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ABSTRACT

In this paper the relationship between the different
temperatures present in a radiative plasma is examined. In
particular, the physical and the operational meaning of
Eckart's temperature is discussed. An entropy density formula
for the radiative component and its fractional variation rate
are derived. We have also suggested a reformulation of
Weinberg's conditions for maximum entropy production. The
effect of radiative bulk viscosity in diluting monopoles in

the very early universe is estimated.

Key words: Radiative Plasma; Early Universe; Cosmology;
Bulk Viscosity.
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I. INTRODUCTION

An important physical system in cosmological and
astrophysical problems is the so-called radiative plasmaf a
two component fluid consisting of some material medium in
equilibrium with itself (very short mean free fime) plus radi-
ation quanta with a finite mean free time 1. It is well-known
that this kind of mixture behaves like an imperfect relativistic
simple fluid in the framework of the hydrodynamical formulation
for dissipative processes developed by Eckartll].

Weinberg[zl, by using the solution of the relativistic

[3], obtained an

transport equation first derived by Thomas
expression for the radiative bulk viscosity coefficient and
used it to evaluate the entropy production in the early universe.
Although successful in revealing that the radiative bulk viscosity
is not so efficient in generating much entropy, some physical
aspects not discussed at length by Weinberg deserve special
attention.

The first one concerns the several temperature concepts
related to a radiative plasma. For such a system there are in
the collisional limit three different temperatures, namely: the
matter temperature (Tm), the radiation kinetic effective
temperature (Tr) and the Eckart temperature (T). The matter
and the radiation effective temperature concepts are very simple,
but the last one is rather subtle. It was introduced by
Weinberg in order to obtain the bulk viscosity coefficient.
Schweizerlql, generalising Weinberg's paper referred to it as

the actually observed temperature., So, it seems desirable, from

a conceptual as well as from a pedagogical point of view, to make
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the connection explicit between the Eckart temperature and a
possible experimental device used to measure it. As suggested

[5], a device that seems consistent with the

by Yourgran et al.
local equilibrium hypothesis, even in the case of mixture, is
the following: "in order to measure the temperature at an
arbitrary point of a fluid out of thermal equilibrium, isolate

a small volume element surrounding the point and_allow the
matter in it to reach equilibrium. The temperature measured by
the conventional method for this equilibrium state defines the
temperature at that point". By considering an argument from
elementary calorimetry we will show that, for a radiative plasma,
the temperature measured as described above is just the Eckart
temperature.

On the other hand, Eckart's phenomenological approach
gives us only a general expression for the total entropy
production of the mixture. However, sometimes (in cosmology,
for instance), one might be more interested in the entropy
variation rate of the radiative component. Qualitatively, the
heat exchanges between matter and radiation and consequently
the radiation entropy variation rate is closely related to the
relative magnitudes of T and T.. But, if one intends to
establish the conditions under which the radiation entropy
grows or diminishes, the natural way is to compute an expression
for the radiation entropy itself. As é&ll be seen further down,
for a radiative plasma this is possible since all the transport
properties are due exclusively to the radiation gquanta.

In general viscous effects are expected to be more

significant when 16 ~ 1, where 6 is the expansion parameter.
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However, in the case of a radiative plasma, additional data
about its equation of state must be supplied since, as shown
by Weinberg, if the radiation is strongly dominant the bulk
viscosity can be neglected. Taking into account these facts,
we have suggested a reformulation of one of the conditions
established by Weinberg for a maximum total entropy production.
We also show by assuming 16 v 1, that the maximum increasing
rate of the specific radiation entropy occurs in a "dust-like
stage". This is expected since, in this case, a considerable
quantity of matter thermal energy can be transfered to the
radiative component.

This paper is organized as follows. In section II the
energy momentum tensor of the system under consideration is
derived. We also clarify the concept of Eckart temperature by
connecting it with its possible experimental meaning. In section
III we obtain an expression for the entropy density of the
radiative component. Its fractional variation rate is also
calculated and a modification of Weinberg's condition is
suggested. In section IV we.apply the results obtained in
the preceding sections to estimate the effect of radiatiwe

bulk  viscosity in diluting monopoles in the very early universe.



