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Abstract

A manifestly Lorentz-covariant calculus based on two matrix-coordinates and their
associated derivatives is introduced. It allows formulating relativistic �eld theories in
any even-dimensional spacetime. The construction extends a single-coordinate matrix
formalism based on coupling spacetime coordinates with the corresponding �-matrices.

A 2D matrix-calculus can be introduced for each one of the structures, adjoint, com-
plex and transposed acting on �-matrices. The adjoint structure works for spacetimes
with (n; n) signature only. The complex structure requires an even number of timelike
directions. The transposed structure is always de�ned. A further structure which can be
referred as \spacetime-splitting" is based on a fractal property of the �-matrices. It is
present in spacetimes with dimension D = 4n+ 2.

The conformal invariance in the matrix-approach is analyzed. A complex conjugation
is present for the complex structure, therefore in euclidean spaces, or spacetimes with
(2; 2), (2; 4) signature and so on.

As a byproduct it is here introduced an index which labels the classes of inequivalent
�-structures under conjugation performed by real and orthogonal matrices. At least two
timelike directions are necessary to get more than one classes of equivalence. Furthermore
an algorithm is presented for iteratively computing D-dimensional � matrices from the p
and q-dimensional ones where D = p+ q + 2.

Possible applications of the 2D matrix calculus concern the investigation of higher-
dimensional �eld theories with techniques borrowed from 2D-physics.
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1 Introduction.

In the last few years physicists started getting accustomed with the likely possibility
that the ultimate theory would be non-commutative. Many investigations on the role
of non-commutative geometry took place [1]. In a somewhat di�erent context, attempts
to penetrate the mysteries of M-theory have been made invoking the so-called M(atrix)
theory [2] and matrix string theory [3]. The latter in particular is a non-perturbative
formulation which allows a non-trivial dynamics for strings by assuming the target-space
coordinates being of matrix type.

The above-mentioned approaches are not immediately related with the topics discussed
in the present paper but they constitute their natural premises and background. Moreover
the results here discussed point to further investigations in that direction.

Our present work deals with the issue of �nding a manifestly Lorentz-covariant descrip-
tion of relativistic �eld theories in any even spacetime dimension in terms of a formalism
which involves matrix-type coordinates. Let us postpone for a while answering the ques-
tion why should we bother about such a formulation and let us �rst discuss the main
ideas involved.

It is somewhat a trivial remark, found in standard textbooks [4], that the Lorentz-
group can be recovered and interpreted in terms of matrix-type coordinates. On the other
hand it is clear, following the original ideas of Dirac, i.e. expressing the d'Alembertian
2 box operator through its squared root =@, that to such a derivative can be associated,
as in any case involving derivatives, a space expressed through a coordinate which is
now matrix-valued. A Lorentz-covariant calculus, endorsed with matrix-type integrals is
immediately at disposal. The above considerations are perhaps not very deep. In any case
they did not �nd applications especially because they lead to feasible descriptions, but
nothing is gained and much is lost with respect to the standard case. The reason is clear,
the lack of extra-structures. For instance, if we work in a single coordinate matrix-type
formalism, then we have no room left to introduce in our theories antisymmetric tensors
like curvatures F�� which require antisymmetry properties among indices and therefore
at least two coordinates. The restriction is so strong that we are not even allowed to
formulate QED or Yang-Mills theories. Therefore, if we wish to play the \matrix game"
in a purposeful way we need at least two coordinates.

In reality \two" is quite su�cient for our scopes. More than that, it is precisely what
we need. Indeed two dimensions are just enough to formulate all kind of theories we
could be possibly interested in. Besides, an impressive list of methods and techniques
have been elaborated to deal precisely with �eld theories in 2D. Let us just mention
one issue for all, integrability. Integrable �eld theories are well understood in 2D [5] due
to the possibility of representing equations of motion as zero-curvature equations in the
form [@Z �LZ ; @Z �LZ ] = 0 where LZ , LZ are Lax pairs. In higher dimensions analyzing
integrability is much more problematic [6]. We have reasons to believe that our approach
could shed light on this subject. Indeed the point of view we are advocating here is that
we can, formally, deal even-dimensional spacetimes as a matrix-valued 2D space. With a
pictorial image, we can say that we boost dimensions to the Flatland.

It is clear that non-commutative features are present with respect to theories formu-
lated on the plane. These extra structures however, far from being undesired, are welcome
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and natural. They are the expected price we must pay for living in a higher-dimensional
world.

