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Abstract

An action inspired on the low-energy e�ective action for heterotic string and Weyl

integrable space-time theory is used to describe the radiation era in scalar-tensor cos-

mology. The resulting �eld equations for a Friedmann-Robertson-Walker geometry are

written and the general solution for this system is obtained and its main properties are

discussed.
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I. INTRODUCTION

Despite the outstanding success of General Relativity(GR), under extreme physical

conditions of very large curvature, the standard description given by GR breaks down

since it predicts that it cannot predict [1]. We expect GR to be a low-energy and low

space-time curvature limit for some quantum theory of gravitation that has yet to be

found. In this vein, string theory is been investigated [2,3], seeking for the consequences

of these quantum gravitational corrections to GR in cosmology as well as in compact

con�gurations, such as collapsed stars and black holes.

String-inspired cosmology has currently been largely investigated by Veneziano and

collaborators.They have emphasized the possible importance of the duality symmetry

which characterizes the equations of string cosmology [4] and allows a mechanism to evade

the singularity. In this context, the big-bang no longer corresponds to a singularity, but

to an instant of maximal curvature marking the transition from a string-driven growing-

curvature regime to the decelerated evolution of the standard scenario.

The low-energy e�ective string �eld theory has also been investigated in other con-

�gurations. Dilaton �elds appear naturally, coupled with Einstein-Maxwell �elds, when

the low-energy limit of the heterotic string theory is taken [10,7,6]. Besides this, dilaton

�elds also appear as a result of a dimensional reduction of the Kaluza-Klein Lagrangian

[8,9]. These theories have revived the interest in dilaton �elds coupled with matter, since

they are of importance for the understanding of the more general theories from which the

e�ective action is obtained. The same e�ective lagrangean, obtained in low-energy e�ec-

tive string �eld theory, can also be obtained by following a di�erent approach according

to which the space-time is represented by an integrable Weyl space-time (WIST). This

structure, as showed by Ehlers et al [12], is well founded and is obtained by means of an

axiomatic formulation that uses light rays and freely falling particles as basic concepts

and where the axioms have a direct constructive and operational meaning. The detailed

development of this model has been carried out before [13{17]
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Following this reasoning, the well known problems of GR involving electromagnetic

�elds coupled with gravitation, in the context of the primordial universe [18,20{25,32,33]

and in compact con�gurations such as collapsed stars and black holes, have now been

largely investigated using the e�ective action of Einstein-Maxwell-dilaton theory. For

example, the con�gurations representing charged black-holes [10,11] and other kinds of

stationary dilatons with arbitrary electromagnetic �eld con�gurations [19]. In cosmology,

it has been used to investigate the problem of formation of large scale magnetic �elds

[34{36].

The motivation for this paper is to �nd cosmological solutions to a model consisting

of a massless scalar �eld (dilaton) interacting with an electromagnetic �eld coupled with

gravity in a homogeneous and isotropic geometry. We deal with a simpli�ed model since

the Kalb-Ramond �eld, and the dilaton potential are setting equal to zero and so the

graceful exit problem in string cosmology is not contemplated here [5]. We introduce

a parameter � in the scalar kinetic term in the action in order to describe also others

scalar-tensor theories such as Weyl integrable sapace-time (WIST). The simpli�cations

are justi�ed by the simplicity of the general analytical solutions obtained and by the

possibility to investigate the modi�cations produced by the non-constant dilaton �eld in

the radiation era. We claim that the solutions exibited in this paper can be useful to

describe the interaction of the dilaton �eld with radiation during the period before and

after recombination.

II. FIELD EQUATIONS

The action we use is the one used in WIST [14]. In the case of � = 1 is the same

obtained in the low-energy limit of the heterotic string theory. It has the form

S =

Z
d4x
p�g (R + �g��!j�!j� +

1

2
e�2!F��F

��); (1)
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where R is the curvature scalar, ! is the dilaton �eld and F�� is the Maxwell �eld. We

have introduced the coupling constant � in order to describe more general lagrangeans

where the kinetic term is not "a priori" �xed.

