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Abstract

A scattering process can be described by suitably closing the system and considering the

�rst return map from the entrance onto itself. This scattering map may be singular and

discontinuous, but it will be measure preserving as a consequence of the recurrence theorem

applied to any region of a simpler map. In the case of a billiard this is the Birkho� map.

The semiclassical quantization of the Birkho� map can be subdivided into an entrance and

a repeller. The construction of a scattering operator then follows in exact analogy to the

classical process. Unitarity of the Birkho� map implies that this scattering operator is itself

unitary, as a consequence of a quantized version of the recurrence theorem.
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For a classical conservative system, whether discrete or continuous in time, Poincar�e's

celebrated theorem can be reduced to the general statement that the probability for an orbit

to return to any given region is unity if the motion is bounded. There is no restriction on

the time this recurrence will take, which may vary widely among orbits starting in di�erent

subregions. In any case, by waiting a su�ciently long time, the �rst return of each trajectory

de�nes a measure preserving map of the region onto itself.

The essential boundedness of the system in no way hinders its application to classical

scattering problems, because we can always choose the appointed region to coincide with

the opening of the scattering system to the outside world. Since we are only interested in

the �rst return of the orbits to the chosen region, it makes no di�erence that the system is

not really closed. In other words, we can still apply the theorem if the union of the scatterer

and the opening combine to form a bounded measure preserving map.

As a �rst example consider the simple scattering system composed of a circular billiard

opening onto a straight tube, as shown in Fig. 1. In this case, the closure of the dynamical

system can be reduced to the Birkho� map (or bounce map) for specular collisions of the

straight trajectories with the circular boundary. The phase space is de�ned by the boundary

coordinate s (or the angle �, in the case of unit radius) and ps, the tangential momentum

(proportional to cos�, where � is the angle of incidence).

The closed dynamics is very simple in this case: ps is constant (integrable motion)

and �� = 2�. Nonetheless, the scattering map of the orbits returning to the opening is

discontinuous. Indeed it is composed of an in�nite sequence of diminishing subregions, of

which the �rst few are shown in Fig. 2. Therefore a maximally simple closed dynamics

induces a relatively complex (resonant) scattering map. It is only in the (non resonant)

limit where the size of the opening approaches the diameter of the circle that the scattering

map is also simple.

Consider now the less obvious example of the specular scattering from three disks, that

has become the paradigm of chaotic classical scattering [1]. It may appear that our choice

of closing surface in Fig. 3 amounts to an overkill, since we are not interested in orbits such
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as a in Fig. 3. However this integrable motion described in the previous example does not

mix with the scattering orbits such as b, so we can substract it from the phase space of our

system. This is then composed of the Birkho� coordinates of the external circuit, restricted

to small ps added to the full Birkho� coordinates of the three scattering circles, as shown in

Fig. 4. Evidently, we obtain the useful asymptotic scattering picture by making the radius

of the outer circle arbitrarily large, so that we can identify the exit direction of an orbit with

the point where it collides with the outer circle. Even so, the useful area for the outer circle

in the phase space of Fig. 4 will be smaller than that of the three disks combined.

The dynamics for the �rst return of the closed map is indicated by the di�erent regions

in Fig. 4. This is less trivial than in the previous example, but it is nowhere singular. The

�rst return map between the four circles is hyperbolic and discontinuous similarly to the

baker's transformation [2], but the full complexity of the motion only arises through the

multiple iterations needed to compose the scattering map of �rst returns to the outer circle.

This map exhibits a fractal structure of singularities generated by motion that nearly enters

on the stable manifold of periodic orbits within the scatterer [3].

An evident conceptual advantage is achieved by understanding the structure of scattering

maps on the basis of multiple iterations of their closure, even though it may be necessary to

reverse this procedure in experimental situations. Our purpose is now to show that we can

transfer to semiclassical scattering a construction of open and closed systems corresponding

to the one which we have been employing in the classical theory.

