g = 0; fU(�); V �(�0)g =
1

2
V �(�)U(�0)�(� � �0);

fJ(�); V �(�0)g = �
1

4
V �(�)�(� � �0); fJ(�); J(�0)g =

1

8
@��(� � �0);
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fV �(�); V �(�0)g = �
1

2
@3��(� � �0) + T (�)@��(� � �0) +

1

2
@�T (�)�(�� �0)

�
1

4
U(�)U(�0)�(� � �0);

fU(�); U(�0)g = �@3��(� � �0) + 2T (�)@��(� � �0) + @�T (�)�(� � �0)

� [V +(�)V �(�0) + V +(�0)V �(�)]�(�� �0); (22)

where T = T � 4J2. As it is shown in ref [37], by choosing another set of gauge �xing

conditions, the nonlocal U
(1;2)
4 -algebra takes the form of the rational ( 1

U
-terms) local al-

gebras of ref [35]. If one further imposes J = �i2Ji = 0 as a new constraint, the J -reduced

U
(1;2)
4 -algebra (i. e., U (1;2)

4 =U(1)) coincides with the nonlocal V (1;2)
4 -algebra (see sec. 7 of

ref [33]). The main di�erence with U (1;2)
4 is that the spin 2 currents V � become nonlocal,

in the V (1;2)
4 -case.

The analysis of the above examples of H-reduced SL(n;R)-current algebras allows to
conclude that they all �t into the following basic algebraic structures:

(A) W -algebras (quadratic): (2a), (2e), (3a) and W
(2)
n of ref [28], WG

S of ref [35];

(B) U -algebras (rational or nonlocal): (3c);

(C) V -albegras (nonlocal or PF -type): (1b), (2b), (2c);

and the following mixtures of (A) and (B) with (C):

(D) WV -algebras (nonlocal (PF ) quadratic): (2d) and (3b) (and all V
(1;1)
n+1 -algebras

of sec. 3 of ref [33]);

(E) UV -algebras (nonlocal (PF ) rational): V (1;2)
4 = U

(1;2)
4 =U(1).

This observation adresses the question about the algebraic conditions that a given set of
constraints (and gauge �xing conditions) fHg 2 G should satisfy in order to lead to one of
the above mentioned algebraic structures (U , W , V , UV , UW ). To answer this question,
as well as whether other families of algebras can exist, we need an e�cient method for
describing all unequivalent (and irreducible) sets of �rst class constraints one can impose
on the currents of a given a�ne algebra Ĝ. Given a Lie algebra Gr, by introducing a

grading operator6 Q(s)
r =

Pr

n=1 sn
~2�n� ~H
�2n

we provide it with a speci�c graded structure7

Gr = �iG
(s)
�i ; [Q

(s)
r ;G

(s)
�i ] = �iG

(s)
�i ; [Gi;Gj] � Gi+j .

For each �xed l = 1; 2; :::; r (and Q(s)
r ), de�ne the nilpotent subalgebra N (l;s)

+ = �i=lGi and

choose a generic element �(l)+ 2 Gl, i. e., �
(l)
+ =

P
�2[�]l ��E[�]l where E[�]l are all the step

operators of grade l and �� are arbitrary constants. Next, we consider the �
(l)
+ -invariant

subalgebras of G(l)
0 = �l�1

i=0Gi and G
(l)
� = �r

i=lG�i

6 ~�n are the fundamental weights of Gr, ~�n its simple roots, ~H its Cartan subalgebra and sn are
nonnegative integers.

7The nonequivalent graded structures Gr can have (i. e., the set of the allowed Q
(s)
r ), are given by the

Kac theorem [38]; this method was introduced in ref [39], in the construction of the conformal non-Abelian
Toda models.
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K0
� (s; l) = kerad�

(l)
+ \ G

(l)
0 = fg00 2 G

(l)
0 : [�

(l)
+ ; g

0
0] = 0g,

K�
� (s; l) = kerad�(l)+ \ G(l)

� = fg� 2 G(l)
� : [�(l)+ ; g

�] = 0g.

