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ABSTRACT

Electronic structure calculations based on Density Functional theory were performed

for solids and large molecules . The solids were represented by clusters of 60-100

atoms embedded in the potential of the external crystal. Magnetic moments and

Mössbauer hyperfine parameters were derived.
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  I. INTRODUCTION

   The theoretical evaluation of the Mössbauer hyperfine parameters Isomer Shift (IS),

Quadrupole Splitting (QS) and magnetic Hyperfine Field (HF) may be performed with

first-principles electronic structure calculations based on Density Functional theory

(DFT) [1]. The methods employed  usually rely on the Local Density approximation

(LDA), or Local Spin-Density approximation (LSDA) in the case of magnetic systems

[2]. Two types of approaches may be considered. If the solid has translational

symmetry, as in a pure crystal, band-structure methods may be employed; these are

based on Bloch’s theorem, which states that the one-electron wave function φi at point

(r + R), where R is a lattice vector, is equal to the function at point r times a phase

factor:

                                            φi(r + R) = eik.R φi(r)                                                        (1)

The band-structure methods, in which the electronic structure is obtained in k space,

may often be recognized by their initials, such as APW, LMTO, FLAWP, KKR, etc.

    On the other hand , if translational symmetry is missing electronic structure

calculations may be performed in real space. This applies to molecules containing

atoms which are Mössbauer probes such as Fe, Sn, Au, etc, and to solids represented

by a cluster of atoms. These solids may be pure crystals or crystals containing

inpurities (substitutional or interstitial), vacancies, local geometrical distortions, etc,

since no translational symmetry constraints are imposed.

   One way of performing DFT calculations in real space is by employing the Discrete

Variational method (DVM) [3]. With the DV method it is possible to treat systems of
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60-100 atoms , containing transition metals or rare-earths. In the case of clusters

representing solids, an embedding scheme is utilized in which the cluster is

surrounded by the charge densities of several shells of atoms in the crystal, forming an

external potential.  In this method  the one-electron functions are expanded on a basis

of numerical atomic orbitals , and are then expressed on a three-dimensional grid of

points.

   In section II the main features of the DV method are described briefly, as well as the

manner of calculating the hyperfine parameters. In section III are given a few

examples , covering a wide diversity of systems, of applications of the method .

II.  THEORETICAL METHOD

a. The self-consistent procedure

   The self-consistent DVM scheme constitutes of solving iteratively the set of Kohn-

Sham equations of DFT [4] for the cluster or the molecule, in a three-dimensional grid

of points (in Hartrees):

                         hKS φiσ ≡ (−∇ 2/2 + Vc + Vσ
xc)φiσ = εiσφiσ

(2)

where Vc  is the Coulomb potential of the nuclei and electrons and Vσ
xc  is the

exchange and correlation potential for spin σ [5],  functionals of the electron density

of spin σ:
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                                       ρσ(r) = ∑i niσφ iσ(r) 2  .

(3)

   The self-consistent procedure is the following : an initial density ρ is assumed

(usually a superposition of atomic densities) , the Kohn-Sham Hamiltonian hKS in

Eq.(2) is constructed and the set of equations is solved.  From the eigenvectors φ

obtained, a new density is derived according to equation (3), a new hKS is formed and

the equations are solved again. This procedure is repeated until the ρ obtained is the

same as the input ρ, within an established accuracy. The occupation numbers niσ are

given by Fermi-Dirac statistics. In spin-polarized calculations ρ↑(r) has the freedom to

be different from ρ↓(r), thus creating a spin density and magnetic effects.

 The molecular or cluster spin-orbitals φiσ are expanded as linear combinations of

numerical atomic orbitals (LCAO or tight-binding approximation). Applying the

Discrete Variational  scheme leads to the secular equations that are solved self-

consistently in the three-dimensional grid:

                              ([H] − [E][S]) [C] = 0                                                                   (4)

In Eq. (4), [H] is the Hamiltonian matrix, [S] the overlap matrix and [C] the matrix of

the eigenvector coefficients which define φiσ . The numerical grid is pseudo-random

(Diophantine), except inside spheres centered around certain atomic nuclei, where a

more precise polynomial integration may be necessary, as for the case of calculations

of hyperfine interactions.  The total number of points per atom varies from 200-300
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for small atoms such as C or N, to several thousands for larger atoms such as

transition metals and lanthanides.