The starting point is to note that we can always de�ne a �nite Hilbert space that will

correspond semiclassically to a �nite phase space [8]. Indeed, the dimension of the Hilbert

space corresponding to a two dimensional classical phase space of area A will be N = A=2��h,

where �h is Planck's constant. The prescription given by Miller [7] for the approximately

unitary quantum map U , is given in the coordinate representation as

U(q; q0) ' 1p
2��h

X
j

�����
@2�j
@q@q0

�����
1=2

ei�(q;q
0)=�h+i�j ; (1)

where �j is the Maslov phase and �j(q; q0) stands for the generating function of the classical
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map, given implicitly by

p0 =
@�j
@q0

; p = �@�j
@q

; (2)

the index j indicating that there may be more than one orbit for a given pair of points

(q0; q). Of course, we should worry about the discretization of coordinates, due to the �nite

dimension (N) of the Hilbert space, but the approximations will hold when N is large.

Furthermore, the semiclassical approximation (1) will leave out evanescent modes [4] and

di�raction e�ects (e.g. in the three disks problem), but again these will give relatively small

contributions in the large N limit.

We can check the approximate unitarity of (1) by noting that, for each continuous region

of area Aj

Nj = TrUjU
y
j '

Z
dq dq0

2��h

�����
@2�j
@q@q0

����� =
Aj

2��h
: (3)

Thus, we are quantizing separately each subregion in a way that increases border e�ects

for discontinuous maps with many subdivisions. We have shown that this is typical of

scattering maps. If they are su�ciently resonant as in our examples, we obtain Nj
<� 1 for

many subregions, which are hence beyond the range of validity of the Miller prescription.

The way out is to rely on the construction of the scattering map from the multiple

iterations of the simpler closed unitary map. We thus need the following result, which may

be considered as the quantization of the recurrence thorem:

Given a �nite Hilbert space HN subdivided into two orthogonal subspaces HN0
= P0HN

and HN1
= P1HN (such that the projection operators P0 + P1 = 1N ) and given an unitary

operator UN de�ned on HN , then the operator

SN0
= P0UN [1 � P1UN ]

�1 P0 = P0UN

1X
m=0

(P1UN )
m P0 (4)

is unitary on HN0
.

To outline the proof we de�ne the rectangular blocks of the operator UN , namely Uij =

PiUPj , and their hermitian conjugates Uy
ij = PjU

yPi. The unitarity of UN implies
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U00U
y
00 + U01U

y
10 = 1N0

(5)

U00U
y
01 + U01U

y
11 = 0 (6)

U10U
y
01 + U11U

y
11 = 1N1

; (7)

where 1Nj
coincides with the nonsingular block of Pj . In this notation Eq. (4) reads SN0

=

U00+ U01[1N1
�U11]�1U10. Then it is straightforward, though a little lengthy, to verify that

SN0
SyN0

= SyN0
SN0

= 1N0
is a consequence of Eqs. (5{7).

Our formula for SN0
strongly resembles Feshbach's construction of nuclear scattering

theory [5], but at this stage we have only a prescription for generating an unitary operator.

It is important to note that the map P1U that is iterated an in�nite number of times is not

itself unitary. It corresponds to the classical scatterer that looses orbits at each iteration.

The phase space area of orbits that remain thus diminishes, that is, the classical map is

dissipative. Maps of this kind have been quantized by Saraceno and Vallejos [6]. Generically

their eigenvalues lie inside the unitary circle. This prevents the ocurrence of poles in SN0

as a parameter is varied, and ensures the convergence of the expansion of SN0
in powers of

P1U as given in (4).

We can now apply the exact result (4) to semiclassical scattering by the identi�cation

of UN with the approximate semiclassical map (1) for the closure of the scattering system.