Finally, we de�ne the \constraint" subalgebra as H
(l;s)
c (�

(l)
+ ) = N

(l)
+ (�) � H

(l)
0 , where

H
(l)
0 � K0

� (s; l) denotes those subalgebras of K
0
� , which elements (i. e., the currents belong-

ing to H
(l)
0 ) are constrained to zero; N

(l)
+ (�) caries the information about the constraints

we are imposing on the currents from N (l)
+ , namely all the elements of the subalgebra

N (l+1)
+ � N (l)

+ are zero and the elements of Gl, which are constrained to be constants

�� 6= 0, are collected in �(l)+ =
P

� ��E� (all the remaining Gl elements are zero). In this

language, the problem of the classi�cation of the allowed set of constraints H(l;s)
c (�) reads

as follows: for each �xed Q
(s)
r and �xed grade l (say l = 1), to make a list of all the

nonequivalent choises of the �(l)0+ s. One can further organizes the di�erent sets of �(l)0+ s (l

and Q
(s)
r �xed) in families (K0

� (s; l), K
�
� (s; l)), according to their invariant subalgebras.

For example, the family (�i � H, 
) is characterized by the conditions: (a) �� = 0, for

the ~�i � ~�i 6= 0 (� 2 [�]l), and (b) i = 1 or i = r (for the l = 1 case), in order to have
K�
� (s; 1) = 
. We call equivalent the sets of constraints (and gauge �xing conditions)

which can be obtained from each other by certain discrete transformations from the Weyl
group of Gr. As it is shown in sec. 8 of ref [33] (for the grade l = 1), they give rise to the

same H
(l;s)
c (�)-reduced Gr-algebra. Therefore, it is su�cient to consider only one repre-

sentative of such \Weyl families" of constraints. The problem of the irreducibility is more
delicate. Depending on our choice of �(l)0+ s, it might happens that the Gr=H

(l;s)
c (�)-algebra

splits into two (or more) mutualy commuting algebras [37]. This is the case when one
takes, for example �� = 0, for all E� that contains the simple root �i (i. e., E�i, E�i+�i+1 ,
E�i�1+�i, E�i�1+�i+�i+1 etc).

The organization of the constraints in the families (K0
� (s; l), K

�
� (s; l)) simpli�es the

derivation of the G
(l;s)
r (�;H

(l)
0 ) = Gr=H

(l;s)
c (�)-algebras (i. e., the calculation of the corre-

sponding Dirac brackets). Depending on the algebraic data fGr; Q(s); l; �
(l)
+ g, which de�nes

H
(l;s)
c (�), one can classify all the G

(l;s)
r (�;H

(l)
0 )-algebras in the following fH

(l)
0 ;K

�
� (s; l)g-

families of algebras:
THEOREM. Given Gr and the graded structure (Q(s)

r , l, �(l)+ ), which de�ne the con-

straints subalgebra H
(l;s)
c (�) � Gr. Each H

(l;s)
c (�)-reduced Gr-current algebra G

(l;s)
r (�;H

(l)
0 )

belongs to one of the following �ve types of extended Virasoro algebras:
(1) W -algebras, when H(l)

0 = 
 (or H(l)
0 6= 
 but [H(l)

0 ;G
�
0 ] = 0) and K�

� = 
 (G�0 are
the � step operators of grade 0);

(2) U -algebras, when H(l)
0 = 
 (or H(l)

0 6= 
 but [H(l)
0 ;G

�
0 ] = 0) and K�

� 6= 
; dim K�
�

is the number of the nonlocal currents (or of the \rational currents" of ref [35]);

(3) V -algebras, when H
(l)
0 6= 
 and H

(l)
0 = U(1)r or U(1)r�1 = f�r

i=2�i � Hg or

f�r�1
i=1�i �Hg, K

�
� = 
; the case �

(l)
+ = 0, H

(l)
0 = U(1)r, which also lead to V -algebras, has

to be treated separately (see ref [37]);

(4) VW -algebras, whenH
(l)
0 6= f
; U(1)r; U(1)r�1g andK�

� = 
; the case [H
(l)
0 ;G

�
0 ] =

0 (G�0 are the � step operators of grade zero) has to be excluded, since it gives rise to
W -algebras;
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(5) V U -algebras, when H
(l)
0 6= f
; U(1)r; �r

i=2�i � H; �
r�1
i=1�i � Hg, and K

�
� 6= 
; in

this case, again [Hl
0;G

�
0 ] 6= 0.

