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Abstract

Our proposal here is to set up the conceptual framework for an eventual Theory

of Everything.

We formulate the arena -language- to build up any QG. In particular, we show

how the objects of fundamental theories, such as p-branes (strings, loops and others)

could be posed in this language.
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1 Introduction

What are the quantum states of Quantum Gravity (QG)? The main purpose of this paper

is to �nd them in the most natural way, in order to obtain a framework general enough to

embody a complete theory of Nature, such that the states of the conjectured fundamental

theories [1] be particular cases. Rephrasing: we wish to establish a "kinematics for QG".

Usually, the basis manifold in Quantum Field Theory (QFT) is assumed to be �xed:

d-dimensional, di�erentiable, endowed with a metric tensor and a compatible covariant

derivative.

On the other hand, there are various approaches to background-independent theories,

more or less genuinely background independents (loops, strings, branes, posets, and so on

[1]). Here, starting from very fundamental considerations, we present unifying perspectives

on these, which actually generalizes to a general scheme for background independence.

In these usual approaches to QG, the manifold is thought as the picture in large scale

of more fundamental geometrical structures, which are some type of lower-dimensional

manifold, embedded in a given "ambient space"; they are in somewhere (thus, they they

appears to be not completely background-independent formulations).

Thus, the natural idea is to adopt the most general point of view; to assume that

"the states of the spacetime are themselves manifolds, or collections of manifolds (multi-

manifolds, M-M) 1", whose topology and dimension are in principle unrestricted. In a

M-M state, for instance, each component could have di�erent dimension and topological

structure.

Furthermore, we shall assume that the physical �elds live (are de�ned on) this gener-

alized geometries . This is in accordance with a conception of the spacetime where it is

de�ned in terms of the phenomenology [2].

So to speak, in this work, we propose a generalization of the concept of background of

1Or, more weakly, some set of points.
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a full �eld theory; in our treatment, they are the space-time states. This generalization

is motivated by the need of a well-de�ned quantum theory of gravity. This would consti-

tute clearly a formulation based upon a background-independent fashion, by construction.

Moreover, it would be in agreement with other conceptual requirements [3].

This paper is organized according to the following outline:

In Section 2, the main assumptions are established and the most general Hilbert space

for QG is built; next, in Section 3, "embedding-type" structures, which are backgrounds

embedded in other one, are described; and p-branes (and strings) and loops are proposed

as examples. Questions related to dynamics for QG are also commented.

Finally, our concluding remarks are collected in Section 4.

2 QFT and bases of backgrounds: main assump-

tions.

In a Hamiltonian Field Theory (FT), the set of degrees of freedom is given by a complete

set of commuting observables (CSCO) (the �elds). For example, in a Klein-Gordon Field

Theory, the CSOC is the scalar �eld �(x), where x is an element of a spatial Cauchy

surface �(� IR3); thus, the CSOC may be expressed by (�; �(x)).

In a classical theory, the most general CSCO is given by the background, which consists

(in classical physics) of a di�erentiable basis manifold M with a metric gab 2, plus a

collection of smooth �elds (the metric is usually thought as other one) �. The �eld

dynamics is currently governed by the approach of gauge theories, while General Relativity

(GR) describes the background.

If we restrict ourselves to globally hyperbolic space-times, the background structure

2And a compatible covariant derivative operator ra, i.e ragbc = 0.
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is fully characterized by the geometry of a Cauchy's surface �3. Then, let us express by

B the set of variables of the spatial geometry which characterizes its degrees of freedom

(CSCO); for instance, topology, dimension, metric, connection, and so on, which a priori

will be arbitrary 4.

A certain ambiguity is unavoidable at this point, until a classical description of GR is

not chosen.

Notice that, in the current formulations of GR, it is not possible to promote a back-

ground with de�ned metric and extrinsic curvature to be a QG state, since they are

conjugate variables [4] and so they do not commute.

Recently [5], a Yang-Mills-type formulation of GR has been proposed for which this

is di�erent; the canonical degrees of freedom are SO(5)-connections which contain in-

formation about the metric (vierbein) and its derivatives. The set of possible spatial

backgrounds, characterized by the con�gurations set of these variables, can be promoted

to be a "basis of the state space of QG"[6].

Remark: The form of the most general CSCO in classical physics is (B;�(x)) (x��B).

The set of CSCO; is the space of degrees of freedom, referred to as SDF.

When a �eld theory is quantized (QFT), the background structure is assumed �xed,

and the theory is determined by a functional  [�] -the wave function-. The set of �elds

�(x), the SDF, constitutes a basis for the Hilbert space.

We shall follow the same path to quantize spacetime. Our main statement is that this

space of backgrounds or generalized geometries constitutes a basis for the state space of

QG.

Let � be the set of generalized backgrounds B 5, the SDF of the spatial geometry;

then, we promote this to be a basis for the Hilbert pace of Quantum Gravity (HQG).

3M � � � IR.