The resulting scattering matrix given by (4) is the on{shell S{matrix for �xed energy. In

our examples, the energy dependence of the classical map is trivial and it can be scaled

away, but the area of the phase space grows with energy, modifying the dimension of the

corresponding Hilbert space. Another way to see this important energy dependence of the

quantum mechanics is through the growth of the actions of the orbits, i.e. the generating

functions �j in (1). In the case of smooth potentials, rather than billiards, even the energy

dependence is nontrivial. These scattering systems can also be treated within our conceptual

framework by introducing quantum Poincar�e sections in the manner of Bogomolny [8] or

Rouvinez and Smilansky [9].

There are two ways in which we can now obtain the scattering matrix SN0
from the
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unitary operator UN . The �rst is to note that, contrary to the full expansion of standard

quantum scattering theory (4), we can carry out the inversion of the �nite matrix (1) in

some chosen representation. This establishes a \semiquantal approximation" for scattering,

in the nomenclature of Voros and Saraceno [11].

Of course, this becomes more di�cult as the dimension of the matrix grows in the

semiclassical limit. The alternative is to keep within the semiclassical representation (1)

for the unitary matrix U and to compute [1N1
� U11]

�1 using \Fredholm theory". In

fact, one can write [1N1
� U11]

�1 = Y=� and calculate Y =
PN1

m=0 Ym (where Y0 = 1N1
),

and the determinant � = 1 � PN1

m=1
1
m
Tr [U11Ym�1] , from the recursion relation Ym =

U11Ym�1 � 1
m
1N1

Tr [U11Ym�1] [10]. When the traces of Uk
11 are evaluated in the stationary

phase approximation, the scattering matrix can be expressed in terms of ressumed contribu-

tions of the periodic orbits of the scatterer which may be analized in terms of their symbolic

representation [1]. This is exactly the procedure already followed by Georgeot and Prange in

their important paper on semiclassical scattering [12]. We can now understand their results

as originating in the quantized version of Poincar�e's recurrence theorem.
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FIG. 1. Scattering by a circular cavity. A particle propagates from the asymptotic region

(straight tube) up to the entrance of the interaction region (dotted arc, approximating a straight

segment). This de�nes an initial condition for the internal map of specular re
ections against

the circular boundary. Eventually, the particle returns to the opening, entering the tube instead

of re
ecting again. The coordinates for the internal bounce map are s, the distance along the

boundary, and the tangent momentum ps, proportional to cos�. The rule for specular re
ections

is �� = 2�.

FIG. 2. The �rst{return map for the circular system of Fig. 1. Initial conditions having all

possible momenta are launched from the entrance of the scattering system. In the Birkho� plane

s{ps, this corresponds to the narrow rectangular region centered at s = �. We show the �rst two

images of this region by the full internal map (strips bounded by the cosine curves). Also shown

are the �rst returns after 2; 3; : : : ; 6 bounces with the circular boundary, and the phase points that

still stay inside the cavity after 6 bounces (dark strips ouside the initial rectangle). We have not

plotted those points that return after one iteration as they do not correspond to the scattering

process (for the system closed by a straight segment there would be no orbits leaving at the �rst

return). The picture for ps < 0 is obtained by re
ection with respect to the point (s = �; ps = 0).

FIG. 3. Scattering by three discs. An incident particle propagates trivially to the outer circle

that closes the system. This de�nes an initial condition for the Birkho� map of the closed problem,

described by the full set of position coordinates fs; s1; s2; s3g together with the tangent momenta.

After colliding with the discs a certain number of times, the particle returns to the outer circle,

i.e. it escapes.
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FIG. 4. The return map for the three{discs system. Initial conditions are started at the outer

circle of Fig. 3, with momenta pointing inwards (upper rectangles). (a) The �rst iterate of the

initial rectangle is shown in dark. Accordingly, white regions correspond to the �rst iterate of the

phase space of the three discs. The dark region in the phase space of the outer circle is associated

to scattering trajectories that do not hit the inner discs (indicated as a in Fig. 3). (b) After three

iterations fractal structures begin to develop. Shown are those trajectories{stuck to the discs{that

have not escaped after three bounces (like b in Fig. 3), and those which are escaping after two

bounces (upper rectangle).
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