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We discuss the '4 and '6 theory de�ned in a at D-dimensional space-time. We assume that
the system is in equilibrium with a thermal bath at temperature ��1. To obtain non-perturbative
result, the 1=N expansion is used. The method of the composite operator (CJT) for summing a
large set of Feynman graphs, is developed for the �nite temperature system. The ressumed e�ective
potential and the analysis of the D = 3 and D = 4 cases are given.

1 Introduction

The conventional perturbation theory in the coupling
constant or in �h i.e. , the loop expansion can only be
used for the study of small quantum corrections to clas-
sical results. When discussing quantum mechanical ef-
fects to any given order in such an expansion, one is not
usually able to justify the neglect of yet higher order.
In other words, for theories with a large N dimensional
internal symmetry group, there exist another perturba-
tion scheme, the 1=N expansion, which circumvents this
criticism. Each term in the 1=N expansion contains an
in�nite subset of terms of the loop expansion. The 1=N
expansion has the nice property that the leading-order
quantum corrections are of the same order as the clas-
sical quantities. Consequently, the leading order which
adequately characterizes the theory in the large N limit
preserves much of the nonlinear structure of the full the-
ory. In the next section we derive the e�ective action
to leading order in 1=N in D-dimensional space-time
and consequently the e�ective potential. It is known
that, in D > 4, such theories with '4 interaction are
in fact free �eld theory, while in D < 4 they have a
non-trivial continuum limit as an interacting �eld the-
ory. For D = 3 it has been shown that, in the large
N limit, the '6 theory has a UV �xed point and there-
fore must have a second IR �xed point [1]. At least for
large N the ('6)D=3 theory is known to be qualitatively
di�erent from ('4)D=4 theory.

In a previous work [2] by use of the composite op-
erator formalism and, we re-examinate the behavior at
�nite temperature of the O(N )-symmetric �'4 model in
a generic D-dimensional Euclidean space. In the cases

D = 3 and D = 4, an analysis of the thermal behavior
of the renormalized squared mass and coupling constant
are done for all temperatures. It results that the ther-
mal renormalized squared mass is positive and increases
monotonically with the temperature. It is interesting
to stress that the behavior of the thermal coupling con-
stant is quite di�erent in odd or even dimensional space.
In D = 3, the thermal coupling constant decreases up
to a minimum value di�erent from zero and then grows
up monotonically as the temperature increases. In the
case D = 4, it is found that the thermal renormalized
coupling constant tends in the high temperature limit
to a constant asymptotic value. Also for general D-
dimensional Euclidean space, we are able to obtain a
formula for the critical temperature of the second or-
der phase transition. This formula agrees with previous
known results at D = 3 and D = 4 [3, 4].

It is well known that the introduction of the '6 term
generated a rich phase diagram, with the possibility of
second order, �rst order phase transitions or even both
transitions occurring simultaneously. This situation de-
�nes the tricritical phenomenon. Some systems such
antiferromagnets in the presence of a strong external
�eld or the He3 �He4 mixture exhibits such behavior.
In a previous paper the massive ('6)D=3 model was an-
alyzed at �nite temperature at the two-loops approxi-
mation. We demonstrate the existence of the tricritical
point [5]. A natural extension of this paper was done in
ref. [7]. In this paper we proved the existence of the tri-
critical point using a non-pertubative approach. This
was done using the CJT formalism i.e. the composite
operator formalism [6].
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Here we continuous to study the composite opera-
tor method. Still studying the '6 theory in the large
N expansion, the e�ective potential at �nite tempera-
ture is calculated. The organization of the paper is the
following. In section II we derive the e�ective poten-
tial using the composite operator (CJT) formalism. In
section III the thermal e�ective potential is found for a
D-dimensional generic space. Conclusions are given in
section IV. In this paper we use �h = c = kb = 1.

