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ABSTRACT

We investigate the geodesic curves of the homogeneous
Godel-type space~times, vhich constitute a two-parameter (€ and (I} class
of solutions presented to several theories of gravitation {general
relativity, Einstein-Cartan and higher derivative). To this end, we
first examine the qualitative properties of those curves by means of the
introduction of an effective potential and then accomplish the
analytical integration of the equations of motion. We show that some of
the qualitative features of the free motion in Godel's universe
(22 = 20%) are preserved in all space-times, namely: {(a) the projections
of the geocdesics onto the Z-surface (r,#) are simple closed curves, and
(b) the geodesics for which the ratio of azymithal angular momentum to
total energy, 1; .is egqua)l to =zero always cross the origin r = e,
However, two new cases appear: (i) radially mmbounded geodesics with ¥
assuming any (real) walue, which may occur only for the causal
space-times (&7 2 4Q?), and {ii) geodesics with ¥ bounded both below
and above, which always ocour for the circular family (8’ { @) of

space-times.
Eey Uords: Gadel-type space-times; geodesics; effective potential

PACS Numbers: 02.40.+m ; ®4.20.Me ; 98.80.Dr
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1. INTRODUCTION

Despite the early discovery by Lanczosl in 1929 of the first
exact model of a universe endowed with rotating matter in the framework
of General Relativity Theory (GBT), it was only with the solution,
replete with exotic features (absence of cosmic time, violation of the
causality condition, wviolation of Mach’s principle}, produced by G'édel2
in 1949 that the cosmologists’® attention was brought to these rotating
models. The peculiar properties cited above caused the emergence of a
series of papers concerned with the study of the geodesics in that

nndel.g_a fit the same time, there also came to light a plethora of

rotating solutions in GRT analogous to Godel’s cme.g_15 These were
studied with regard to their geometrical eqguivalence and corresponding
sources in a comprehensive paper by Rebougas and Tiunnu.lﬁ Soon after,
Dliveira, Teixeira and Tiomnnl7 extended these solutions to
Einstein-Cartan-Sciama-fibble-Hehl Theory (ECT). More recently, ficcioly
and Gon¢alvesla have provided solutions of this kind in a
higher-derivative gravity thenry. From now on, these solutions will be
referred to as {homogenecus} Godel-type models.

The Godel-type space-times admit the following line elementis

ds? = [dt + {40/€%)sinh?{er/2)}d¥]}? - (lfez)sinhztﬂr)d?z ~ dr? - dz?,
(1.1)

where ¢ and ¢ are constants, with -o ( &€? ( +x. Without any loss of
generality, we will assume that @ is non-negative.
As suggested by (1.1), we can divide owr t{wo-parameter class

of space-times into three families: (i) the hyperbolic family (2% ) 0),
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which includes Godel's space-time” (€2 = 20%) as a special case; {ii}

the Som-Raychaudhury space—timela {€2 » @), and ({iii} the circular
family (€2 ( @). Ue note that, for 4£2 ( @, the hyperbolic functions in

(1.1} transform into circular funections.

f possible natural choice for the range of the coordinates

covering all manifolds in question is - { t,z { 40, @ ¢ r { +m,
® < ¢ {2m, for €2 : 0 and - { t,z { +oo, ® < jelr < m,
@ «¥ { 2nm, for 22 ( @. In any case, t will be called the temporal

coordinate, ¥ the azymuthal one and z the axial one; as concerns the
coordinate r, it is naturally interpreted as a linear magnitude for
€2 » @ and will be called acordingly the radial coordinate, vhereas for
%2 ( @, it is naturally interpreted as an angular magnitude andlso will
be called the zenithal coordinate. Thus, in this last case (&2 ( @),
the coordinates r, ¥ are defined on a (topological} 2-sphere, with
|8|r“= @, n corresponding to the north and south poles, respentiuely.l
.For all these space-times; we will talke the t-coordinate lines
as the natural congruence of observers associated to the coordinate
system (t, r, ¥, 2z}, since they are the only ones which are everywhere
time-like. This congruence defines the wmit time-like vector field

(frame of reference}
& in 5, (1.2)

The wmotion of the particles (observers) comoving with this frame is

determined by its kinematic parameters20

2k = 8 = MY 2, (1.3)

o = asf. (1.4)
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This means that our reference particles (observers} are all in free fall
and rotate rigidly and uniformly with respect to one another.