Taking the extreme of the action (1) with respect to the scalar �eld !, the vector

potential A� and the metric g�� respectively yield the following �eld equations:

G�� � �(!j�!j� �
1

2
g��!j�!

j�) = �e�2!(F��F
�
� +

1

4
g��F��F

��); (2a)

2! = �e
�2!

2�
F��F

��; (2b)

(e�2!F ��)jj� = 0: (2c)

We are looking for cosmological models with a homogeneous and isotropic spacial tri-

surface that are described by a Friedmann-Robertson-Walker(FRW) metric. In a conve-

nient coordinate system the metric can be written as:

ds2 = dt2 � a(t)2(dx2 + dy2 + dz2): (3)

Since the natural spatial sections of FRW geometry are isotropic, electromagnetic

�elds can generate such universe only after a suitable spatial average be performed [26].

The standard procedure [27] is just to set1 for the electric �eld Ei and the magnetic �eld

Hi the following mean values:

< Ei > = 0; (4a)

< Hi > = 0; (4b)

< EiEj > = � 1

3
E2 gij; (4c)

< HiHj > = � 1

3
H2 gij; (4d)

< EiHj > = 0: (4e)

1We make use of Gaussian Cartesian coordinates. Latin indices run in the spatial range

(x; y; z), while Greek indices run in the spacetime range (t; x; y; z).
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Here E2 andH2 are both non-negative functions of time2, and we denote by using angular

brackets the volume spatial average (e.g., < X > represents the volume average of the

arbitrary quantity X) for a given instant of time t,

< X >
:
= lim

v!vo

1

v

Z
X d3x; (5)

where v =
R
d3x (with x 2 R) being spatial coordinates, and vo stands for the time

dependent volume of the whole space.

The canonical stress-energy tensor associated with Maxwell Lagrangian is given by

T�� = F�� F
�
� +

1

4
F g�� ; (6)

in which F
:
= F�� F

�� = 2(H2 � E2). Equations (4) imply

< F�� F
�
� >=

2

3
(E2 +H2)V� V� +

1

3
(E2 � 2H2) g�� ; (7)

where V � represents the four velocity vector �eld V � = ��o , which is orthogonal to the

three-dimentional surface of homogeneity of the FRW geometry.

Using this result into the expression (6) of the stress-energy tensor, it follows that its

average value < T�� > reduces to a perfect uid con�guration

< T�� >= (� + p)V� V� � p g�� ; (8a)

with energy density

� =
1

2
(E2 +H2); (8b)

and pressure

p =
1

3
�: (8c)

2They are not scalars, however, but they depend on the set of coordinates, as far as expression

(5) is not a tensor de�nition.
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In the coordinate system we are using the �eld equations become:

�3 _a
2

a2
=

�

2
_!2 � e�2!�; (9)

�2�a
a
� _a2

a2
= ��

2
_!2 + e�2!p; (10)

(a3 _!)_

a3
= �e

�2!

�
(H2 � E2): (11)

We will study two cases: the period just before recombination, which we call "plasma

period", and another after recombination, which we named radiation.

A. Plasma period

The matter content of the Universe in this period can be represented by a plasma

that quickly relaxes into a state of thermal equilibrium. On time scales much longer and

spatial scales much larger than those characteristic of collisional processes, the plasma

behaves as a conducting uid. The current density, J i = �Ei, where � is the conductivity

[25], dominates largely the other terms of Ampere's equation for the electric �eld so that

Ei goes to zero in the plasma rest frame. As a consequence, during the period under

consideration only the average of the squared magnetic �eld H2 survives3 [28{31].

In order to simplify the equations we perform the following coordinate transformation:

dt = a3(� ) d� (12)

The equations in the new time coordinate � are:

�3(a
0

a
)2 =

�

2
(!0)2 � a6e�!=2� (13)

3This is strictly true for a viscosity free ionized plasma. When plasma viscosities are considered

the resulting mean squared electric �eld may be non-zero, but it would still be much smaller

than its magnetic counterpart.
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�2a
00

a
+ 5(

a0

a
)2 = ��

2
!02 +

1

3
a6�e�!=2 (14)

!00 = �2a6

�
�e�!=2 (15)

Substituting � from (15) and adding (13) and (14) we obtain:

�2(a
0

a
)0 =

�

3
!00 (16)

The general solution for this equation is:

a(� ) = a0 e
�
!0

2
�e�

�!