The algebraic conditions that separate W - from the U -algebras are given in ref [35].
The equivalence of the rational U -algebras, to certain nonlocal algebras, and the explicit
form of the gauge transformations, from the \rational" gauge �xing conditions to \non-
local" gauge �xing conditions, is demonstrated in ref [37]. The proof of this theorem, for

the generic Q
(s)
r grade one (l = 1) case [37], is based on the analysis of the properties of

the inverse matrix ��1
ij of the constraints and the gauge �xing conditions. The origin of

the nonlocal terms in the V - , VW - and V U -algebras, are the H
(l)
0 constraints and their

gauge �xing0s. Their PB0s are always in the form fJi(�); Jj(�0)g = k�ij@��(� � �0) or
fJ��i(�); J�i(�

0)g = k@��(�� �0). Their contributions to ��1
ij are the nonlocal �(�� �0)-

terms.
The explicit form of each G

(l;s)
r (�;H

(l)
0 )- algebra (from a given class U , V , VW etc)

indeed depends on the algebra Gr and on the choice of �
(l)
+ and H

(l)
0 as one can see from

our Examples 1, 2 and 3. The full algebraic structure (all explicit PB0s) is known in the

case of theWn-algebras [25] and of the simplestAr-family of VW -algebras (V
(1;1)
r+1 -algebras

[33]) de�ned by Q =
Pr

i=l �i �H, l = 1, �
(1)
+ =

Pr

i=2E�i ,H
(1)
0 = f�1 �Hg. Various examples

of the U - V - and V U -algebras (V(n;m)) have been constructed by Bilal [32], by calculating
the second Gelfand-Dikii brackets, associated with certain matrix di�erential operators.

3 Quantum V -algebras

The classi�cation of all the classical (PB0s) extensions of the Virasoro algebra is an
important step forward the classi�cation of the universality classes in two dimensions.
The complete solution of this problem requires, however, the knowledge of the exact
critical exponents, i. e., we need to know the h. w. representation of the corresponding
quantumW -, U -, V - and V W -, V U -algebras. The quantization of the classicalW -algebras
is a rather well understood problem. It consists in replacing the currents functions T , Wn

by currents operators T̂ , Ŵn, acting on some Hilbert space, and their PB0s fa; bg by
the commutators � {

�h [a; b]. The only changes that occur in this procedure are the new
(quantum corrections) coe�cients in front of the central term �(s)(�) and those of the
quadratic terms. Another option is to start with the quantum current algebra Gr and to
implement the operators constraints H(l;s)

c (�) on it, following the methods of the quantum
Hamiltonian reduction [36]. The advantage of this method is that it provides a simple way
of deriving the W -algebra h. w. representations from the h. w. representations of the Gr-
current algebra. The speci�c nonlocal terms V +(�)V �(�0)�(���0) that appears in the V -
(and VW -, V U -) algebras, as well as the nonlocal nature of the part of the currents (V �

i ),
are the main obstacle to the construction of the corresponding quantum V -algebras. It
turns out [33], [34] that their quantization require deep changes in the classical algebraic
structure (13), (19), (20), namely: (a) renormalization of the bare spins of the nonlocal

currents (say for V (1;1)
n+1 , s

�
cl = n+1

2
goes to s�q = n+1

2

�
1� 1

2k+n+1

�
); (b) the quantum

counterpart of the PB 0s of the V �0s charges appears to be speci�c PF -type commutators,
similar to eqn. (10);
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(c) breaking of the global U(1) symmetry, to some discrete group Z2k+n.
The fact that all the complications in the quantization of the classical V - and VW -

algebras are coming from the H(l)
0 -constraints suggests the following strategy: relax the

H(l)
0 -constraints (i. e., leave the currents �iaJi 2 H(l)

0 unconstrained) and consider the
corresponding local \intermidiate" W -algebra, generated by the V - (or VW -) algebra

currents (which are all local now) and the additional spin one H(l)
0 -currents. Since all

the currents are local, the quantization of this algebra is similar to the one of the Wn+1-

or W (l)
n+1-algebras [25], [36]. The problem we address here is the following: Given the

quantum W -algebra and its h. w. representations, to derive the quantum V = W=H(l)
0 -

algebra and its h. w. representations by implementing the (operator) constraint H(l)
0 � 0.