2 The e�ective potential (The
CJT formalism)

We are interested here in the most general renormal-
izable scalar �eld model �'4 + �'6 possessing an in-
ternal symmetry O(N ), in a generic D-dimensional
space-time. Of course, for D = 4 this theory is non-
renormalizable. In this case to ensure renomalisability
we must make � = 0. Let us de�ne at the beginning
the �eld in a generic D-dimensional space-time. For
simplicity we will call this theory a '6 model.

Using the method of composite operator developed
by Cornwall, Jackiw and Tomboulis [6, 8], Townsend
derived the e�ective potential of '6 theory in the 1=N
expansion for D = 3 at zero temperature [9]. This au-
thor proved that 1=N expansion is consistent for '6 to

leading order.
The Lagrangian density of the O(N ) symmetry '6

theory is :

L(') =
1

2
(@�')

2 �
1

2
m2

0'
2 �

�0
4!N

'4 �
�0

6!N2
'6; (1)

where the quantum �eld is an N -component vector in
the N -dimensional internal symmetry space. For de�-
niteness, we work at zero-temperature; however, the �-
nite temperature generalizations can be easily obtained
[10]. We are interested in the e�ective action �(�)
which governs the behavior of the expectation values
'a(x) of the quantum �eld where � is given by

�(x) �
�W (J)

�J(x)
=< 0j'(x)j0 >; (2)

where W (J) is the generating functional for connected
Green's functions.

�(�) can be shown to be the sum of one-particle
irreducible (1PI) Feynman graphs with a factor �a(x)
on the external line. We make use of the formalism of
composite operator which reduces the problem to sum-
ming two particle irreducible (2PI) Feynman graphs by
de�ning a generalized e�ective action �(�;G) which is
a functional not only of �a(x), but also of the expec-
tation values Gab(x; y) of the time ordered product of
quantum �elds < 0jT ('(x)'(y))j0 >, i.e.

c

�(�;G) = I(�) +
i

2
TrLnG�1 +

i

2
TrD�1(�)G+ �2(�;G) + : : : ; (3)

d

where I(�) =
R
dxDL(�), G and D are matrices in

both the functional and the internal space whose ele-
ments are Gab(x; y), Dab(�;x; y) respectively and D is
de�ned by

iD�1 =
�2I(�)

��(x)��(y)
: (4)

The quantity �2(�;G) is computed as follows. In the
classical action I(') we have to shift the �eld ' by

�. The new action I(' + �) possesses terms cubic and
higher in '. This de�ne an interaction part Iint('; �)
where the vertices depend on �. �2(�;G) is given by
sum of all (2PI) vacuum graphs in a theory with ver-
tices determined by Iint('; �) and the propagators set
equal to G(x; y). The trace and logarithm in eq.(3)
are functional. After these procedures the interaction
Lagrangian density becomes

c

Lint('; �) = �
1

2

�
�0�a
3N

+
�0�

2�a
30N2

�
'a'

2 �

�
8�0�a�b�c

6N2

�
'a'b'c �

1

4!N

�
�0 +

�0�
2

10N

�
'4

�

�
12�0�a�b
6!N2

�
'a'b'

2 �
1

5!

�
�0�a
N2

'a'
4

�
�

�0
6!N2

'6: (5)

d
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The e�ective action �(�) is found by solving for
Gab(x; y) the equation

��(�;G)

�Gab(x; y)
= 0; (6)

and substituting the solution in the generalized e�ective
action �(�;G).