Tiomno et 31’16,1?

have studied possible sources for these
models both.in GRT and ECT. £ resumé of their results is now given. In
GRT, if we restrict the matter content to a perfect Ffluid, an
electromagnetic field and a long range {massless} scalar field, we can
only yield line elements with -o ( &* ¢ 40% as solutions of the
appropriate coupled field equations (Einstein-Maxwell-Klein-Gordon
equations), whereas in ECT it is possible to generate all line elements
{-w ¢ 22 ¢ +0) taking only a UWeyssenhoff perfect fluid21 for matter
content. In any case, whensver a perfect {massive} fluid was present,
its four-velocity v” coincided with v as defined by (1.2).

The present paper is concerned with the investigation of the
geodesic motion of free test particles in these Godel-type space-times.
For that purpose, we will take advantage of the symmetries of the models
and reduce the motion in the coordinate r to a one-dimensional
problem, thereby allowing an easy and clarifying qualitative analysis by
means of the introduction of an effective potential. In this regard,
this work may be viewed as an extension of a previous article by
Novello, Soares and Tinmno,s in which an analogous study was carried out
for Godel's space-time. This wmethod has already been applied to the
Schwarzschild and Eerr gravitational fields in order to explore the

qualitative features of their gendesics.22’23

Recently, Paiva, Rebougas
and Tbixeirazq have examined, Inter alia, the geodesics of the
Sow-Rayochaudhuri space-time. However, they have not applied the
effective potential wmethod +to perform a previous analysis of the main

gqualitative features of the geodesic motion.

The structure of the paper is as follows. In section 2, we
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set up the system of eguations which completely determine the gendesics
in our universes. In section 3, we make a qualitative analysis of the
motion in the coordinate r via the effective potential graphs, vhile,
in section 4, we integrate exactly the system of equations established
in section 2. In section 5, we sketch the graphs of the trajectories on
the 2-plane (r,P) and investigate some of their features. We conclude
with section 6, where the most important new results are compiled and

compared with those holding in Godel's space—time.

2, THE EQUATIONS OF GEODESIC MOTION

The equations of geodesics for the line element (1.1} have

the four straightforward first integrals

P, = t + (40/€?)sinh?(er/2}P, (2.1)
Pp = (45/€%)sinh?(er/2}t + {4/€%)sinh®(er/2) x

X [(49%/&? - 1}sinh®(€r/2) - 1]9, {2.2)
P, = -z (2.3)
£ =g s} (2.4)

vhere a superposed dot stands for a derivative with respect to the
affine parameter T associated to the gendesic,25 and £ =1 or @, for
timelike or null geodesics, respectively. The first three inteqrals
{2.1}~(2.3) are due to the existence of the Killing vector fields a/0t,
a/8¥ and 0/8z, respectively; the fourth one, (2.4), is related to the

invariance of the time-like or null character of a given geodesic. Ue
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recognize the constants of wmotion Pys Ppr Py and £ as the energy,
azymuthal angular mowmentum, axial linear momentum and rest energy per
unit mass for wmassive particles (timelike curves, £ = 1), and as the
energy, azymuthal angular wowentum, axizal linear womentum and rest

enerqgy for wassless particles {null curves, # = @), traveling along the

, . 22,23
given geodesics.

#

Ue can express all x" as functions of r only

i - pt' L+ S (402/&2)sinh?(&r/2) ]’ (2.5)
| cosh?{&r/2)
® = ptr 2 - el ], (2.6)
: cosh?{er/2) 4sinh?(er/2)cash?(&r/2)
z = - P» (2.7)
r? = p:{‘ - 53.' (QQ/§A:;?2£§;;2) ; _ﬁsinh(erlgjcnsh(eriﬁf_ 2}' (2.8)
vhere the new parameters are defined by
¥ 1= Pu/Pys -(2.9)
B? = [p; + s)/p:. (2.10)

From {(2.8), it is easy toc show that, for the trajectories of

physical particles, @ £ B% ¢ . This very equation can be rewritten as
r* = p? - V(r), (2.11)

where we have defined the effective potential
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i 20/€)sinh{&r/2) _ £y 2
Vir) = p:[ { colh(tr/Z) seTmR{EF72eosR(Ee7a) | APy (2-12)

Equation {2.11) is in the form of the equation of a one-dimensional
problem for a particle in a potential field V{r). We remark that all
equations in this section are well defined for £% ¢ @. The expressions
for the case €2 = @ are explicitly given in the Appendix, where the
geodesic motion in the Sam—Raychaudhuri space-time is ceparately
examined (cf. Ref. 24).