CBPF-NF-064/88

II. THE ENERGY-MOMENTUM TENSOR AND THE LOCAL EQUILIBRIUM TEM-

PERATURE

In order to make explicit the several temperature con-
cepts coexisting in a radiative plasma and also to simplify some
results to be derived in the next section, we shall now obtain
the energy-momentum tensor of this system. Having in mind an
application to the standard cosmological model (FRW), only the
homogeneous and isotropic case will be considered. However,
we remark that the main physical features relating the tempe-
rature concepts are independent (at least to first order in 1)
of the shear viscosity and heat conduction effects which appear
in a more complete treatment.

The energy-momentum tensor of the radiative component

is defined by

3
a8 oBex, ) LK |

where the null 4-vector K® is the radiation 4-momentum, F(x,K)
stands for the Lorentz-invariant distribution function so that

gFd3xal

K is the number of quanta in the respective phase
volume. The factor g is equal to (2m) "3 times the number of
spin states of the radiation quanta.

By hypothesis matter and radiation are out of but

close to thermal equilibrium and so one may expand F as

+'..n-- ¥ ] (2-2,
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given by (in our units h = ky= ¢ = 1)

ulKl -1
FO = [%XP(- Tm | ] ' - (2.3)

where u)L is the 4-velocity of the material medium (u)tu.)L = =1),
Tm its temperature and the number ¢ is +1 for bosons and -1
for fermions.

By successive aproximations starting from F,, one
could in principle determine F to any order in the mean free
time 7T, by using thé relativistic.transport equation[sl. For

our purpose it is sufficient to go to first order only. In this

case, after a suitable linearization of the collisional term,

the Boltzmann equation can be written as[7]
JF
B —3 = —ur7h o, xhE; (2.4)
ax¥
where w = —ukKl stands for the radiation energy in the rest

frame of the material medium.
Now, considering the homogenecus and isotropic case,
we have 1T = T(w,t). Furthermore taking a moment of (2.4) one

obtains that Fl reduces to[7]

oF o 3T a
F; = t(w,t) (Ti) B_u? [;— —‘; + % 3—““- . (2.5)
m m 3X 29X

Assuming that 1 is frequency-independent and inserting egs.

(2.2), (2.3) and (2.5) into (2.1), a straightforward integration

vields
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: A oT A
af  _. 4 -_ u m_ . 1 3u a B
T(r) = N,T [; 41 Yt 3 ]:].q a +

A ST A : . '
1 4 u m 1 Ju aB

o - 0B, a B

where h z n*P+u”u” is the projector onto the local rest-space

15+¢ “2

of ul, the constant N, is given by N, = (=F—) 37 so that,
for € = +1, N, is two times the photon constant or 7/8 of it
for € = =1, Of course, if the_radiative component itself is a
mixture of bosons and fermions, eq. (2.6) would be modified in

the factor N,, its new value being

2
m 7
N, = 35 [ ) 9 * 8§

(2.7)
bosons

. gF] ’
fermions
where 9 and gp are the total number of boson and fermion
degrees of freedom and the sum runs over all boson and fermion
states. Moreover, if T 1is also frequency-dependent, the net

effect in (2.6) would be to introduce the Rosseland mean{7]

© . OF o oF
<t(t)> = J T(w,t)m4(§ag)dw//‘J. w4(§$2) dw .
0 0

If one defines the radiation effective kinetic tem-

perature by the expression

s

_ A o7 A
1l 3u )
T =T |:1- -:[E—- +——]] , (2.8)

=

the energy-momentum tensor given in (2.6) assumes, to first

order in T, the usual perfect fluid form
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a  _- 4 o B, 1 4 af
T(r) ~— NaTpuu .+ 3 N,T'h . (2.9)

The above equation shows that the radiation quanta behavé as
if they were in thermal equilibrium at temperature T In
addition, since the material medium was supposed in thermal
equilibrium with itself at temperature T . the total (matter

plus radiation) energy-momentum tensor can be cast in the form

B - T?g).+ T%E) = [ém(rm,n) + N*T::] wuf +

Em(Tm,n) + 3 N*T:_] n®é ,
(2.10)
where P and P, are respectively the energy density and pressure

of the material component. Notice that eq. (2.10) has only two
terms which is a characteristic of the perfecﬁfldid form.However,the
difference in temperatures between the components is responsible
for an irreversible heat exchange between them. This is the
mechanism which accounts for the total entropy production within
this mixture.

| To gain some physical insight into the heat exchanges
between matter and radiation, consider now the Gibbs law

applied for each component:

_ pm+pm
p..1p
- - r *r
n?rdcr = dpr [ o ] dn , (2.12)

and the equations of motion contained in the conservation laws:
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-8-
af .
3T " _ g (2.13)
3%
5 Q '
— {nu™) =0 . (2.14)
80X '

In egs. (2.11) and (2.12), onland o, stand for the dimension-
less specific entropy (per particle) of matter and radiation
respectively and n is the particle number density.