Even if as a consequence we are not automatically guaranteed that working methods
in the standard 2D-plane continue to work in high-D, nevertheless our approach helps
attacking problems with techniques which, so to speak, are \driven by the 2D formalism
itself". As an example and with respect to the above mentioned integrability issue, this
would imply investigating the matrix-analogs of the ordinary 2D Lax pairs. A (partial)
list of other topics and areas which could bene�t from this approach will be discussed in
the conclusions.

The key ingredient we demand is acting with even-dimensional Poincar�e generators
on two matrix-valued coordinates Z;Z which, in order to leave the construction as simple
as possible, we require being mutually commuting

i) [Z;Z] = 0 (1)

The di�erential calculus involves two derivatives @Z, @Z which should satisfy a factoriza-
tion (Lorentz-covariant) property as follows

ii) @Z@Z / 2 � 11 (2)

This property can also be rephrased in more geometrical terms by requiring the (pseudo)-
euclidean quadratic form ds2 = dx�dx��

�� being expressed through dZ � dZ = ds2 � 11,
where dZ, dZ are matrix-valued di�erentials. The commutativity of Z;Z implies the
commutativity of the derivatives, therefore @Z@Z = @Z@Z.

The disentangling of Z;Z further requires that

iii a) @ZZ = @ZZ = 0 (3)

while the normalization condition

iii b) @ZZ = @ZZ = 11 (4)

can be imposed. Please notice that in the above formulas the action of derivatives is a
left action (not a free one).

The three listed properties are non-trivial ones. In order to make them work two
di�erent schemes can be adopted. The �rst one is based on non-trivial identities satis�ed
by the Cli�ord �-matrices and involving vector-indices contractions (from time to time
we refer to such identities as \vector-traces", being understood they are not the standard
traces taken w.r.t the spinorial indices). The second one uses a fractal property of the
same �-matrices, i.e. an algorithm which allows computing higher-dimensional �-matrices
from lower-dimensional ones. As we discuss later in the text, this fractal property encodes
the information that the Lorentz-algebra has the structure of a homogeneous space.

The \vector trace"-case should be analyzed for each one of the three structures, adjoint,
transposed or complex, which act on � matrices. While the transposed structure allows
to satisfy the three properties above for any even space-time, the adjoint action restricts
the D = 2n spacetime to have (n; n) signature, and the complex structure restricts the
signature to have an even number of time-coordinates. In the case of the complex structure
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Z;Z are mutually complex conjugated (Z = Z�), while no conjugation is present in all
the remaining cases.

The second scheme, which for reasons that will become clear later will be referred as
the \splitting case", works only when the dimensionality of the spacetime is restricted to
the values D = 4n+2 (n is a non-negative integer). In this case the signature is arbitrary.

Contrary to the standard calculus, the matrix-calculus here discussed naturally en-
codes the mentioned trace or fractal properties.

It is worth mentioning that when the formulas here reported (for the whole set of
constructions mentioned above) are specialized to the D = 2 case, we trivially recover the
ordinary 2D formalism in either the euclidean or Minkowski spacetime.

As we discuss at length in the text our calculus is manifestly Poincar�e covariant and
a 2D matrix-integration can be easily constructed. We explicitly apply it to bosonic
theories and QED �elds to show how to recover the results of the standard formulation.

It is worth mentioning that as a byproduct of the matrix-construction here discussed
some other results are found. In particular, motivated by �nding the consistency condi-
tions under which the complex structure gives rise to a 2D-matrix coordinate calculus,
we are able to introduce an index which labels the classes of inequivalent �-structures
under conjugation realized by matrices both real and orthogonal. This index is shown to
classify the Wick rotations mapping the euclidean D-dimensional space to a spacetime
with (k;D � k) signature.

The algorithm mentioned before is here furnished. It is a realization of D-dimensional
�-matrices in terms of p and q-dimensional ones, where D; p; q are even integer numbers
satisfying the relation D = p + q + 2.

The scheme of the paper is the following.
In section 2 we introduce and discuss at �rst the covariant calculus for a single ma-

trix coordinate. In section 3 the conformal invariance is analyzed in the light of the
matrix-approach. In section 4 the basic properties concerning � matrices, as well as the
conventions used, are reported. The algorithm expressing higher-dimensional �-matrices
from the lower-dimensional ones is presented in section 5. Section 6 is devoted to discuss
the consistency conditions for a 2D matrix-calculus in the \vector-trace" approach. It is
shown that the vanishing of ����

y, ����
� or ����

T is required. In section 7 the complete
solution is furnished. The already mentioned restrictions to the 2D matrix-calculus with
the adjoint or complex structure arise as a consequence. In section 8 the index discussed
before is introduced and computed. It is shown how to relate it to Wick rotations from
euclidean spaces to pseudoeuclidean spacetimes. The 2D matrix formalism is revisited
and compact formulas are given in section 9. In section 10 a relativistic separation of
the matrix-variables is explained. In section 11 the formula realizing higher-dimensional
�-matrices from lower-dimensional ones is used to present a di�erent (inequivalent) way
of introducing the 2D matrix-coordinate calculus. It applies for p = q, that is when the
spacetime is D = 4n + 2-dimensional. Section 12 is devoted to explain how to apply
the matrix-calculus to forms. In the conclusions we make some comments about the 2D
matrix calculus and discuss its possible applications.
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2 Matrix coordinates.

Originally the =@ derivative was introduced by Dirac to be applied on spinors in order
to de�ne the dynamics of spinorial �elds. However, as mentioned in the introduction, =@
admits another interpretation. Indeed it can be regarded as acting on a matrix-valued
coordinate space. It turns out that e.g. bosonic �elds can be described within a Lorentz-
covariant framework in such a manner.

Since the idea of using matrix coordinates is at the very core of our further develop-
ments let us introduce and discuss in some detail the theory of a single-matrix coordinate
at �rst.

We consider the following matrix-valued objects:
i) the matrix coordinate Z = x���

ii) the matrix derivative 1 @Z = 1
D
@���

iii) the matrix di�erential dZ = dx���.
The above objects are all �-valued, where the �� denote any set of D-dimensional

�-matrices (the signature of the space-time does not play any role for the moment and
can be left arbitrary).

Matrix-valued functions are �-valued functions (�) of the single Z matrix-variable
(i.e. � � �(Z)). Both Lorentz and Poincar�e invariances are automatically encoded in the
above formalism. Indeed not only @2Z = 1

D22 � 11, but also the quadratic form dZ2 satis�es

dZ2 = ds2 � 11 (5)

(here, as in the introduction, ds2 = dx�dx��
��).

It turns out that linear transformations which include the Poincar�e group as a subgroup
leave invariant this quadratic form. Indeed the di�erential d = dx�@

� can be reexpressed
in matrix-coordinate form as

d � 11 =
D

2
(dZ �

@

@Z
+

@

@Z
� dZ) (6)

so that for a generic f(Z) function of Z we can write df = D

2 (dZ �
@

@Z
+ @

@Z
�dZ) �f . Notice

that when f is the identity (f(Z) � Z) we recover, as it should be, the above de�nition
for dZ. We wish to point out that, since we are dealing with matrix-valued objects, some
care has to be taken when performing computations with respect to the ordinary case.
Non-commutative issues imply for instance that dZ � Z 6= Z � dZ.

If we specialize the f -transformation to be given by

Z 0 = f(Z) = S � Z � S�1 +K (7)

where S is an element of the D-dimensional Lorentz group (i.e. S��S�1 = ��
��

�) and K
is a constant matrix which for what we need is su�cent to take of the form K = k� � ��,
we therefore obtain dZ 0 = S � dZ � S�1 which further implies dZ 02 = dZ2 since the latter
is proportional to the identity.

The calculus can be further enlarged to accomodate a formal de�nition of a matrix-
valued volume integration form and a matrix-valued delta-function. They both coincide

1the 1

D
normalization is introduced for convenience in order to normalize @Z �Z = 11.
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with the standard manifestly relativistic covariant de�nitions. To express them in matrix
form is su�cent to recall the de�nition of �D+1, the D-dimensional analog of 
5, as the
Lorentz-invariant product of the D-dimensional ��

�D+1 = ��0 � �1 � ::: � �D�1 (8)

with � = (�1)
(s�t)
4 . Here t denotes the number of timelike coordinates with + signature

and s = D � t the number of spacelike coordinates with � signature. Therefore we can
write

dV = dx0 � ::: � dxD�1 � 11 = �d�(0) � :::d�(D � 1) � �D+1

(here d�(i) = dxi�i) and

�(Z;W ) = �(x0 � y0) � ::: � �(xD�1 � yD�1) � 11 = ���(0) � ::: � ��(D � 1)

(where ��(i) = �(xi � yi)�i).
Let K = k� � ��. The identity

1
2(K � Z + Z �K) = k�x

� � 11 allows us to express the
solutions to the free equations of motion for the bosonic massive �eld � in terms of the
matrix-coordinate Z-representation. Indeed, if K �K = m2 � 11, the equation

(D2@Z
2 +m2)� = 0 (9)

admits solutions which can be written as

�(Z) =

Z
dVK [a(K)e

i

2(K�Z+Z�K) + a�(K)e�
i

2(K�Z+Z�K)] (10)

where the modes a(K) can be expanded in Laurent expansion as a(K) =
P

n2 anK
n and

the an coe�cients for our scopes can be assumed to be c-numbers.
At least for this particular case within the single-coordinate matrix formalism we are

able to recover the results obtained in the standard framework. The mentioned feature
that the =@ derivative need not be associated with only spinorial �elds arises as a byproduct.