Using equation (2.1t), we can now accomplish a complete
characterization of the nntinn without explicitly integrating equations
(2.5)-(2.8), a task that we shall postpane to section 4. As we shall
see, this characterization depends essentially on the parameters 28, 7,

20/ 1€},

3. GENERA]L. PROPERTIES OF THE TRAJECTORIES

Since the behavior of the effective potential depends
decisively on the family of space-times considered, it is expedient to
adhere to the following conventions: we will affix to the number af our
formilae a letter H, §, or C, according as they apply to the hyperbolic,
Som-Raychaudhuri, or circular family, respectively; wvhen the equations
hold For the three families, as all previous ones, we will simply omit
any letter.

In conformity with this, the behavior of the potential at the

extremes of the domain is given by

+00, if ¥ # @ (3.1}
Lim ¥(r} = :
r+e B’p:, if ¥ = @ | {3.2)
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For the other families
roin = VT I ¥oin = ﬂzp:, if ¥ 2 @ (3.12.9)
roin = v =78, Viin = (B2 - QQY)p:, if v ¢ @ {3.13.8)
sin? Roin = le)2v/aq, Vin = ﬂzp:, if @ < ¥ ¢ 49/‘8]2;(3‘14-6)
sin® R_. = - v{a/je|* - 2v), V. = p:(ﬁ; - aqv + |e]%¥?),

if vy<@ or v a0/|e|®. (3.15.C)

The physically admissible motion proceeds along those points
for which V{(r) z p: [cf. {2.11)}] and, particularly, the existence of

physeical motion reqﬁires that the absolute minimomm must satisfy
Voin S ;- - (3.16)
For the hyperbolic famiiy this entails
(- 20/]|e} + Va)s|e] =2 ¥ 2 v (4o, if a) @; (3.17.H)
- 207212 ( ¥ ¢ 4o, if « = @; (3.18.H)
- { ¥ { +uw, if a ¢ @; {3.19.H)

where

a 1= A% + g - |

= 40%/|e|? + A% - 1. {3.20)
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For the Som—Raychaudhuri space-time we have, from (3.15},

- (1 - B%)sant ¢ ¥ ( 4o,
whereas for the circular family it implies
(20/1e| - /o )/le) =2 ¥ s v £ ¥, = (20]E] + SO V/|E
where

oc:=A? - 82 + 1) 0.

(3.21.5)

i, (3.22.€)

(3.23)

The turning points in the coordinate r are those at which

r? = p} - ¥(r) = O,

Again, for the hyperbolic family, we will

possibilities, according to the sign of a:

- RZ —~ Al
cinh? R __1- B+ 20w x /1 - B JA if as

2a

with »,{ corresponding to +,-, respectively;

242
sinh? R, = [efy if a = 0;
a(x% + 2qv)
- 2 - - ¥
sink? B, = i ‘g +20¢ -/ 1 -p Ja

2a

(3.24)

have three

e, {3.25.H)

(3.26.H)

y if « € @; {3.27.H}
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for the Som-Raychaudhuri space-time we get

- gt - BY - 8
Pl e Ao B v E/LoB VI-B 8 (g 0 g
3,4 20*

vhereas for the circular family it holds

sin* B, = —— Bt 2wt /1 -8 JA (3.29.C)
7 20 . :

Here we have introduced the parameter

A= e%3{vy + 20/¢2)% - g
(1 - B + 20v)? - £2y2y
1 - p2

: @, {3.30)
with
n = 4Q%/e% + B - 1. (3.31)

Notice that n and a are different [cf. (3.20}], coinciding only for the
hyperbolic family.