6 (17)

Using the �rst integral of (16) and (15) in (14) we obtain the following equation for !:

�

2
!00 + (r!0 +

s

r
)2 + 
1 = 0 (18)

where


1 =
3

4
!2
0 � (

s

r
)2; (19)

r2 =
3

36
�2 +

�

2
; (20)

s =
�

4
!0: (21)

Now we de�ne a new variable x as:

x = r!0 +
s

r
: (22)

The equation (18) thus become:

�

2r
x0 + x2 + 
1 = 0 (23)

This equation can be integrated as

� = � �

2r

Z
dx

x2 + 
1
(24)

We can distinguish three di�erent solution for this integral:
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1. � > 0 
1 = Q2. With solution:

! = � s

r2
� + !1 +

�

2r2
ln

�
cos

2rQ

�
�

�
(25)

With this result the scalar factor becomes:

a(� ) = A0e
( s�

6r2
�
!0

2
)�

�
cos

2rQ

�
�

���
2

12r2

(26)

2. � < 0 
1 = �Q2 and x2 > Q2. With solution:

! = !1 �
s

r2
� +

�

2r
ln sinh

�
2rQ

�
�

�
(27)

a(� ) = A0e(
s�

6r2
�
!0

2
)�
�
sinh(

2rQ

�
)�

���
2

12r2

(28)

3. � < 0 
1 = �Q2 and x2 < Q2. With solution:

! = !1 �
s

r2
� +

�

2r2
ln cosh

�
2rQ

�
�

�
(29)

a(� ) = A0e
( s�

6r2
�
!0

2
)�

�
cosh(

2rQ

�
� )

���
2

12r2

(30)

B. Radiation

After the recombination matter decouples from radiation, in this case we have E2 =

H2. The interaction of radiation and the scalar �eld amounts for a local non-conservation

of radiation energy density as can be seen from the following balance equation:

_� + �(�+ p) = 2e�2!� _! (31)

Using the same coordinate transformation for the time coordinate the �eld equations

become:
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�3a
02

a2
=

�

2
!02 � e�2!�a6 (32)

�2a
00

a
+ 5

a02

a2
= ��

2
!02 + e�2! �

3
a6: (33)

!00 = 0: (34)

The solution for equation (34) is simple

! = !0� + !1: (35)

Using the previous solution and the other two equations we obtain:

�2a
00

a
+ 4(

a0

a
)2 = ��

3
!2
0: (36)

Making the following variable transformation

x =
a0

a
; (37)

the equation (36) becomes:

x0 = x2 + 
1 (38)

where 
1 =
�
6!

2
0. This equation can be integrated as follows:

� =

Z
dx

x2 + 
1
(39)

The integral has di�erent classes of solutions depending on the signal of � and the constant


1.

1. If � > 0, then 
1 = a20 =
�
6!

2
0 and the solution will be non-singular:

a(� ) =
a1

(cos a0� )a
2

0

; �� < 2a0� < �: (40)

2. In the case � < 0, 
1 = �a20 = � j�j
6 !

2
0 and we have to distinguish between two

cases:
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(a) Case x2 < a20:

a(� ) = a1 exp(sinh a0� ) (41)

(b) Case x2 > a20:

a(� ) = a1(cosh a0� )
�1 (42)

It is important to note that the �rst case is non-singular, while the second case is

singular as expected from the Raychaudhuri equation.

III. CONCLUSION

A model inspired on the e�ective action for heterotic string and WIST theory was

constructed in order to study the radiation era in scalar-tensor cosmology in the presence

of a nonconstant dilaton scalar �eld. The very well-known average procedure introduced

by Tolman and Ehrenfest was used to make the electromagnetic �eld compatible with the

FRW geometry. The general solution obtained has a non-constant scalar �eld and can be

used to describe the radiation era in scalar-tensor cosmology. The positive value of the

constant �, possible in the WIST version of the action used here allows for a non-singular

solution. The consequences of the dilaton �eld in the dynamics of perturbations and on

the background radiation deserve further investigation.
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