The vertices in the above equation contain factors of
1=N or 1=N2, but a ' loop gives a factor of N provided
the O(N ) isospin ows around it alone and not into
another part of the graph. We usually call such loops
bubbles. Then at leading order in 1=N , the vacuum
graphs are bubble trees with two or three bubbles at
each vertex. The (2PI) graphs are shown in �gure.(1).

c

Figure 1.: The 2PI vacuum graphs

d

It is straightforward to obtain
c

�2(�;G) =
�1

4!N

Z
dDx

�
�0 +

�0�
2

10N

�
[Gaa(x; x)]

2 �
�0

6!N2

Z
dDx[Gaa(x; x)]

3: (7)

d

Therefore eq.(6) becomes
c

��(�;G)

�Gab(x; y)
=

1

2
(G�1)ab(x; y) +

i

2
D�1(�) �

1

12N

�
�0 +

�0�
2

10N

�
[�abGcc(x; x)]�

D(x � y)

�
3�0
6!N

�ab[Gcc(x; x)]
2�D(x� y) = 0: (8)

d

Rewriting this equation, we obtain the gap equation
c

(G�1)ab(x; y) = D�1ab (�;x; y) +
i

6N

�
�0 +

�0�
2

10N

�
[�abGcc(x; x)]�

D(x� y) +

i�0
5!N2

�ab[Gcc(x; x)]
2�D(x � y): (9)

d

Hence
c

i

2
TrD�1G =

1

12N

Z
dDx

�
�0 +

�0�
2

10N

�
[Gaa(x; x)]

2+
3�0
6!N2

Z
dDx[Gaa(x; x)]

3 + cte: (10)
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d

Using eqs.(9) and eq.(10) in eq.(7) we �nd the e�ective action

c

�(�) = I(�) +
i

2
Tr[LnG�1] +

1

4!N

Z
dDx

�
�0 +

�0�
2

10N

�
[Gaa(x; x)]

2 +

2�0
6!N2

Z
dDx[Gaa(x; x)]

3; (11)

d

where Gab is given implicitly by eq.(9). The trace in
(11) are both the functional and the internal space. The
last two terms on the r.h.s of eq.(11) are the leading con-
tribution to the e�ective action in the 1=N expansion.
As usual we may simplify the situation by separating
Gab into transverse and longitudinal components, so

Gab = (�ab �
�a�b
�2

)g +
�a�b
�2

�

g ; (12)

in this form we can invert Gab,

(G)�1ab = (�ab �
�a�b
�2

)g�1 +
�a�b
�2

�

g
�1

: (13)

Now we can take the trace with respect to the in-
dices of the internal space,

Gaa = Ng +O(1); (G)�1aa = Ng�1 +O(1) : (14)

From this equation at leading order in 1=N , Gab is diag-
onal in a; b. Substituting eq.(14) into eq.(11) and eq.(9)
and keeping only the leading order one �nds that the
daisy and superdaisy resummed e�ective potential for
the '6 theory is given by:

c

�(�) = I(�) +
iN

2
tr(ln g�1) +

N

4!

Z
dDx

�
�0 +

�0�
2

10N

�
g2(x; x) +

2N�0
6!

Z
dDxg3(x; x) +O(1); (15)

d

where the trace is only in the functional space, and the gap equation becomes

c

g�1(x; y) = i

�
2+m2

0 +
�0
6
(
�2

N
+ g(x; x)) +

�0
5!
(
�2

N
+ g(x; x))2

�
�D(x� y) + O(

1

N
): (16)

d

It is important to point out that this calculation was
done by Townsend [9]. We interested to generalize these
results assuming that the system is in equilibrium with
a thermal bath a temperature T = ��1. Since we are
studying the equilibrium situation it is convenience to
use the Matsubara formalism. Consequently it is con-
venient to continue all momenta to Euclidean values

(p0 = ip4) and take the following Ansatz for g(x; y),

g(x; y) =

Z
dDp

(2�)D
expi(x�y)p

p2 +M2(�)
: (17)

Substituting eq.(17) in eq.(16) we get the expression for
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the gap equation:

M2(�) = m2
0+

�0
6

�
�2

N
+ F (�)

�
+
�0
5!