The graphs of V{r) are sketched in Figs, }, 2, 3, where the
continuous horizontal lines represent typical values the energy p: may
assume. According to the sign of the parameter a defined in (3.2},
the energy p: may be greater than the asymptotic wvalue [h’ + ﬁi)p:
of the potential V, for the subciass €% > 40 qaf the hyperbolic
family. Thus, in the case a ¢ @, the trajectories have only one

turning point. We recall that, for all cases, the parameter p:
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determines the admissible domain of r for the physical wmwotion [cf.
(2.11)].

- Fram these data we can infer particularly that our geodesic
motion is always bounded in the coordinate r, except for those free
particles in the hyperbolic family of space-times vhich have a ¢ @,
These radially unbounded orbits only exist for the globally causal
Godel-type space—times=26 e? » 4aqt,

4. ANALYTICAL INTEGRATION

To accomplish the exact determination of the geodesic wmotion
we have to integrate (2.5)-(2.8).

i. The coordinate z

From {2.7) we have at once

g =-p7 % 2. {49.1)

filong any geodesic the axial coordinate varies uniformly with
respect to its affine parameter 7.

B. The coordinate r

It is convenient to introduce the new variablez7

£ := sinh? (er/2). {4.2)
Then equation (2.8) becomes

b2 = e?p? [ - nt2 + (1 - B2 + 20v)p - e2vi/a ], {4.3)

with  defined by {3.30).
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The general solution of (4.3) is

1 -5 +20v -1 - B /A cos eth n {r - )
b= " ’ {4.4)
n

with 4 defined by {3.29). Here we have chosen the integration constant
T, SO that f(Tu) corresponds to the point nearest to the origin
("pericenter”} and thus also é(?u) } @, From this result, we may
recover the expressions (3.25)-(3.29) for the turning points and
(3.17)}-{3.22) for the admissible ranges of the parameter v. Rlso, we
conf irm the information ohtained from Figs. 1, 2, 3 that, for the
globally causal space-times (€2 > 40%), we may have, with a suitable
choice of kinematic initial conditions (pt, 8, ¥}, either radially
unbounded or bounded trajectories, whereas for the causality-violating
space-times (€2 ¢ 40?) the latter are necessarily bounded in the
coordinate r,

C. The coordinate ¥

Equation (2.6} may be recast, by means of (4.2), as

- 4 2
2%y/4 eiv/a + O ] (4.5)

R s o

Now we will find ¥ as a function of £, that is, we will find the
equation of the projection of the geodesics onto the ' 2-surface
t,z = const. To that end, we need the expression of é as a function of

§; from the two roots furnished by (4.3}, we will choose

P =4 izpt./ - T + (1 - AT + v} - eXv%/a . {4.6)
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Dividing (4.3} by (4.6} and solving the corresponding

differential sgquation we producea

e(v + 20/82)e + &v/2
Ja JEF 1)

cos (¢ - ¥ ) = (2.7)

Notice that the factor £€//% is always real, and that this
last formula does not hold when § is a constant. From this vwery
forrmula and also {4.4) we see that, for the case « ) ?, since F is
then a périudic function, the projections of the trajectories onto the
surface (r,?} are closed simple curves; this is not the case for
a ¢ @ (cf. subsection 4.B). We call attention to the fact that these
projections always have the axis of symmetry ¢ = PD.

D. The coordinate t

We may rewrite {2.3), using {4.2) as

. - 2 2
t = p, {1 - 40 ge){)g + QY+ 1 (4.8)

fAfter the substitution of (4.4} into (4.8), we obtain a

differential equation for t{r} whose general solutiom is

tan { {eﬂﬂm)[ t -t o+ p,(90%/€* ~ 1)(7 - 'rn)l }.=

e/ n (v + aq/e?)
= n | tan [ ethrﬁﬂlr -7, )72 ]. {4.9)

n+ AaQtse?r + 20v - /1 - B* VA

fin alternative expression to calculate t(7) is obtained from

the cbuvious integral of (2.4}

P t{T) - F(r{7)) + pyP(7}) * p2z{7} - f(7 - T} =@, (4.10)
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where

F(r) = J.dr[p: - ey 172, (8.11)

5. PROJECTIONS ONTC THE 2-SURFACE (r,¥}

With the aid of the preceding results we are now in a position
to sketch the projections of the geodesics onto the 2-surface ({(r,¥).