The method we are going to use is an appropriate generalization of the derivation of the
ZN parafermionic algebra [12] from the a�ne SU(2)-one (or SL(2; R), for the noncompact
PF 0s), by imposing the constraint J3(z) � 0.

Example 3.1. Quantization of the PF -algebra. Following the arguments of
ref [12], we de�ne the quantum (compact) V2-algebras as V2 = fSU(2)k; J3(z) = 0g.

Therefore, the V2-generators  
� have to represent the J3 =

q
k
2@� -independent part of

the ŜU (2)k-ones, i. e.,

J� =  � exp(���); T = TV +
1

2
(@�)2; J3(z1) 

�(z2) = O(z12);

�(z1)�(z2) = � ln(z12) +O(z12): (23)

Taking into account the SU(2) OPE0s

J3(z1)J
�(z2) = �

{

z12
J�(z2) +O(z12) (24)

and eqn. (23), we �nd � = {
q

2
k
and, as a consequence, the spins of  � are s� = 1 � 1

k

(we have used that sJ� = 1). Finally, eqns. (23) and (24) lead to the following V2-algebra
OPE0s

 �(z1) �(z2) = z
� 2
k

12  
�
(2)(z2) +O(z12);

 +(z1) 
�(z2) = z

2
k

12

�
k

z212
+ (k + 2)TV +O(z12)

�
; (25)

which are nothing, but the PF -algebra OPE0s (9), with k = N and  �1 = 1p
k
 �. Al-

though the V2-algebra (25) is, by construction, the quantum version of the classical PB0s
PF -algebra (17), the discrepancy between the spins s� = 1 � 1

k
and sV� = 1 requires a

more precise de�nition of the relation of algebras (25) and (17). The exact statement is
as follows: let V � = 1

k
 � and the V � PB0s are de�ned as a certain limit of the OPE0s

(25):

fV a(z1); V
b(z2)g = lim

k!1
k

2�{
[V a(z1)V

b(z2)� V a(z2)V
b(z1)] (26)
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(a; b = �). Then, the k ! 1 limit of the OPE0s (25) reproduces the PB0s (17). The
proof is straightforward. Applying twice the OPE0s (25), we �nd

z
2
k

12fV
�(z1)V �(z2)� V �(z2)V �(z1)e�

2�{
k
�(z12)g =

1

k2
O(z12);

z
� 2
k

12 fV
�(z1)V +(z2) � V +(z2)V

�(z1)e
2�{
k
�(z12)g =

k + 2

k2
O(z12)

+
1

k

�
1

z212 + {0
�

1

z221 + {0

�
; (27)

where the identity {��(z12) � ln z12+{0
z21+{0

has been used. The k ! 1 limit of eqns. (27)

reproduces exactly the classical PF -algebra8 (17). The conclusion is that the nonlocal
PB0s-algebra (17) is a semiclassical limit (k !1) of the PF 0s OPE0s (25). As we have
seen, the quantization requires renormalization of the spins sq = scl �

1
k
of the nonlocal

currents V �. Therefore, the PB0s (17) have to be replaced by the PF -commutators (10)
and for k-positive integers, the classical global Z2
U(1)-symmetry is broken to Z2�Zk,
in the quantum theory.

The structure of the classical V (1;1)
3 PB0s algebra (13) is quite similar to the PF -one

(17). An importante di�erence is that in its derivation from the classical SL(3; R) (see

our example 2b), one has to impose, together with the H1
0-type (PF ) constraint

~�1 � ~J = 0,

two more constraints, on the nilpotent subalgebra N (1)
+ : J�2 = 1 and J�1+�2 = 0. In order

to demonstrate how this type of (purelyW -) constraints are treated, in the frameworks of
the quantum Hamiltonian reduction, we consider the simplest example of such reduction:
the N+-reduced SL(2; R) (J� = 1) which gives rise to the Virasoro algebra (example 1a).