4In particular, we do not assume a particular spatial dimension.

5In the sense described in the introduction.



CBPF-NF-064/01 4

De�nition 2.1:

HQG := �B��HB (1)

Let us motivate this assumption from another point of view, following the same strat-

egy to quantize QFT from QM. The structure underneath our construction shall become

clear.

Formal derivation:

Let us consider a set of N (spatial) points, BN ; BN � IR is thought of as the basis

manifold and the �eld � : BN ! IRm, describes the degrees of freedom at each point in

BN .

This system has N:m degrees of freedom; the quantization rules yield the following

Hilbert space:

HBN = 
p�BNHp; (2)

where

Hp = L2[IRm]: (3)

Now, consider another set, B0

N 0. We shall have other Hilbert space with the same structure

(2), HB0

N 0

. Notice that, if a bijective map is possible between BN and B0

N 0 (in the discrete

case, if N = N 0); then, they are identi�ed and characterized by N , HBN = HB0

N
= HN .

So, we are able to build a total space:

H = �NHBN : (4)

Now, we follow the same procedure as in the QFT formulation of N quantum-mechanical

systems; we may consider the continuum-limit: N ! 1, BN ! B: this structure is

preserved, and HB is the current Hilbert space for the �eld � on a background B. Notice

that the isomorphism condition above must be replaced by the corresponding equivalence
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relation: for example, if the metric is one of those "background-variables", HB is de�ned

modulo isometries 6. Thus, we recover structure (1), H ! HQG.

The similarities between this structure and that of N -particles is clear. Then, we

can de�ne an analogous to the Fock-Space of QG, FQG � HQG. Let B(n) be a M-M, a

collection of n non-intersecting manifolds Bi; then, the structure of the Hilbert space is

such that HB � 
iHBi. We de�ne this special subset of quantum states as:

FQG = �n 

n
i=1 HBi; (5)

where n = 0 is included and describes the vacuum state, which means a no-background

state 7.

Finally, let us remark that two inequivalent background states are said to be orthogo-

nal, and then the scalar product inHQG naturally is de�ned from the above considerations.

Finally, we take useful working assumptions in order to have well-de�ned states and

operators in QFT. Let us denote by �, the CSCO of a FT. Then:

Assumption I: For every local8 operator A of the theory (FT), we can write:

A = �B��AB jBi hBj ; (6)

where,

A jBi = jBiAB: (7)

6This depends on the classical formulation of GR.

7Another illuminating de�nition will be discussed in the next section: the "Membrane" Hilbert space.

8A pointwise function.
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Assumption II: The QFT-wave function is

j (�; t)i = �B�� jBi j B(�; t)i ; (8)

where the subscript B denotes, in both cases, the object corresponding to the FT found

on the �xed background B.

Up to now, we have established an important starting point for the fundamental

kinematical structure of QG. Remarkably enough, this is background independent.

There are some questions in QG related to the particular dynamics chosen for GR.

But their answers are absolutely independent of the ideas exposed above.

They are mainly:

1-What are the B-variables of the theory?,

2-They can be a full (spatial) background geometry (topological structure, metric,

connection/covariant derivative), a state of QG?.

Finally,

3-What are the quantum equations for GR?

Remarkably enough, notice that: "requeriments for these answers may be deduced in

order to have a well-de�ned QFT for �".

Some quantities related to the extrinsic geometry of set(B), extrinsic variables9, -but

valued on this surface- could also be required to have a well-de�ned QFT.

3 p-brane states.

An essential property of the membrane fashion is the "ambient space" or target. From our

point of view (background independent), we do not start o� with this: the fundamental

9On the manifold set(B) � IR.
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objects are the "generalized backgrounds". The main question of this section is: How can

the notion of ambient space arise in this framework?

Now, we discuss more deeply the structure of HB in order to show that this language

can serve to describe membranes and string states. Let us denote by a=b the set of

functions from the set b in the set a, and rede�ne the standard notation as follows:

L2[C=K] := L2[K]10. If the degrees of freedom of a full QFT (including gravity) are

summarized by (B;�), then we can write,

HB = fjBig 
H�; (9)

where H� denotes the usual Hilbert space in QFT for the �elds �. If � : B ! �11, then

its structure is L2[C=(�=B)]12.

Actually, as we have argued in the �rst section, if B is a one-component manifold, 13

once the atlas is given (i.e the set of the points of B is speci�ed ), we shall denote this by

set(B); then, all the local B-variables together with the rest of the �elds; these are �elds

on set(B), valued in some manifold F (the �ber). Thus, the full structure of the Hilbert

space for a background can be written,

HB = fjset(B)ig 
 L2[C=(F=set(B))]: (10)

Then, we de�ne a sub-background or p-brane state (p is the spatial dimension) jBi, if:

There exists a decomposition F = A � �; A is called ambient space or target-, such

that :

10It denotes formally the set of square-integrable complex functions on K, suposing that this exists.
11When there are not �elds �, this is a one-dimensional space, and the theory is an enterely geometrical

one.
12Recall that we build up the Hilbert space using the canonical rule: H = L2[C=(SDF )], where SDF

is the space of degrees of freedom.