From {4.7) it follows that 28

2 - -
cos? (¢ - ¥} =1, {5.1)
for R = R, . Furhermore, equation {4.5) defines the value
, .

ey
tp = s (5.2)

where P = @; therefore, we see that, for ¥ } @, P changes sign along
the projection, whereas, for ¥ ( &, it remains always positive. In the
last instance (¥ ( @), this iwmplies, in particular, that the
trajectories with closed prajection onto the surface (r,¥} do enclose

the origin. More specifically, for the hyperbolic family

a) if a > @ and

. 7Y @ $ =9, for R =R, ; (S.2.H)
. ¥ = 9 L for R = R,; (5.3.H)
. ? { O =9, for R = R,, (5.4.H)

=¥, +n, for R =R,. {5.5.H)
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b} if a« ¢ ® and

. ¥ { O: ¥ =% +n, for R =R, {5.7.H)
with R,, R, given by {3.24)-(3.26).

For the Som—Raychaudhuri space-time

.t ) @ =9 for r = ry ¢ {(5.8.5)

. ¥ = @ P = ?Dj for r = ryi | (5.9.8)

. ¥ ¢ O =P for r =r,, {5.10.8)}

P = 'PD +n for r = re {5.11.8)

with Tyy T, given by (3.27).

For the cireular family

. ¥ = O =9, for R = R,j (5.13.C}

with R,, R given by {3.28). As remarked before, the coordinate R
is defined on a sphere, with R = 0, n/2 corresponding to the north and
south poles, respectively.

For the open trajectories {a ( @), we may determine, by means

of (4.7}, the asymptotic values of ¥ as § approaches infinity:

lim cos (# - ¥ ) = _&(y + 20/8%) . (5.15.H)

§ b SE T ReNT - a
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From this we find that (i) for a =@, lim P =9, {ii) for
£ & 4o

a { @, the asymptotes start from ¥ = Pu when ¥ 5 +w, gradually open to

®«

?D + p/2 when ¥ = - 20/2%, and then gradually close to ¢ = ?D +u
wvhen ¥ -5 -oo.

fgain from equation {4.3), we have that, for ¥ : 0, ? 2 @
if r > r,. These results are readily summarized in Figs. 4, 5, 6.

L' 4

6. CONCLUSIONS

We extended the investigation of the geodesics of Godel’s
space-time to the family of homogeneous Gﬁdel—type space-times, which
possess some unusual properties such as acausality and wvieclation of
Mach's principle. These geometries have been studied extensively and
presented as solutions to several theories of gravitation: general
.relativity theory, Einstein-Cartan theory and the higher derivative
theory. We first examined the gqualitative behaviaor of those curves by
the introduction of an effective potential which governed the motion in
the coordinzte r. Thereby we were able to determine whether the mation
vas bounded in that coordinate, the turning points, the admissible
ranges for the ratio ¥ of the azymuthal angular womentum to the
energy, the existence of r = const solutions.  Only after this ptrevious
qualitative investigation did we integrate the equations of geodesics.
The new results, contrasted to those prewvailing in Godel’s space-time,
are [cf. Ref. (B)]:

i} for the circular family of space-times (£ ( @), the allowable range
for the parameter ¥ is bounded both above and below: ;< L ¢ ;) [cf.
(3.22)].

ii} for the space-times of the hyperbolic family with @ ¢ &% ( 40?, the

allowable range for ¥ is bounded only below [cf. (3.17), {3.18)] and
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all projections onto the surface (r,¥) are closed simple curves (cf.
Fig. 4}. This is the typical behavior of the geodesics in Godel’s

imiverse.

iii) the space-times of the hyperbolic family with ¢ > 4Q% admit
closed or open projections, according as B% ) { - 4Q*/e? (a ) @) or
B% ¢ 1 - 40%/8% (a ¢ @), respectively {cf. Figs. 5, 6). Whereas for
Godel's universe all projections with ¥ ( @ enclose the origin, now
for B (1 -40%/¢? we may have projections {v ( - 20/£%) which do not
enclose the origin (cf. Fig. 6).