�
�2

N
+ F (�)

�2

;

(18)

where F (�) is given by

F (�) =

Z
dDp

(2�)D
1

p2 +M2(�)
; (19)

and the e�ective potential in the D-dimensional Eu-
clidean space can be expressed as

c

V (�) = V0(�) +
N

2

Z
dDp

(2�)D
ln
�
p2 +M2(�)

�
�
N

4!
(�0 +

�0�
2

10N
)F (�)2 �

2N�0F (�)
3

6!
; (20)

d

where V0(�) is the classical potential. In the next sec-
tion using the Matsubara formalism we present the ef-
fective potential of the model at �nite temperature.

3 The e�ective potential for '6

theory at �nite temperature

Let us suppose that our system is in equilibrium with
a thermal bath. To study the temperature e�ects in
quantum �eld theory we will use the imaginary time
Green function approach [10]. In this formalism the
Euclidean-time � is restricted to the interval 0 � � � �,
and the bosonic �led satis�es periodic boundary condi-
tions in Euclidean-time. This is equivalence to replace

the continuous four momenta k4 by discrete !n and the
integration by a summation (� = 1

T ):

k4 ! !n =
2�n

�
; n = 0;�1;�2; :::Z

dDk

(2�)D
!

X
n

1

�

Z
dD�1k

(2�)D�1
: (21)

It is important to stress that all the Feynman rule are
the same as the temperature case, except, as we stressed
that momentum space integrals over the zeroth com-
ponent is replace by summ over discret summs. The
e�ective potential at �nite temperature can be write
as:

c

V�(�) = V0(�) +
N

2�

1X
n

Z
dD�1p

(2�)D�1
ln
�
!n + p2 +M2

� (�)
�
�

N

4!
(�0 +

�0�
2

10N
)F�(�)

2 �
2N�F�(�)3

6!
: (22)

d

where F�(�) is a �nite temperature generalization of
F (�), where,

F�(�) =
1

�

1X
n=�1

Z
dD�1p

(2�)D�1
1

!2n + p2 +M2
�(�)

: (23)

The gap equation for this theory at �nite temperature
is given by,

M2
�(�) = m2

0+
�0
6

�
�2

N
+ F�(�)

�
+
�0
5!

�
�2

N
+ F�(�)

�2

:

(24)

In order to regularize F�(�) given by eq.(23), we use
a mixing between dimensional regularization and an-
alytic regularization. For this purpose we de�ne the
expression I�(D; s;m) as :

I�(D; s;m) =
1

�

1X
n=�1

Z
dD�1k

(2�)D�1
1

(!2n + k2 +m2)s
:

(25)
Using the analytic extension of the inhomogeneous Ep-
stein zeta function it is possible to obtain the analytic
extension of I�(D; s;m);

c

I�(D; s;m) =
mD�2s

(2�1=2)D�(s)

"
�(s �

D

2
) + 4

1X
n=1

�
2

mn�

�D=2�s
KD=2�s(mn�)

#
(26)
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d

where K�(z) is the modi�ed Bessel function of the third
kind. Fortunately for D = 3 the analytic extension of
the function I�(D; s = 1;m = M�(�)) = F�(�) is �nite

and can be expressed in a closed form [5] (note that in
D = 3 we have no pole, at least in this approximation),
and in particular as

c

F�(�) = I�(3; 1;M�(�)) = �
M�(�)

4�

�
1 +

2 ln(1� e�M�(�)�)

M�(�)�

�
: (27)

d

This result is not a peculiarity of this method of reg-
ularization, because this happens also in dimensional
regularization at zero temperature, that is, in odd di-
mensions integrals which are divergent by naive power
counting may be to regulated to �nite value with no
poles occurring, for example in D = 3. In order to reg-
ularize the second term of eq.(22), we use the following
method: We de�ne,

LF�(�) =
1

�

1X
n=1

Z
dD�1p

(2�)D�1
ln
�
!n + p2 +M2

� (�)
�
(28)

then,

@LF�(�)

@M�
= (2M�)

1

�

1X
n=1

Z
dD�1p

(2�)D�1
1

!n + p2 +M2
�(�)

(29)
and from the equation (23), we have that,

@LF�(�)

@M�
= (2M�)F�(�); (30)

in this way the e�ective potential could be regularized.
For D = 3, F�(�) is �nite and is given by eq. (31)[5]
and integrating the eq.(30), we obtain:

c

LF�(�)R = �
M�(�)

3

6�
�
M�(�)Li2(e

�M�(�)�)

� �2
�
Li3(e

�M�(�)�)

� �3
: (31)

d

The de�nition of general polylogarithm function Lin(z)
can be found in ref. [11].