   In the case of clusters representing solids, the embedding is constructed by placing

electron densities obtained with  atomic calculations at the sites of several shells of

atoms in the surrounding crystal. The external densities at each point are added to the

cluster density to build the cluster Hamiltonian.

   To facilitate the evaluation of the Coulomb term, a model density consisting of a

multicenter multipolar expansion is used in the Hamiltonian, and fitted to the “real”

density by a least-squares procedure [6].

b. Magnetic and hyperfine parameters

   In systems where the number of spin 1/2 electrons exceeds the number of spin -1/2,

the   exchange-correlation potential Vxc in Eq.(2) will be different for each spin. From

spin-polarized calculations , the spin density ρ↑(r)  −−−− ρ↓(r) may be obtained at each

point r. Furthermore , spin magnetic moments at each atomic site may be defined as

the total atomic Mulliken population (electron ocupation number) of spin up minus

spin down. This definition allows the analysis of the orbitals contributions to the

moment; an alternative definition is provided by integrating the spin density inside

each atomic volume.

   The Isomer Shift (IS) measured by Mössbauer spectroscopy is defined as [7]:

             IS = 2/3 e2 π Z S’(Z) ∆<r2> [ ρA(0) − ρS(0)]

(5)
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where ∆<r2> is the variation of the mean-square radius of the nucleus between the

excited and ground states of the Mössbauer transition, S’(Z) is a correction for

relativistic effects and the term in brackets is the difference between the electron

density at the nucleus in the absorber A and source S. In a non-relativistic

approximation, only orbitals containing s states contribute to ρ(0). For 57Fe, a

correlation between ρ(0) (3s + 4s) and IS values for free atom and ions gave IS =

−0.228 ρ(0) + 33.638 [8].

    The quadrupole splitting QS of the excited state of the 14.4 keV transition of 57Fe is

given by:

              QS = 1/2 e Vzz Q (1 + η2/3)1/2                                                                        (6)

where Q is the quadrupole moment of the nucleus in the excited state (I=3/2) of the

Mössbauer transition, Vzz the electric field gradient and η the asymmetry parameter ,

which is zero for axial symmetry. The components of the electric field gradient tensor

are calculated from the self-consistent molecular or cluster density by:

Vij = −e ∫ ρ(r) (3xixj − δijr2)/r5 dv + ∑q Ze
q (3xqi xqj −δijr2)/r5

q +  ∑p Kp (3xpi xpj

−δijr2)/r5
p

                                                                                                                                    (7)

The first term is the valence electronic contribution, the second term is the

contribution of the surrounding nuclei of the cluster or molecular atoms, with effective

charge Ze
q equal to the number of protons minus the number of core electrons, and the



CBPF-NF-065/97-7-

third term is the contribution (only in the case of solids) of the atoms external to the

cluster, taken as point charges. After diagonalization , necessary in the absence of

axial symmetry, the electric field gradient is defined by the convention:

                                             Vzz> Vyy≥ Vxx

(8)

with η = (Vxx − Vyy)/Vzz . The value of Q employed was 0.16b [9].

   The contact or Fermi component Hc of  the magnetic hyperfine field HF , which is

usually the dominant component, is given by:

                   Hc = (8/3) π µB [ρ↑(0) − ρ↓(0)]

(9)

where µB is the Bohr magneton and the term in brackets is the spin density at the

nucleus.

II. MAGNETISM AND HYPERFINE FIELDS IN γγγγ-Fe

 Pure bulk γ-Fe (or fcc Fe) only exists at very high temperatures (between 1183 and

1667 K). However, fcc Fe may be stabilized down to very low temperatures either as

small coherent precipitates in a Cu or Cu alloy matrix, or as thin epitaxial films on a

Cu substrate [10]. There is great interest in fcc Fe due to the existence of several low-

lying magnetic states; band structure calculations have shown that at larger



CBPF-NF-065/97-8-

interatomic distances, a  ferromagnetic (FM) state is more stable, and at smaller

distances an antiferromagnetic (AFM) state prevails [11].

   We have performed calculations for 62-atoms clusters representing γ-Fe (see Fig. 1),

to investigate the origin of the large difference found experimentally in the magnitude

of the hyperfine fields of fcc Fe, which are small at small lattice constants (AFM) and

much larger at large lattice constants (FM) [10]. So far, this difference had been

ascribed to a large increase in the magnetic moments when changing from AFM to

FM. The calculated magnetic moments, plotted in Fig. 2, indeed show a gap between

AFM and FM, but not the large differences that would explain the experimental data,

obtained by Mössbauer spectroscopy (see Ref. [10]).