13It is not a multi-manifold.
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I- A��14.

II- The full local structure of B (loc(B)) can be induced from those of A, via an

element x�A=set(B). It can be written

jloc(B)i = jA; xi : (11)

In general, we can decompose the B-variables as

jBi = jset(B)i jloc(B)i (12)

thus,

jBi = jset(B)i jA; xi : (13)

III- For the structure (10), x is a physical degree of freedom -it is a dynamical �eld-15.

Let us observe that non-scalar embedding �elds x, the target A is a so-called non-

commutative geometry.

An important remark: notice that the embedding in a "major" manifold is generically

possible; but the main point which characterizes a "sub-background physical state" is

that the embedding �eld x is a physical degree of freedom, and thus in particular it must

be quantized.

This de�nition can be heuristically derived in a similar form to those of the �rst

section, supposing subsets BN in a "major" continuum background M .

Notice that this de�nition contains in some sense the intuitive idea of these objects as

"distributional" ones. Since A��, then in principle, we could write formally an alternative

to the expression (10):

HB = jAi 
 "L2[C=(F=set(A))]" (14)

The "" expresses that here (F=A) must be substituted by a more general set; the set

of "generalized" functions on A -distributions-, and then L2 should be replaced by some

14Then, A has geometry-variables too. Besides that, there would be �elds de�ned on F , further to

the gemetrical ones.

15In particular, this must be quantized.
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corresponding Sobolev space. Then, it is clear that the "sub-branes" can be described

distributionally as intuitively expected; however, it seems more convenient to adopt struc-

ture (10), that is unique.

Intersecting sub-backgrounds:

Consider B = B1UB2, such that

jB1i = jset(B1)i jA; x1i ; (15)

jB2i = jset(B2)i jA; x2i (16)

Now, we say that B1; B2, are intersecting if and only if the functions x1; x2 coincide

at some point. Then, let a con�guration given by jA; x1; x2 : x1(p1) = x2(p2)i -where

p1=2�B1=2-;

j (x1; x2)j
2 = j< A; x1; x2 : x1(p1) = x2(p2) j ij

2 (17)

gives the probability that B1; B2, intersect at one point p := p1 = p2.

As a precise example of this discussion, we write down the Hilbert space of the states

of a string theory:

set(B) = [0; 1] (18)

H1�string = j[0; 1]i 
 L2[C=(T =[0; 1])]: (19)

where T is a Riemannian 10-dimensional manifold known as target space (we are con-

cerned with the bosonic sector). The Hilbert space of the states of string theory is:

Hstrings = �n[

nH1�string]: (20)

Notice that this has the same structure of a Fock-type structure (FQG) de�ned in the

�rst section.
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Closed string-space is expanded by the basis elements:

jSi := j[0; 1]i 
 jT i 
 jx(s) : x(0) = x(1)i (21)

Then, the wave functions: h jSi =  [x(s)].

Loops:

Another non-perturbative approach to quantum gravity recently developed [8] is based

on geometrical one-dimensional structures embedded in a three-dimensional one, namely:

loops. Also, they can be described in this language:

The ambient space is a three-dimensional (compact) manifold, �, and the "back-

grounds" correspond to S1, or a collection of circles:

set(B) = S1: (22)

Finally, the B-variables are induced by those of � via the embedding � : S1 ! �; these

variables, �rst introduced by Ashtekar [7], are the 3-dimensional space vierbeins E or

their canonical conjugate: the SU(2)-connection A.

Then, a loop state is j�i = jS1i (jA; �i), which resembles (13).

According to our construction, these are the elements which we need to express the

Hilbert space. The loop-QG Hilbert Space is

Hloop = �n=0[

n[
���(S1)

E

 L2(C=(�=S1))]]: (23)

Then, a state in the A-basis takes over the form  �[A].

4 Concluding remarks.

Our claim is that the present work is the most general fashion for the space (or space-time)

at observable level -direct or indirectly-. That is to say: if there are more fundamental
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structures, they must have contact with observable ones; which we believe to be the ones,

proposed in this work. In a future work, following up this one, we exploit the dynamics

due to new formulation of GR [5] and construct a particular, interesting full-model for

QG, which complements the main ideas of this work.

The possibility to describe, as it has been shown in the �nal examples, the kinematical

objects of the recent more promising approaches to a fundamental theory in terms of the

concepts formulated in this work, such as p-branes, strings, loops, and others, allows us

to argue that they are simply "subspaces of our HQG".

Finally, we hope that a diagrammatics for evolving B-geometries will arise when in-

tersections/interactions are considered. In a "Feynman-rule" picture, where the time de-

velopment of B would agree with a Feynman-diagram [2]. The recent Spin Foam Models

seems to be examples of this. See for instance [9].
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