Example 3.2. Virasoro algebra h. w. representation from the SL(2; R)-
ones [36]. The implementation of the constraint J� = 1 as an operator identity on the

SL(2; R)k -space of states H
(k)
A1

requires an introduction of a pair of fermionic ghosts (b(z),

c(z)) of spins (0,1) and of the larger space of states H
(k)
A1

Hb;c. The reduced representation

space of the constrained system fA1=N+g can be de�ned by means of the BRST operator

QBRST =
H
[J�(z)� 1]c(z)dz; Q2

BRST = 0,

as QBRST -invariant states-j >2 H
(k)
A1

Hb;c (QBRST j >= 0), which are notQBRST -exact,

i. e., j >6= QBRST j� >. The statement is that this BRST -cohomology HQBRST
(H(k)

A1



Hb;c) = kerQ=ImQ is isomorphic to the irreducible representation space H(k)
V ir(� HA1=N+)

of the Virasoro algebra [36]. To make the constraints condition J� = 1 consistent with the
conformal invariance, we have to improve the SL(2; R)-Sugawara stress-tensor, in such a
way that simp(J�) = 0

Timpr =
1

k + 2
: Ja(z)Ja(z) : +@J3:

8The noncompact case SL(2; R)=U (1) corresponds to the change � ! {�, which turns out to be
equivalent to the k!�k one, in the OPE0s, spins etc.
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Therefore, the new central charge is cimpr =
3k
k+2

�6k. Taking into account the contribution
cgh = �2, of the ghost stress-tensor Tbc = (@b)c, we �nd that the total central charge is

ctot = 13�6
�

1
k+2 + k + 2

�
. Since the dimension of the ŜL(2; R)k representation of weight

~� is

�� =
1

2(k + 2)
~� � (~� + 2~�)

the improved dimensions are found to be

�impr
� =

1

2(k + 2)
~� � (~� + 2~�)� ~� � ~�: (28)

An important observation of ref [36] is that the h. w. states of the reduced space H
(k)
V ir

are of levels k + 2 = m
m+1

, where m = 3; 4; :::, and weights

~� = [(1� p)(k + 2)� (1� q)]~�;

with 1 � p � m � 1, 1 � q � p. Therefore, ctot = 1 � 6
m(m+1) and �impr

� = �p;q, i. e.,

the H(k)
V ir = HQBRST

(H(k)
A1

Hb;c) (for the above values of the levels, and the A1-weight ~�)

coincides with the space of the h. w. unitary representations (3) of the Virasoro algebra.

Example 3.3. Quantum V
(1;1)
3 -algebra. As it was pointed out in ref [33], [34], the

intermidiateW (1;1)
3 -algebra is Weyl equivalent (w�1) to the Bershadsky-Polyakov algebra

W
(2)
3 . The improved stress-tensor is given by

T impr =
1

k + 3
: J q(z)J q(z) : �(�2 �

1

2
�1)

i@Ji (29)

and we have to introduce the following two pair of ghosts: (b; c) and (�; �+), of spins (0,1)

and (12 ;
1
2). Constructions, similar to the ones in Example 3.2, allow to derive the W

(1;1)
3

central charge

c
W

(1;1)
3

= 8k
k+3 � 6k � 1

and the dimensions �~r;~s and U(1) charges qr;s of its h. w. representations (NS-sector)
[28] read as

�W
~r;~s =

1

2(k + 3)
~�r;s � (~�r;s + 2~�)� ~� � ~�r;s;

q~r;~s =
1

3

�
2
p

q
(r1 � r2) � (s1 � s2)