   On the other hand, the calculated hyperfine fields display a much wider gap (see Fig.

3). Upon separating the valence or conduction electrons contribution (4s) from the

core contribution (1s + 2s + 3s), it is verifyed that for AFM γ-Fe the valence

contribution is positive and largely cancels the negative core fields, resulting in total

fields of small magnitude. On the other hand, for FM the valence contribution is

negative and adds to the negative core field, resulting in total fields of much larger

magnitude [12].

     We conclude that the large difference found experimentally in the magnitude of the

hyperfine fields of FM and AFM fcc Fe originates mainly from different signs of the

valence electrons contributions, and not from large differences in the Fe magnetic

moments in the two states. This result shows clearly that the common practice of

considering the hyperfine field as proportional to the magnetic moment may be very

misleading.

     Calculations were also performed for clusters representing Fe particles in fcc Cu

[13] to simulate the precipitates formed experimentally. It was found that the Cu
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atoms develop small 3d magnetic moments polarized ferromagnetically with respect

to Fe 3d, and 4s,4p moments polarized antiferromagnetically, in agreement with

recent magnetic circular dichroism experiments on multilayers [14].

IV. RARE-EARTH BOROCARBIDES: PURE AND Fe-SUBSTITUTED

  The rare-earth borocarbides RENi2B2C (RE is for rare-earth) have attracted a great

deal of attention recently due to the discovery of superconductivity in the case of the

heavy RE  (Dy, Ho, Er and Tm) [15]. However, it was intriguing that , although the

compounds could be synthesized also with the light rare-earths, no superconductivity

could be found in the latter.

   Spin-polarized calculations were performed for 73-atoms clusters representing the

layered borocarbides (RE=Pr, Nd, Sm, Gd, Ho, Tm) (see Fig. 4), to investigate the

interplay between magnetism and superconductivity in these compounds [16].

According to experimental findings, the RE layers have FM magnetic order among

atoms in the same layer, and AFM among layers.  It was found that the conduction

electrons spin polarization produced by the RE 4f spin moments is much more

effective in the case of the light RE, than in the heavy RE. This result is illustrated in

Fig. 5 , where the spin densities of HoNi2B2C and NdNi2B2C are compared. It may be

seen that , although the 4f spin moments are of comparable magnitude  in  both  cases

( 3.1µB  and 3.6µB  respectively), the spin density of the conduction electrons is much

larger and more extended for NdNi2B2C.  The reason for this is that the radius of the

4f orbital of the RE contracts rapidly along the  series, and thus for the heavier RE it

does not polarize the valence electrons effectively. The spin density of the valence

electrons create an exchange field that tends to destroy the Cooper pairs, which are
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singlets; since this spin density was calculated to be considerably larger in the light

rare-earth compunds, this explains why no superconductivity could be found in the

latter.

   Clusters similar to the above were considered to represent dilute Fe-substituted

RENi2B2C (RE=Y, Gd, Tb, Dy, Ho, Er) , with Fe substituting one Ni atom and placed

at the center of the cluster. In a theoretical-experimental colaboration [17], calculated

quadrupole splittings at the Fe impurity were compared to the values measured by

Mössbauer spectroscopy. In Fig. 6 are displayed the theoretical and experimental

values, correlated to the ratio of the lattice parameters c/a. It is seen that calculated

values compare well with experiment. The sign of the electric field gradient, which

was not obtained experimentally except for Ho, was found to be negative in all cases.

Furthermore, the almost linear correlation with c/a was discovered to be due to a

volume effect, and not to a chemical effect brought in by RE substitution. In fact, as

demonstrated theoretically for Gd(Ni0.99Fe0.01)2B2C [17], a decrease in the lattice

parameter a (along the Ni plane) diminishes dramatically the magnitude of QS.

V. NANOSCALE Fe-O  MOLECULAR CLUSTERS

   Systems of nanoscale or mesoscopic dimensions containing a finite number of

transition-metal atoms display a number of interesting or unusual magnetic properties,

since they may be considered to be on the borderline of isolated and collective

magnetic behavior [18]. Among the properties found are superparamagnetism and

macroscopic quantum tunnelling; furthermore, they have been the subject of

investigations focused on technological applications, such as magnetic refrigeration

and more efficient magnetic recording.
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   One way of obtaining such nanoscale systems with a controlled number of transition

metal atoms is the synthesis of nanoscale molecules consisting of a core of transition

elements bound to O or S, surrounded by a “crown” of organic ligands. These ligands

prevent any further growth of the internal  core, and also assure that the magnetic

interactions in the molecular crystal will be confined to the interior of each molecule,

such that any collective effects found will be solely due to the nanoparticle.