By taking Tm and n as independent thermodynamic va-
riables, since dcm and dcr are exact differentials one may

deduce that

(o, o, (2.15)
Tn(3T tn = Py + Pp-nigy .15
m BTm n m m 3n T, ’ _
and
3P, 3p_. |
Tm(BTm)n = Py + P, = 1 (W)Tm + o(t) ., {2.16)
so that
BE _ _ iﬂ ' :
Tm(a.rm)n P+ P-n (an)Tm + 0(T) ’ (2.17)

where p = PrtPy and p = Py * P,
On the other hand, from egs. (2.13) and (2.14) it is

readily seen that

aT

-1 ' o
o _m_ 3p 3py U5 o pl 3w |

and using (2.17) the above equation can be rewritten as

o 3T
-_a+
X"

t-3|l:-‘
| =

o =06 +0(1) , (2.19)

=)
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_g_
o
where 8 = EEE is the expansion parameter of the fluid and Q
9X '
is defined by
-1 _ .3
=3 - (30, . (2.20)

Finally, substituting (2.19) into (2.8) one finds that

T, = Ty = =Tq Tﬂe.. (2.21)
The conditions for a maximum variation of the radi-
ation entropy can be qualitatively understood analyzing eq.
(2.21). Since the amount of heat flow from one component to the
other depends on the difference Tr-Tm, it is easily seen from
the last equation above that the temperature difference is |
larger for higher values of Th In cosmology, for a fixed value
of Q different from zero, one would expect a greater entropy
variation of each component and alsoc a maximum total entropy
production at the beginning of the cosmic evolution. Moreover,
for an expanding plasma, if Q > 0 ((%%)n < %), T < T, and
one should expect that the radiation will gain entropy from
the material medium. Conversely if Q@ <0, T > T and it will
lose entropy. In both cases the maximum variation rate will
occur during the transition from a collision-dominated to
collisionless regime for which 16 ~ 1. Note also that if

P %w: then & - 0 and 'I‘r S so that, as expected, in

m
the limiting case there is no radiation entropy variation.

If one . .assumes 1@ v 1, the maximum increasing rate of the
radiation entropy will occur in a "dust-like" stage (2 " %), while-

the maximum decreasing one would occur in a "stiff matter-like™

stage {(Q v - %),



CBPF-NF-064 /88

-L0~-

As shown by Weinberg, the energy momentum tensor
(2.10) can be recast in the canonical form of imperfect fluid
as defined by Eckart. In the homogeneous and isotropic case

considered it reduces to

18 = ou%f + (prmn®® (2.22)
where

p(T,n) = o (T,n) + N, . (2.23)

p(T,n} = p (T,n) + % N*T4 . (2.24) -

m=-ge ; £ =aNgie? L (2.25)

In expressions (2,22)-(2.25), w is the viscous pressure, £

is the bulk viscosity coefficient and T is the Eckart Tempera-
ture defined in such a way that the comoving energy density
uauBTaB is equal to the energy density p(T,n) for thermal

equilibrium at temperature T. It is related to the matter

temperature by[2]
3
- 4N, T7T _« -
= S A & N § -
Tm—TE. + 35 5 st 3 BEI . (2.26)
(BT)n 9%

It is worth mentioning that in this simple-fluid description
direct information about the entropy variation rate of each
component is lost. On the other hand, the total entropy pro-
duction is explicitly given as a function of the viscous

pressure.

o 2

T 3
ax® &T

2,2

™6 ' (2.27)
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ncua, is the total entropy current 4-vector and

where s
o is the total specific entropy.