3 The conformal invariance in the matrix-approach.

The matrix nature of the coordinate in the matrix calculus introduces noncommutative
features. In this section we discuss this topic and show how the conformal invariance can
be recovered within such a formalism.

At �rst it should be noticed that even and odd powers of Z behave di�erently. Due
to the previous section results we get that Z2n = (x2)n � 11 is proportional to the identity,
while Z2n+1 = (x2)n � Z. As a consequence only the subclass of \odd" transformations
of the kind Z 7! Z2n+1 admits a realization in the ordinary spacetime coordinates x� as
x� 7! x�(x2)n, for any integer-valued n. \Even" transformations (i.e. mappings Z 7! Z2n)
cannot be realized on the x� coordinates, while they are acceptable transformations in
the Z-coordinate realization.
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Simple algebraic manipulations show that the left action of the @Z derivative on powers
of Z leads to

@ZZ
2n = 2n

D
Z2n�1

@ZZ
2n+1 = (2n+D

D
)Z2n (11)

The commutation relation between Z and @Z is given by

[@Z; Z] = 11� 2
D
� l���

�� (12)

where l�� and ��� are respectively the spacetime and spinorial generators of the Lorentz
algebra:

l�� = x�@� � x�@�

��� = 1
4
[��;�� ] (13)

The extra-term on the r.h.s. of (12) is clearly absent in D = 1 dimension. All the infor-
mations that we are dealing with a higher dimensional spacetime are therefore encoded
in this extra operator 2.

The D-dimensional conformal group is de�ned as the set of transformations leaving
invariant the relation ds2 = 0. It is well known that for D > 2 the number of generators
nC in the conformal group is given by nC = nL + 2D + 1, where nL = 1

2(D
2 � D) is

the number of generators in the Lorentz group. The extra generators are given by the D
translations, the D special conformal transformations plus the dilatation. In the matrix-
coordinate realization this result is recovered as follows. While the Poincar�e generators
have been discussed in the previous section and the dilatation is simply given by Z 7! �Z,
the only crucial points concerns how to obtain the D special conformal transformations.
They are given by the composition of the Poincar�e transformations with the conformal
inversion, which in our case is expressed through the transformation

Z 7! Z 0 =
1

Z
(14)

(i.e. x� 7!
x�

(x2)). It is a simple algebraic check to prove that dZ2 = 0 is preserved by

(14). No other power transformation of Z for a di�erent value of the exponent shares
this feature. For instance dZ2n+1 � dZ2n+1 is not proportional to ds2 because an extra
contribution of the kind

4n(n+ 1)(x2)2n�1dx�x
�dx�x

�;

which vanishes only for n = �1, is present. This one and similar other consistency
checks make ourselves comfortable with the intrinsic coherency of the matrix-coordinate
formalism.

2It is tempting to regard (12) as a deformation (depending on a � = 1

D
parameter) of the standard

commutator. Perhaps D-dimensional relativistic theories could therefore be analyzed in the light of the
deformation theory which, in a di�erent context, has been employed to recover quantization from classical
structures (see e.g. [7]). However we will not elaborate more on such aspects in the present paper.
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In theD = 1 dimension the conformal group coincides classically with the 1-dimensional
di�eomorphisms group whose algebraic structure is given by the in�nite-dimensional Witt
algebra (centerless Virasoro algebra), spanned by the ln generators

ln = �z(n+1)
@

@z
(15)

which satisfy the commutation relations

[ln; lm] = (n�m)ln+m (16)

We expect that this algebra should be recovered in higher dimensions as well. This is the
case indeed. If we de�ne for any given D

Ln = �
D

2
Z2n+1@Z (17)

then the Ln generators satisfy (16), i.e. [Ln; Lm] = (n�m)Ln+m.
In the special D = 1 limit this algebra coincides with the Witt subalgebra spanned by

the \even" generators 1
2
l2n; such a subalgebra coincides with the Witt algebra itself 3.