Furthermore, such molecules may be considered to be models for ferritin, a protein

found in mammals which is responsible for Fe storage.

   A number of such nanomolecules  containing Fe have been investigated with

Mössbauer spectroscopy, which gives valuable information on chemical bonding and

magnetic properties [19]. Electronic structure calculations were performed for two

large Fe molecules [20]:  [Fe(OMe)2(O2CCH2Cl)]10 , denominated “ferric wheel” due

to the circular disposition of the 10 Fe atoms [21], and [Fe11O6(OH)6 (O2CPh)15] [22].

In the case of the “ferric wheel”  (Fig. 7), all atoms were included except the terminal

H and Cl; as for [Fe11O6(OH)6 (O2CPh)15] (Fig. 8) , the C-O bonds of the benzoate

ligands were truncated, and the organic ligands substituted by H , a procedure known

as “Hydrogen saturation”.

   In Table I are given the results of the magnetic moments and Mössbauer parameters

for both molecules.  For the “ferric wheel”, the magnetic moment is somewhat smaller

than what would be expected for a Fe +3 ion; the agreement between the calculated

and experimental values of IS and QS is good. For [Fe11O6(OH)6 (O2CPh)15],  three

different types of Fe are present.  Experimental evidence [22] points to an

antiferromagnetic configuration;  for comparison, both FM and a model AFM states

were considered in the calculations. It is seen that  for the AFM configuration the

agreement between calculated and experimental values of the hyperfine parameters is
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good, although the theoretical IS values are somewhat higher than experiment.

Calculations of the magnetic hyperfine field for this molecule are in progress.
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TABLE I

Magnetic moments, isomer shifts and quadrupole splittings of nanoscale Fe
molecules
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 --------------------------------------------------------------------------------------------------------
---

[Fe(OMe)2 (O2CCH2Cl)]10  (“ferric wheel”)
   ------------------------------------------------------------------------------------------------------

--
                                                       calculated                    experimental a

              Magnetic Moment (µB)                         4.3                                  --
              Isomer Shifts (mm/s)                            0.48                               0.52
              Quadrupole Splittings (mm/s)             +0.73                               0.62
--------------------------------------------------------------------------------------------------------

----
[Fe11O6(OH)6(O2CPh)15]

--------------------------------------------------------------------------------------------------------
----

AFM
                                                                                   calculated                 experimentalb

              Magnetic Moment (µB)                     A              4.14                                 --
                                                                        B               3.67                                --
                                                                        C               3.66                                --

               Isomer Shift (mm/s)                         A             0.74                               0.53
                                                                        B              0.78                               0.46
                                                                        C              0.82                               0.51

              Quadrupole Splitting (mm/s)            A           −0.52                               0.49
                                                                        B            −0.83                               0.87
                                                                       C            −1.78                               1.10
--------------------------------------------------------------------------------------------------------

a) From reference [21]. The sign of QS was not determined.
b) From reference [22]. The sign of  QS was not determined.

FIGURE CAPTIONS

Figure 1:
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62-atom cluster representing  fcc Fe. The AFM configuration considered (layered) is

represented by different spheres shades.

Figure 2:

Magnetic moments µ plotted against the Wigner-Seitz radius rs for fcc Fe. From

ref.[12]

Figure 3:

Hyperfine field and components plotted against the Wigner-Seitz radius rs Conduction

electrons contribution . . . . . . . . . . ;  core electrons contribution - - - - - - - - -;

total __________________. From ref. [12].

Figure 4:

73-atoms cluster representing RENi2B2C.

Figure 5:

Spin density contours on a diagonal plane along the c direction for NdNi2B2C and

HoNi2B2C (see ref. [16]). Positive spin density ___________; negative - - - - - - .

Figure 6:

Experimental and calculated absolute values of QS of RE(Ni0.99Fe0.01)2B2C against

c/a. From ref. [17].

Figure 7:

Representation of the molecule [Fe(OMe)2(O2CCH2Cl)]10 (Cl and H excluded) .

Figure 8:

Representation of the molecule [Fe11O6(OH)6 (O2CPh)15] (Fe-O core only).
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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