In order to establish more clearly the relation bet-
4N, T
(£8)

oT" n.

in (2.26) can

ween Tm' Tr and T notice that the factor

be rewritten as

3

4N, T
=1—£

32 . N

where Rﬁ = % - (8pm/8pm)n. The factor R/Qm- is always restricted

{2.28)

upon the interval [0,1].
Furthermore, the procedure carried out with the tem-
perature T in egqs. (2.11)-(2.19) can be repeated for T. In this

case, instead of eq. (2.19) one would have

o
u 3T 1, _ g 4 —18 (2.29)
T o0 3 ap
X T(==)
3Tn

Now, using egs. (2.28) and (2.29), the expression (2.26) leads to

Q. .
Tm_= T[:1.+ {1 - ﬁ;? TQ%] .- (2.30)

and from (2.8)

i} 2 |
Tr = T[l - Iﬂ TQB:I . {2.31)
Hence, for an expanding plasma, it follows from egs. (2.21),
{(2.30) and (2.31) that if £ > 0 the temperatures satisfy

Ty > T >'Tr.‘A1ternatively, if Q <0 T, >T>T,. Then, the
Eckart temperature has always an intermediate value between the

matter and radiation temperatures. Of course, this is not
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sufficient to prove that it coincides with the one that could
be measured by the experimental device outlined in the intro-
duction. In order to show this, let us calculate the teﬁperature
difference of each component with respect to the Eckart tempe-
rature. The specific thermal capacities of matter and radiation

can be defined by

ap
_ 1 r
cr T n (BT )n ’ (2.32)
Tr
and
ap
=1, 'm
m
Thus, to first order in T one obtains
C
r Q .
— L. =1 - 2 + 0(1) (2.34)
Cr+Ch gm _ ’

and substituting this result into egs. (2.30) and (2.31) it

follows that

C_.
= ___m°
Tm =T (1 + T t00) ’ (2.35)
m r
and
qm ' o '
Tr = T{(1 - m TH0) . {(2.36)

Then, the difference between the matter or radiation tempera-

ture and the Eckart one are respectively'given by

C
_ - r
&Tm =T -T

= ———— TTQ6 . (2.37)
m Cm+Cr.

and
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_13_..
Qm
AT = T =T = = ~ TR . (2.38)
r r Cm:bcr
therefore
AT C
&—If“| = -C—r . (2.39)
r m

Thus, for each component, the temperature difference with res-
pect to the Eckart temperature and its thermal capacity are
inversely proportional, a well known result from elementary
calorimetry for two homogeneous substances that have been put
in thermal contact at differents temperatures. Such a result
means that, in fact, the Eckart temperature is the one measured
by means of the device described in the introduction. Thus,

it seems reasonable to identify the Eckart temperature as

being physically relevant in the mixture. It.is worth mentioning
that eq. (2.39) also provides an alternative method for intro-
ducing the Eckart temperature which is clearly consistent with

the local equilibrium hypothesis.
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III. THE RADIATION ENTROPY AND ITS VARIATION RATE

The radiation entropy current 4-vector can be defined

as (8]

3
st =-g J k% [FInF - (1+F)1n(1+F)] X . (3.1)

0
K020 K

By using F = FytFy s the term inside the bracket in the right-
-hand side of (3.1) can be written, to first order in T , as
Fo .
1+Fo
(3.2)

FlnF=-(14+F)1n(1l+F) = FO in FO - (1+Eolln(1+Fo):+ Fl In

Substituting the above expression into (3.1), with Fy and Fy
given by egs. (2.3) and (2.5) a straightforward integration of

(3.1) yields

s

A AT A
n _ 4 3 [ [u 1 Bu"]_]'u_
(r) 3 Y I T ox EJ .