It is worth mentioning a quantum—mechanical analogue of the
qualitative behavior of the classical solutions of the equations of
geodesic motion presented here. Indeed, it can be shown that to the
classical splutions with  bounded (unbounded) projections there
correspond positive energy Klein-Gordon sclutions with discrete
{continuous} spectra of energy, as might be expected. This will be the
sub ject of a forthcoming paper.29 We also remark that, in spite of the
geometries with €2 > 4* being solutions toc Einstein-Cartan theory,
the above results are still legitimate for this class of wmiverses,
since spinless test particles will in fact follow the (metric) geodesics

investigated here.39
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APPENDIX

For convenience we present here the relevant explicit formzlae

for the SomRaychaudhuri space-time, which should be compared with those

presented in Ref., 24,

with

The equations corresponding to (2.5)-{2.8) are

t = p {4 - 0%r?) + @], {8.1.8)
# = p (0 - v/r?), (A.2.5)
Z =~ P, {A.3.8)
r? = p; - Y(r), : (8.4.8)
Vir) := p:( O -~ ¥/r )+ ﬁ’ﬁ:. {A.5.5)

The coordinate r wvaries along the geodesic according to

1 -2 +2qv - /1 -8 /1 - 8% + atly cas?ﬂpt(r—ru)

202
(n.6.5)

The equation for the projection onta the 2-plane (r,?) is

cos (¥ -#_) = o’ + v . (A.7.8)

V1 - vaty r
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Finally, the equation which governs the behavior of the

coordinate t  is given by

_—1 —
= v1-B \/4; B® + 40y [20p, (7 - 7_)] +

+ (1/2)p (1 + B2 {7 - 7). (A.8.5)
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FIGURE CAPTIONS

FIG.

1. Graphs of the effective potential for the hyperbolic family
(¢2 » @). The continuous horizontal lines correspond to typical

values the energy pz may ssume, according to the sign of «a.

FIG.

2. Graphs of the effective potential for the SomRaychaudhuri

space-time (&1 o @).

F1G.

3. Graphs of the effective potential for the circular family

(e? < o).

F1G.

4, Projections of the geodesics onto the 2-plane (r,¥} for the
hyperbolic family (82 y @). Typical curves associated to the
5euéra1 values the angular womentum parameter ¥ may assums Aare

represented.

FI1G.

S. Projections of the geodesics onto the 2-plane {r,?) for the

Som-Raychaudhuri space-time (&% - @).
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FIG. 6. Projections of the geodesics onte the 2-plane (r,¥) for the
circular family {€? ( @). This planar representation is not
suitable for curves corresponding to the effective potential of
Fig. 3{b)}, which attain the south pole, R =n/2. In a planar
representation with the point R = n/2 taken as the origin, these

curves are similar to those corresponding to the case ¥ = @

above.



CBPF-NF-065/88
_22_

“P: (G < 0)

z -
R (a=0)

F?: (a > O)

(0)0<7<+¢|



(x’+p‘)p:

p zpz

-23=

CBPF-NF-065/88

2 <0
-Pf(a )

P: (a=0)

2
F; (02>0)




CBPF-NF-065/88
-24~

(N -|-|3'!)|:>'t \

(BL4Qy-WIYIp - __\l_ S

2_2 e e e e e e ———-
ﬂP,‘ _

(c)-2Q/MP<5<y<O

Fig. 1



CBPF-NF-065/88

Vv
P: (@< O)
\ | . |
(7\24-[3')[:: _____ e STTETE=T
2 2 e e e
BPY -~ - - - )

| R
(d)-m<y<-2Q/1M°

Fig. 1



CBPF-NF-065/88

(O) 0<Y<+o

Fig. 2



CBPF-NF-065/88

Fig. 2



CBPF-NF-065/88

(8°- 4Qy)P)

BP - —————— - B

(c)-H-B)/4Q<y <O

Fig. 2



CRPF-NF~065/88
-29- '