�
; (30)

where � = �2 �
1
2�1, with

~�r;s representing the weights of the following speci�c level
k + 3 = 2p

q
representations of SL(3; R)k

~�r;s =
2X
i=1

~�i[(1� ri)(k + 3) � (1 � si)];
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where 1 � si � 2p � 1, 1 � ri � q. The quantum W
(1;1)
3 -algebra is generated by one spin

s = 1 J(z), two spin s = 3
2
G�(z) and one spin s = 2 T (z) currents, with OPE0s [28]

J(z1)J(z2) =
2k + 3

3z212
+O(z12); J(z1)G

�(z2) = �
1

z12
G�(z2) +O(z12);

G+(z1)G
�(z2) =

(k + 1)(2k + 3)

z312
+ 3

k + 1

z212
J(z2)

+
1

z12

�
3J2(z2)� (k + 3)T (z2) + 3

k + 1

2
@J(z2)

�
+O(z12):

G�(z1)G�(z2) = O(z12); (31)

According to the de�nition of the V (1;1)
3 -algebra V (1;1)

3 = fW (1;1)
3 ;J = 0g, its generators

V �(z) and TV have to commute with J(z), i. e.,

J(z1)V
�(z2) = J(z1)TV (z2) = O(z12): (32)

Therefore, V �, TV are related to the J =
q

2k+3
3 @�-independent parts of the W

(1;1)
3 -

currents

G� = V � exp(�a�); TW = TV +
1

2
(@�)2; �(z1)�(z2) = ln(z12) +O(z12): (33)

As a consequence of eqns. (32) and (33), we get a =
q

3
2k+3 , and for the spins of the

quantum currents V � �scl = 3
2

�
, we obtain s�q = 3

2

�
1� 1

2k+3

�
. The W

(1;1)
3 �OPE 0s (31),

and eqn. (33), lead to the following OPE 0s for V � and TV (k 6= �3;�3
2
;�1)

V +(z1)V
�(z2) = z

3
2k+3

12

�
(2k + 3)(k + 1)

z312
�
k + 3

z12
TV (z2) +O(z12)

�
;

TV (z1)V
�(z2) =

s�q
z212

V �(z2) +
1

z12
@V �(z2) +O(z12);

V �(z1)V �(z2) = z
� 3

2k+3

12 V �
(2)(z2) +O(z12); (34)

which de�ne the quantum V
(1;1)
3 -algebra. The TV (1)TV (2) OPE has the standard form

(4), of the Virasoro OPE 0s, with central charge cV = �6 (k+1)2

k+3 . The V
(1;1)
3 -algebra (34)

has a structure similar to the PF -one (9), and for L = 2k + 3 positive integers (L > 3),
the OPE0s (34) involves more currents V �

l (l = 1; 2; :::; L � 1) of spins s�l = 3l
2L
(L � l).

Introducing the (Laurent) mode expansion for the currents9V �

V �(z)��s(0) =
1X

m=�1
z�

3s
2L+m�1��V �

�m��� 1
2+3 1�s2L

��s(0);

9��
s
(0) denotes certain Ramond (� = 1

2 , s-odd) and Neveu-Schwartz (� = 0, s-even) �elds, where
s = 1; 2; :::; L� 1.
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we derive, from (34), the following \commutation relations" (of PF -type) for the V
(1;1)
3 (L)-

algebra (jLj > 3)

1X
p=0

Cp

(� 3
L
)

�
V +
�3 s+1

2L +m�p��+ 1
2

V �
3 s+1

2L +n+p+�� 1
2

+ V �
�3 1�s2L +n�p+�� 1

2

V +
3 1�s2L +m+p��+ 1

2

�

=
1

2
(L+ 3)

�
�Lm+n +

(L� 1)L

2(L + 3)

�
3s

2L
+ n + �

��
3s

2L
+ n+ � � 1

�
�m+n;0

�
(35)

where Cp

(M) =
�(p�M)
p!�(�M), with m;n = 0;�1;�2; :::, and

1X
p=0

Cp

( 3
L
)

�
V �
3 3�s2L �p+m+�� 1

2

V �
3 1�s2L +p+n+�� 1

2

� V �
3 3�s2L �p+n+�� 1

2

V �
3 1�s2L +p+m+�� 1

2

�
= 0: (36)