If we do not limit ourselves to consider \even" generators, but we enlarge the structure
to accomodate \odd" generators of the kindMn = �

D

2 Z
2n@Z in D > 1, then we no longer

�nd a closed algebraic structure since the commutator between Mn, Lm involves extra
operators

[Mn; Lm] = (2m�2n+D4 ) � Z2n+2m � @Z �
3
4Z

2n+2m � l���
�� � @Z (18)

A closed linear algebraic structure should therefore include the extra operators (the second
term in the r.h.s.) and any other new operator arising from the commutation of the
previous ones, a procedure which has been encountered for instance when dealing with
W1-algebra structures, see [8] and references therein.

Let us conclude this section by pointing out that no contradiction is present with
the previous result that the conformal algebra in higher dimension is �nite-dimensional.
Indeed only in D = 1 the Witt algebra admits a geometrical interpretation as a conformal
algebra. We have seen that for D > 2 the conformal relation dZ2 = 0 is preserved by a
group of transformations with a �nite number of generators only (while the D = 2 case
can be treated within the standard conformal calculus).

4 �-matrices and basic notations.

In the two previous sections we have investigated the single matrix-coordinate formal-
ism and explained in some detail how it works. To be able to go a step further and analyze
the 2D matrix-coordinates approach we need at �rst to check whether is it possible to
solve the three conditions (from i) to iii)) formulated in the introduction. This can be

3It is a property of the Virasoro algebra that any subalgebra spanned by ~ln = 1

k
lkn generators for

any given positive integer k, is still equivalent to the full Virasoro algebra. If the non-trivial cocycle for
the central extension is chosen to be of the form cn3�n+m;0, then the central charge ~c present in the ~ln
subalgebra is rescaled to be ~c = kc.
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done only when properties of �-matrices for any spacetime are taken into account. For
that reason this section is devoted to analyze � matrices and establish our notations and
conventions. Concerning this material, we have used [9] as basic references.

A �-structure associated to a given spacetime, is a matrix representation of the Cli�ord
algebra generators ��, which satisfy the anticommutation relations

���� + ���� = 2���11� (19)

(here ��� is any (pseudo)-euclidean metric in D dimension). The representation is realized

by 2
D

2 � 2
D

2 matrices which further satisfy the unitarity requirement

��y = ���1 (20)

as well as the tracelessness condition

tr�� = 0 (21)

for any �.
The commutator is

���� � ���� = 4���
11� (22)

��� , already introduced in (13), is the generator of the Lorentz (pseudo-rotations) group.
For a matter of convenience and without loss of generality we can work in the so-called

Weyl representation for ��, which occours when the dimensionalityD of the spacetime is
even; the �� are block-diagonal

�� =

�
0 ��

~�� 0

�
(23)

The dimensionality of the �, ~� matrices is dim� = dim~� = 2
D

2
�1.

It is worth mentioning that all the results found in the present paper are representation-
independent and not speci�c of the above presentation.

Any generic Y matrix, constructed with �-matrices and their products, have spinorial
transformation properties (dotted and undotted indices) of the following kind

Y =

�
?�

� ?� _�

? _�� ? _�
_�

�
(24)

The extra matrix �D+1, introduced with the correct normalization in (9), together with
the D �� satisfy the (19) and (22) algebra in (D + 1)-dimensions and is block-diagonal
(the blocks have equal size)

�D+1 =

�
11� 0
0 �11~�

�

In terms of �� and ~�� the (19) and (22) algebra reads as follows

��~�� + ��~�� = 2���11�

~���� + ~���� = 2���11~� (25)
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and respectively

��~�� � ��~�� = 4���11�

~���� � ~���� = 4~���11~� (26)

while

��� =

�
��� 0
0 ~���

�

From the even-dimensional euclidean �-matrices we can reconstruct the �-matrices for
any other signature by applying a Wick rotation, realized as follows: let � be a direction
with � signature. The correponding �� is obtained from the euclidean �E

� through
�E

� 7! �� = i�E
�, i.e.

�E
� 7! �� = i�E

�

~��E 7! ~�� = i~��E (27)

The �� matrices along the timelike � directions (��� = +1) are left unchanged. The
absolute sign in the (27) transformations is just a matter of choice.

The adjoint, complex and transposed structures can be introduced in terms of three
unitary matrices, conventionally denoted as A;B;C in the literature [9], satisfying

��y = (�1)t+1A��Ay (28)

��� = �B��By (29)

��T = �(�1)t+1C��Cy (30)

� is here a sign (� = �1) which in principle can be evaluated but need not be speci�ed
for our purposes.