|
I
I
|
I
i
|
Pt v |
|
| |
(B*- 4s2y+m’y')p:_ N < _1_
| |
I
I
|

R e

| (a) 4Q/||.|z< Y < '?,-

Fig. 3



CBPF-NF-065/88

30~

/4

by =4Q/11°




CBPF-NF-065/88

(€10 <y <4Q/1%

Fig. 3



CBPF-NF~065/88

-32-

w/4

=0

(d) y

Fig. 3



CBPF-NF-065/88

o _
_ l
(B54§2y-IlIzY2)P:__.__._ R

BRI~~~ - itiaites




CBPF-NF-065/88
-34=

(aA)a >0

Fig. 4



CBPF-NF~065/88
_35_

_/

(b)a=0

-2Q /% y<O0

Fig. 4



CBPF-NF-065/88

-36=

y<-2Q/0°

/

Fig. 4

 J




CBPF-NF-065/88

Z(1-8 V49 sy <O

Fig. 5



CBPF-N¥-065/88

Fig. 6



CBPF-NF-065/88
w30~

NOTES AND REFERENCES

1) K. Lanczos, Z. Phys. 21, 73 (1924).
2) K. Godel, Rev. Mod. Phys. 21, 447 (1949).
3) W. Eundt, Z. Phys. 145, 611 (1956).
4) S. Chandrasekhar and J. P. Wright, Proc. Nat. Acad. Sci. USA 47, 341
{1961)
5} J. Lathrop and R. Teglas, Nuovn Cimento B 43, 162 {1978).
6) J. Pfarr, Gen. Belativ. Gravit. 13, 1073 {1981).
7} L. A. Santald, Temsor 37, 173 {1982).
8} M. Novello, I. DamiSc Soares and J. Tiomno, Phys. Rev. D 27, 773
(1983); 28, 1561(E) (1983).
9} A. Baner jee and 5. Baner|i, J. Phys. A 1, 188 (1968).
ie) M. M. Som and A. E. Raychaudhuri, Proc. R. Soc. London A 304, 81
{1968}.
11) M. Rebougas, Phys. Letters A 70, 161 (1979).
£2) M. Novello and M. Rebougas, Phys. Reuv. D 19, 2850 {1979).
13} C.'Huen5elaer5 and C. V. Vishveshwara, Gen. Relativ. Gravit. 19, 43
(1979).
14) S. K. Chakraborty, Gen. Belatiw. Gravit. 12, 925 (1980).
15) A. K. anchaudhuri and S. N. G. Thakurta, Phys. Rev. D 22, 802
{1980).
16) M. Rebougas and J. Tiomno, Phys. Rev. D 28, 1251 (1983},
17} J. D. Oliveira, f. F. F, Teixeira and J. Tiomno, Phys. Reu. D 34,
3661 {1986).
18) A. J. fccioly and A. T. Gongalves, J. Hﬁth. Phys. 28, 1547 {1987).

19) F. D. Sasse, I. D. Soares and J. Tiomno {to be published).



CBPF-NF-065/88

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

40~

G. F. R. Ellis, in Praceedings of the Internaltional Schoal of

Physics Enrico Fermi, Course XLVII: General Relativity and

Cosmolagy, Varenna, [Italy, 1969, edited by R. K. Sachs (Academic

Press, Mew York, USA, 1971}.

J. Weyssenhoff and A. Raabe, ficta Phys. Pol. 9, 7 (1947).

R. Adler, M. Bazin and M. Schiffer, Introduction to General

Relativity, 2nd., edition {McGraw-Hill, New York, UsA, 1975), Chap. 7.

C. W. Misner, K. S. Thorne and J. . Wheeler, Gravitation {Freeman,

San Francisco, USA, 1973}, Chap. 235.

F, M. Paiva, M. J. Rebougas and A, F. F. Teixeira, Phys. Lett. A

126, 168 (1987).

J. L. @anderson, Principles of Relativily Physics {Academic Press,

New York, USfi, 1967}, Chap. 2.

M. O. Calvio, M. J. Rebougas, A. F. F. Teixeira and W. M. Silva Jr.,

J. Math. Phys. 2%, 1127 (1988}.

For the Som-Raychaudhuri space-time the appropriate variable is r?2.

In any case, all the subsequent formulae furnish the correct results

for this geometry if the limit as € + @ is adequately evaluated,

by retaining terms of the smallest order in € only. For the

explicit expressions, we refer the reader to the fippendix. Cf. also

Ref. 24.

It is convenient to use the identity [ &(v + 20/&?)p + &v/2 ]* =
R R

where P and Q are given from equation (4.5} rewritten as § =P +

+ Qcos eth n (T ‘To).

B. D. B. Figueiredo, I. D. Soares and J. Tiomno {to be published).

' 30) W. R Stoeger, Gen. Relativ. Gravit. 17, 981 {1985).