Using eqg. (2.8) relating Tr and Tm' it follows that

o _ 4 3 n

Therefore, as expected, the radiation entropy current 4-vector
has the same form as in equilibrium at temperature T.. By
using eq. (2.30) one can rewrite (3.4) in the Eckart frame as
92

(1 -3 5 9)u? (3.5)
m

o4 3
S(r) =3 N, T

with the dimensionless radiation entropy per particle in the
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=15~
comoving frame given by
3
T 2
=4 - 38° |
% =3 "% (1 7 19) . {3.6)

Since the homogeneous and isotropic cosmolegical model
is usually described in the comoving coordinate system, for the
sake of simplicity we will addopt it from now on. In this case,
the radiation entropy v;riation rate can be readily derived
from eq. (3.6). In fact, differentiating (3.6) with respect to

time and using (2.14), (2.25) and {(2.29) one may deduce that

5. 12N*T392192 |
5= 3ne + (ﬂE) - I:( - 18) (1 + 3 =— 1:9)] (_3-.7)_
x éT'n

Now, to go further on, it is necessary to formulate some hypo-
thesis regarding the time derivative of the mean free time 1 .
We shall assume in the following that T is of the same order
as 1T . This is a reasonable assumption in the framework of

the "quase-stationary" regime for which Eckart's theory is

valid. In strongly transient regimes, T can be of the same

order as the equilibrium variables. In this case, a causal

thermodynamic theory as developed by Israel[Q} (10]

and Pavon et al.[lll

s Stewart
must be evoked. Hence, to first order in

T, eq. (3.8) reduces to

5. 12N*T3R 102 4 2
5 = 306 + (%B) - 3 I (ﬁ~ 178) (3.8)
T'n n

Or equivalently using eq. (2.28)
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2

2 da . §

: 1 2
= 308 + 3{(1 - =—)N"TtH
Ty

WO R

In Eckart's system the total entropy production is given by

(see eq. (2.27))

2
né = Iz = an, 1302162 . (3.10)°

Substituting (3.10}) in (3.8) yields

c.Ir . 3ng d 92 N
— = 300 + - 3 = (= 18) . (3.11)
o 59 dt Qm:

Next consider these results in the framework of the

Friedmann-Robertson-Walker Universes.
To zeroth order (adiabatic regime) we have from the

above equations that

== =300 + 0(1) . (3.12)
r . :
Inserting (3.12) in (3.10) and using eq. (2.29) with 8 = 3R/R,
where R is the scale factor, we obtain

5 =5, 190 + 0(1?) (3.13)

or still '
' =5 =& (r) + o(1?) {3.14)

r RT dt - . ’

The above equation is exactly eq. (3.14) of Weinberg's paper[Z].

He used this equation together with the condition

to conclude that the maximum total entropy

(RT}| << 1

S <
RT |dt
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variation rate is the radiation variation rate in adiabatic

regime. Since o_ is proportional to o in order for it be

r o
maximum, 0. must contribute appreciably to the total entropy
0. This is contained in the first condition for a maximum total
entropy growth rate established by Weinberg. His second condition
states that the mean free time T, must be cdmparable to the

inverse of the fractional rate of change of RT, namely

RT

T Vv ———
d
lge (RD|

Weinberg used this last quantity as the macroscopic
time scale. However, as remarked before, in an expanding homo-
geneous and isotropic fluid, the natural macroscopic time scale
"is the inverse of the expansion parameter 9. Observe also that
the above condition can be rewritten as 186 % ]Ql—l. Thus, in
certain sense, the Weinberg condition is misleading since if
|2] << 1 it implies that the radiative component is fairly
decoupled (79 >> 1) and one could guess that such an approach
is valid in the collisionless limit. In fact this is not the
case. Taking into account the arguments presented in the section
2, it seems for us that a more appropriate condition would be
186 v 1 provided that { approaches its extremum values i.e.,

Q2 n % for a radiation increasing entropy or |Q| w % for a
decreasing one. From eqg. (3.13) one finds for the maximum entropy
production rates, o % ér if 0 < Q € % and 0 S %|6r| if

- % s 8 < 0. Such rates are even more restrictive than the

upper bound & lér[ established by Weinberg.
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IV. MONOPOLES AND DISSIPATION

In this section we apply some results derived in the
preceding sections to estimate the effect of the radiative bulk
viscosity in diluting monopoles in the very early universe.

A known problem of Grand Unified Theorieé, when con-
fronted with standard Cosmology, is the monopole problem.
Monopoles are expected whenever a semi-simple group-G, breaks
{12]

down to a group which contains a U(l) factor

The number density of such particles is given by

. |
g v 2 . (4.1)

where { is some characteristic correlation lenght of the

Higgs fieiall3].