In the euclidean (positive signature +:::+) and only in the euclidean case the ��

matrices can be assumed all hermitians (��y = �� for any �).
For simplicity in the following the three above structures, adjoint, complex and trans-

posed, will also be referred as A;B;C-structures. For completeness let us report here the
following properties satis�ed by A;B;C:

A = �0 � ::: � �t�1 (31)

BT = "B; (32)

C = BTA (33)

" is a sign (" = �1) which is expressed [9] through " = cos �

4
(s�t)�� sin �

4
(s�t) (as before

t and s = D � t denote respectively the number of timelike and spacelike coordinates).
In the formula for A the product of � is restricted to timelike coordinates only.

We have furthermore

A�1 = (�1)
t(t�1)

2 A (34)

A� = �tBAB�1 (35)

AT = �tCAC�1 (36)

CT = "�t(�1)
t(t�1)

2 C (37)
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5 An algorithm to iteratively compute � matrices.

In this section we present an algorithm which encodes fractal properties of the �-
matrices and allows to iteratively compute �-matrices in any dimension and for any
signature of the space-time by the knowledge of lower-dimensional �-matrices. As a
consequence the computation of any set of D-dimensional �-matrices satisfying the (19)
algebra is recovered from the sole knowledge of the three Pauli matrices.

The algorithm here presented is central for our analysis of the 2D matrix-coordinates
formalism in the \splitting" case and is also quite useful in proving the vector-contraction
identities we introduce and discuss in the next section.

The �-matrices in evenD spacetime dimension can be represented from the 
-matrices
in (p+1) and (q+1) spacetime dimensions (we will use capital and lower letters for reasons
of typographical clarity) where the even integers p; q satisfy the condition

D = p+ q + 2 (38)

Since, as recalled in the previous section, �-matrices for any signature are obtained from
the euclidean �-matrices through a Wick rotation, it is su�cient to present our formulas
in the case when all the �-matrices involved (in (p + 1), (q + 1) and D dimensions) are
euclidean.

The capital index M = 0; 1; :::;D � 1 is used to span the D-dimensional space, while
m = 0; 1; :::; p and m = 0; 1; :::; q are respectively employed for the (p + 1) and (q + 1)-
dimensional spaces. The corresponding �-matrices will be denoted as �D

M , 
p
m, 
q

m.

The symbol 11n will denote the 2
n

2 � 2
n

2 identity matrix.
For concision of notations the symbols 110 and 
0

0 (i.e. the \1-dimensional �-matrix")
will both denote the constant number 1.

It is a simple algebraic exercise to prove that the set of �D
M matrices can be realized

through the position

�D
M =

�
0 11q 
 
p

m; �i
q
m 
 11p

11q 
 
p
m; i
q

m 
 11p 0

�
(39)

with M � (m; p+ 1 +m).
The condition (38) is necessary in order to match the dimensionality of the �-matrices

in the left and right side (due to (38) the dimension of the r.h.s. matrix is 2 �2
p

2 �2
q

2 = 2
D
2

if (38) is taken into account). A further consequence of the (38) condition is that the
\generalized 
5-matrices" (9) of the kind 
pp and 
qq are necessarily present, which implies
a decomposition of the even dimensional D spacetime into two odd-dimensional p+1 and
q + 1-spacetimes.

The decomposition realized by (39) works for any couple of even integers p; q satisfying
the (38) condition. This implies that for any given even integer D the number nD of
inequivalent decompositions (factoring out the ones trivially obtained by exchanging p$
q) is given by nD = 1

4(D + r), where either r = 0 or r = 2 according respectively if D
is a multiple of 4 or not. At the lowest dimensions we have the following list of allowed
decompositions:

D = 2  f(p = 0; q = 0)g
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D = 4  f(p = 0; q = 2)g

D = 6  f(p = 0; q = 4); (p = 2; q = 2)g

D = 8  f(p = 0; q = 6); (p = 2; q = 4)g

D = 10  f(p = 0; q = 8); (p = 2; q = 6); (p = 4; q = 4)g (40)

and so on. It is worth mentioning here that in issues involving Kaluza-Klein compacti�-
cations to lower-dimensional spacetimes the above result can �nd useful applications in
suggesting which one of the allowed decompositions is the most convenient to choose.