The daisy and super daisy resummed e�ective po-
tential at �nite temperature for D = 3 is given by:

c

V�(�) = V0(�) +
N

2
LF�(�)R �

N

4!
(�0 +

�0�
2

10N
)(F�(�)R)

2 �
2N�(F�(�)R)

3

6!
: (32)

d

and the gap equation (see eq.(24)):

c

M2
� (�) = m2

0 +
�0
6

�
�2

N
�
M�(�)

4�

�
1 +

2 ln(1 � e�M� (�)�)

M�(�)�

��

+
�0
5!

�
�2

N
�
M�(�)

4�

�
1 +

2 ln(1� e�M�(�)�)

M�(�)�

��2

: (33)
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d

The numerical result for the e�ective potential for
D = 3 at three di�erent temperature is reported in

Fig.(2).

c

–5

5

10

10 20 30 40 50 60 70

Figure 2.: The daisy and superdaisy resumed e�ective potential at three di�erent temperature T2 > T1 > T0 for
D = 3.

V�

T2 > T1

T2

'

T1

T0

d

From the �gure below, we see that, there exist a �rst
order transition for the parameter of the theory in the
case when the e�ective potential at tree level, presents
symmetry breaking at zero temperature (denoted for
curve label by T0).

For the case D = 4, and for � = 0, where the the-
ory is just renormalizable, the e�ective potential can be
obtain in the same way, that is:

V�(�) = V0(�)+
N

2
(LF�(�)R)D=4�

�0N

4!
(F�(�)R)

2
D=4;

(34)
where V0 is the classical potential,

V0(�) =
1

2
m2'2 +

�

4!N
'4; (35)

and (F�(�)R)D=4 is given by:

(F�(�)R)D=4 =
�M2

� (�)

2�2

Z
1

1

(p2 � 1)
1

2

eM� (�)�p � 1
dp : (36)

and in the limit of high temperature, we could write
the above equation as:

(F�(�)R)D=4 =
1

12�2
�
M�(�)

4��
�
M2

�(�)

8�2
ln (M�(�)�);

(37)
and,

c

(LF�(�)R)D=4 =
M�(�)

2

12�2
�
M�(�)

3

6��
�
M�(�)

4 ln(M�(�)�)

16�2
+
M�(�)

4

64�2
; (38)
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d

and the gap equation for D = 4 is given by:
c

M2
� (�) = ~m2(�) +

�

6

 
1

12�2
�
M�(�)

4��
�
M2

�(�)

8�2
ln (M�(�)�)

!
; (39)

d

where ~m2(�) = m2 + �
6
�2

N , and m2, � are the renor-
malized mass and coupling constant a temperature
zero respectively. We note that, from the gap equa-
tion in eq.(39), we �nd that for the coupling constant
�� 1, the condition M2

� (�)=T
2 � 1 is consistent with

~m2(�)=T 2, which is exactly the required condition for
the high temperature expansion [10].

4 Conclusions

In this paper we have performed an analysis of the daisy
and super daisy e�ective potential for the theory '4 and
'6 in D-dimensional Euclidean space at �nite temper-
ature. The form of e�ective potential have been found
explicitly using resummation method in the leading or-
der 1=N approximation (Hartree-Fock approximation).
We have seen how dimensional regularization and an-
alytic regularization can be used to compute the e�ec-
tive potential at �nite temperature. In odd dimensional
theory when power counting indicates that the diverges
should occur, dimensional regularization and analytic
does not give rise to a pole.
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