However, causality implies that £ must be
less than the horizon distance dh, and a lower bound to Ny is

{we shall use standard values)

2

T3
ng 2 tzas Sy (4.2)

dn ph

where Tc n 1014 Gev is the critical temperature and mp£ v lolgGeV

is the Planck mass. Using eq. (4.2) we obtain an upper bound to

the equilibrium radiation entropy per monopole,
(—B%)" ~ 1013 (4.3)

Pxeskill[14] has shown that, in the adiabatic regime,

0

if Iy is greater than 101 , monopole-antimonopole annihilations

will not be efficient enough to reduce the initial monopole
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abundance. On the other hand, he also showed_that if O is less

10

than 107, it will increase very quickly to 1010 by annihi-

lations.

Since the present specific radiation entropy per

10

barion is Iy ™ 1077, admiting adiabatic expansion, one would

have

— "1 . (4.4)

16

However, since the monopole mass My is v 10 greater than a

baryon mass, it is easy to show that the age of the Universe

would be less than 105 years[15}.

Several authors have suggested some schemes to reduce
the monopole density. The inflationary universe scenarios are
the most accepted ones, but we shall not consider them in this
paper.

As remarked by Preskilllls], another way to enhance
Oy further is through nonadiabatic processes which would in-
crease the radiation entropy. However, at the same time, the
entropy per baryon will also be increased by the same factor and
the monopole baryon ratio.would remain unaltered. In principle,
the problem could be solved if entropy was generated before
bariogenesis. This restricts the occurehce of these processes

14 35

to temperatures between T ~ 10" GeV (t ~ 10 °° sec) just after

10

the phase transgition and T ~ 10 GeV, when the Higgs bosons

decay generating the baryon asymmetry.

The monopoles begin to dominate the energy density of
n

the Universe at the temperature T EE Mn' where n. is the number
r
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density of the relativistic particles. The initial density of
monopoles depends on the duration and on the details of the

phase transition. Here we shall assume that the initial con-
n

centration is very high, EE ~ 10 2
r

diately after the phase transition the monopole dominance era

begins give raising an effective dust-like stageils]. As we

, in such a way that imme-

have seen before, this is one of the conditions for a maximum
specific radiation entropy enhancement. The other condition
is 16 » 1 and in order to overstimate the role of the dissi-
pative effects we shall assume the vaiidity of this condition
durinq the whole the process.

In a relativistic plasma, with temperature T < m, the
main mechanism for monopole interaction with the surrounding

medium is multiple scattering of plasma particles by the mono-

pole, with effective cross section[16]
o L
Cs v T . (4.5)

The collision mean free time is given by

1
nyCg

Differentiating (4.6) with respect to time, using

T

. (4.6}

(2.29) and ignoring monopole-antimonopole annihilations we obtain

TN T8 (4.7)
Substituting (4.7) in (3.9), using that & ~ 1/3, éL v 1 and
m .

assuming T8 v 1, we have

_!."‘_q,

o (4.8)

=
Njao -
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Integrating the above equation we obtain

oy r3/2 (4.9)

Even assuming a high initial monopole density it is

easy to show that the system is in fact diluted, that is,

% >> 1, where X 1is the mean free time and L is the mean

interparticle distance. Thus, the kinetic approach is valid and
the maximum bulk viscosity effect is to reduce the effective

pressure to zero. Therefore, it is reasonable to assume

R« £2/3 | (4.10)

Substituting (4.10) in (4.9) we obtain that the specific entropy

per monopole increases linearly with time, that is,

Oy = t . (4.11)

Observing that the condition 196 ~ 1 is only valid

35 1

between T v 1014 GeV (t ~ 10 sec}, when 716 %V 10", and

-33

t v 10 sec when T8 v 10 (note that 18 increases linearly

with time). So, after t ~ 10733

sec we can assume that the
radiation completely decouples from the monopoles and the

entropy transfer can be neglected. In this case we have

2
GMf v 107 ¢

5
Mi " 10 . (4.13)

Had we considered annihilations the monopoles density
would have been diluted faster. Consequently the mean free

time would have increased more rapidly and the dissipative
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effects would have been much less important. So, what we have

shown is that radiative bulk viscosity is not an efficient me-

chanism to dilute monopoles. Further, from Preskill's results[l4],

the effects of annihilations are much more important and we
conclude that, in general these non adiabaticities can be ne-

glected.
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