Since the formula (39) is quite important for our purposes it is convenient to furnish
it in two other presentation. We can write in the Weyl realization

�D
M = (11q 
 
p

m; �i
q
m 
 11p)

~�MD = (11q 
 
p
m; i
q

m 
 11p) (41)

�D
M can also be expressed through

�D
m = �x 
 11q 
 
p

m

�D
p+1+m = �y 
 
q

m 
 11p (42)

with the help of the o�-diagonal Pauli matrices �x, �y.
The three Pauli matrices given by

�x =

�
0 1
1 0

�
; �y =

�
0 �i
i 0

�
; �z =

�
1 0
0 �1

�
(43)

can be regarded as the �-matrices for the euclidean three-dimensional space. It is evident
that any D-dimensional �-matrix can be constructed, with repeated applications of the
(39) formula, by tensoring the (43) Pauli matrices. The statement made at the beginning
of this section is therefore proven.

Let us make some comments about the algebraic meaning of the formula (39). The
generators �MN of the Lorentz transformations are expressed through the commutators
of � matrices, see (13). By using the (39) decomposition the index M is splitted into m,
m indices. The Lorentz algebra G admits a decomposition in three subspacesM+,M�

and K, spanned respectively by the generators �mn 2 M+, �mn 2 M� and �mn 2 K.
M+ and M� are the G subalgebras corresponding to the Lorentz algebras for the

(p + 1)-dimensional and respectively the (q + 1)-dimensional subspaces entering the (39)
decomposition. By settingM =def M+ �M�, the full Lorentz algebra is expressed as

G = M�K (44)

The Lorentz commutators in G satisfy the following set of symbolic relations

[M;M] = M

[M;K] = K

[K;K] = M (45)
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The existence of such relations gives to the Lorentz algebra G the structure of a homo-
geneous space w.r.t. its (44) decomposition. The existence of the (39) representation for
the �-matrices is just a re
ection of such a homogeneity property.

6 The 2D matrix formalism in the \vector-trace"

approach.

In this section we start discussing how to implement our program which prescribes the
introduction of two distinct Z, Z matrix-coordinates. We recall that the basic properties
required (from i) to iiib) ) have already been presented in the introduction.

It is quite evident that we have no longer the possibility to identify one of the co-
ordinates (let's say Z) with the position Z = x��� as in the single matrix-coordinate
formalism, since in this case no room is left to introduce the second coordinate Z, com-
muting with the previous one and satisfying dZ � dZ = ds2 � 11. A di�erent strategy has
to be employed. In this section we present one, which we conventionally call the \trace"
approach since, as we will see, it involves some identities concerning contractions of vector
indices of �-matrices (\vector traces"). Another approach based on a di�erent construc-
tion will be discussed in the next sections. An important feature which should be stressed
here is the fact that the requirements put by the 2D matrix-coordinates formalism lead
to some non-trivial constraints concerning the structure of space-times. Di�erent matrix-
solutions can be found to our program depending on the dimensionality and the signature
of the spacetimes.

We gain much more freedom to investigate our problem if we take as starting building
blocks to construct matrix-valued objects not just the ��-matrices themselves, but instead
the ��, ~�� blocks (together with their conjugated matrices under adjoint, transposed or
complex action) entering the Weyl realization (23).

Let us introduce in order to simplify notations

! = x��
�; ~! = x�~�

� (46)

The spinorial (dotted and undotted indices) transformation properties for !, ~! and their
A;B;C-transformed quantities are as follows

f!; ~!y; !�; ~!Tg � ?� _�; f~!; !y; ~!�; !Tg � ? _�� (47)

In accordance with the above transformation properties the �rst and the second set of
matrix-valued objects have to be inserted in matrices of the kind of (24) respectively in
the upper right (lower left) corner.

The �'s and ~�'s matrices satisfy the anticommutation and commutation relations
given by (25) and (26). Analogous relations are immediately obtained by applying on
them the A;B;C-transformations (30). The requirement of commutativity ([Z;Z] = 0),
as well as the disentangling of the coordinates under the left action of derivatives (i.e.
@ZZ = @ZZ = 0) can be solved with the help of the (25) relations. They apply however
only if at most a single matrix of the kind of !, ~! (or their conjugated quantities) is
inserted in the upper right or lower left diagonal block of a bigger matrix (24) to build
up Z, Z. For that reason we do not consider here the possibility that mixed terms could
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be present. The investigation about the possibility to solve the above relations in this
context is much more involved and does not seem to use general arguments as the case
we are analyzing here. It is therefore left as an open problem for further investigations.
On the other hand the construction involving single blocks is here fully analyzed and the
complete solution is furnished.