In the particular cases, when L = 2; 3, the OPE0s V �V � have also a pole, which makes
eqn. (36) nonvalid. The simplest example of such V

(1;1)
3 -algebra, for L = 2, is spanned by

V � of s� = 3
4
and TV , only. The relations (36) are now replaced by

1X
p=0

Cp

( 12)
(V �
�p+m+�� 3

4

V �
p+n+�� 5

4

+ V �
�p+n+�� 3

4

V �
p+m+�� 5

4

) = �m+n+2�;0;

and by the similar one, for V +V +. As in the PF -case, one can easily verify that certain
limits of the OPE 0s (34) reproduces the classical PB0s V (1;1)

3 -algebra (13).

The relations (33), between W
(1;1)
3 and V

(1;1)
3 currents, lead to the following form for

the W
(1;1)
3 -vertex operators �W(ri;si)(z) in terms of the V

(1;1)
3 -ones �V(ri;si)(z) and the free

�eld �

�W(ri;si) = �V(ri;si) exp

"
q(ri;si)

r
3

L
�

#
: (37)

The construction (37) is a consequence of eqns. (33), of the following OPE 0s

TW (z1)�
W (z1) =

�W
r;s

z212
�W(r;s)(z2) +

1

z12
@�W(r;s)(z2) +O(z12);

J(z1)�
W (z2) =

qr;s
z12

�W(r;s)(z2) +O(z12);

and of the fact that �V(r;s) are J -neutral, i. e., J(z1)�V(r;s)(z2) = O(z12). Finally, we

realize that the dimensions �V
(r;s) of the V

(1;1)
3 primary �elds �V(r;s) are related to the �W(r;s)

dimensions and charges, given by eqns. (30), as follows

�V
(r;s) = �W

(r;s) �
3

2L
q2(r;s): (38)
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Taking into account the explicit values of �W
(r;s) and q(r;s) (30), for the class of \completely

degenerate" h. w. representations of W
(1;1)
3 (L+3 = 4p

q
), we derive the dimensions of the

h. w. representations of V
(1;1)
3 .

The main purpose of our discussion about the quantization of the classical (PB0s)
nonlocal V (1;1)

3 -algebra (13) is to point out the di�erences with the quantization of the

W3- and W
(1;1)
3 -algebras, and the similarities with the PF -algebra. The origin of all these

complications is the renormalization of the spins of the nonlocal currents V �, s�q = s�cl�
3
2L
,

which makes the singularities of the V (1;1)
3 �OPE0s (34) L-dependent. For certain values

of L, this requires to introduce new currents V �
l and W�

p (see ref [33]), in order to close
the OPE-algebra. The typical PF -feature is the replacing of the Lie commutators, with
an in�nite sum of bilinears of generators, as in eqns. (35) and (36). One might wonder

whether the V (1;1)
n+1 -algebras (de�ned in ref [33]), exhibit similar features. Our preliminary

results show that the renormalization of the spins of the nonlocal currents V �
(n+1) is a

commun property of all V
(1;1)0
n+1 s

s�n (q) =
n+1
2

�
1� 1

2k+n+1

�
.

As usual, the spins of the local currents Wl+1 remain unchanged. All this indicates that

quantum V
(1;1)
n+1 -algebras share many properties of V

(1;1)
3 . The construction of the h. w.

representations of these algebras, as well as the quantization of the V - and WV -algebras
of other types, say as in (19) and in (20), is an interesting open problem. The same is

valid for the simplest U
(1;2)
4 -algebra, for the UV -algebra V

(1;2)
4 , of ref [33], and for the

various explicit examples of U - and UV -algebras, given in ref [37].
It is important to note, in conclusion, that the classi�cation of the classical extensions

of the Virasoro algebra, described in this paper, does not solve the problem of the classi-
�cation of universality classes in two dimensions. The complete solution of this challenge
problem requires the construction of the h. w. representations of the corresponding quan-
tum W -, U -, V (and WV -, UV -)-algebras. We consider the above discussed quantization

of the V (1;1)
3 -algebras as a demonstration that relatively simple tools, for the realization of

this program, do exist.
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