We ask for matrix-valued Z, Z of the kind

Z =

�
0 !
? 0

�
; Z =

�
0 ?
~! 0

�
(48)

To keep covariance the ? in the above formulas should be replaced either by the 0-matrix
or by the matrices in (47) with the right covariance properties. The commutation re-
quirement [Z;Z] = 0 rules out the possibility to use the 0-matrix so that the only left
possibilities are either

Z =

�
0 !
!# 0

�
; Z =

�
0 ~!#

~! 0

�
(49)

or

Z =

�
0 !
~!� 0

�
; Z =

�
0 !�

~! 0

�
(50)

(since the transposed and the adjoint case are formally similar it is convenient to introduce
a unique symbol # to denote both of them, i.e. # � T; y).

In both the above cases the identi�cation of Z;Z through either (49) or (50) implies
that the commutativity property is satis�ed in consequence of (25). In the two #-cases
above the commutativity requires for instance the vanishing of the expression

x�x�(�
�~�� � ~�� #��#) (51)

This is indeed so as it can be realized by expanding the term inside the parenthesis in its
symmetric and antisymmetric component under the � $ � exchange. Notice the role of
the � sign and the fact that Z, Z in (49) are correctly \�ne-tuned" in order to guarantee
the commutativity. A similar analysis works for the complex �-case as well.

The (25) identities imply the following relations

��~�� = D � 11� ~���� = D � 11~� (52)

(where from now on the Einstein convention over repeated indices is understood).
Such identities allow us to introduce the derivative @Z, @Z which satisfy the ii) condi-

tion and the normalization requirement iiib). They are given in the #-cases by

@Z =
1

D

�
0 @�~�� #

@�~�� 0

�
; @Z =

1

D

�
0 @��

�

@��
� # 0

�
(53)

and in the �-case by

@Z =
1

D

�
0 @��

� �

@�~�� 0

�
; @Z =

1

D

�
0 @��

�

@�~�� � 0

�
(54)
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In both the # and �-cases we have the relation

@Z@Z = @Z@Z =
1

D2
2 � 11 (55)

Up to now all the properties required by the 2D matrix-coordinates formalism have been
satis�ed. The last property which should be implemented, but a fundamental one, is the
\disentangling condition" iiia).

One can immediately check that @ZZ = @ZZ = 0 is satis�ed whether, according to
the di�erent cases, the following contractions of the vector indices give vanishing results:

A � ����
y; B � ��~���; C � ����

T (56)

(and similarly ~A = ~��~�y�, ~B = ~�� ��� and ~C = ~��~�T� should vanish as well). A, B, C are
all proportional to 11� with a proportionality factor a, b, c respectively (one can easily
realize that ~A, ~B, ~C are proportional to 11~� with the same a, b, c constant factors).

An equivalent way of rephrasing the above properties reads as follows

����
y = a � 11�

����
� = b � 11�

����
T = c � 11� (57)

We are therefore left to determine under which conditions the above a, b, c constants are
vanishing.

Before going ahead let us however point out that while a is always representation-
independent, c in principle could not be representation-independent (in e�ect it is so
and is always vanishing) and b is representation-independent only in the euclidean case
(for generic signatures its value depend on the way the Wick rotation (27) has been
performed). The algebraic meaning of b as an index labelling classes of equivalence of
�-structures under conjugations determined by both real and orthogonal matrices will be
discussed in section 8.

The remark concerning the representation-independence can be immediately under-
stood when realizing that a di�erent �-structure satisfying the Weyl condition is recovered
from the �� by by simultaneously rescaling all �'s and ~�'s through

�� 7! �i��

~�� 7! i~�� (58)

Under such a transformation a, b, and c are mapped as follows: a 7! a, b 7! �b, c 7! �c.
The above transformation can also be reexpressed with the help of the Pauli matrices

as

�� 7! (i�z 
 11) � �� (59)

In the next section we compute the coe�cients a, b, c for any even-dimensional spacetime.
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7 The vector-contraction identities.

In the previous section we have furnished the motivations why we are interested in
computing the \vector-contractions" expressed by the formula (57), i.e. the coe�cients
a, b, c. Here we furnish the results together with their proofs.

The following properties hold:

i) a = t� s (60)

where, as usual, t (s) denotes the number of timelike (spacelike) directions in D = t + s
dimensions;

ii) b = 2(t+ � t�) (61)

where t+ (respectively t�) are non-negative integers denoting the number of time-directions
(whose total number is t = t+ + t�) associated to �-matrices which are symmetric (re-
spectively antisymmetric) under transposed conjugation in the Weyl representation;

iii) c = 0 (62)

identically in any spacetime.
As a result the 2D matrix-formalism de�ned in terms of the A-structure works only

in (t = n; s = n) spacetimes, while in terms of the C-structure it is always de�ned for any
even-dimensional spacetime. For what concerns b, it can assume among other possible
values, the 0-value only when the spacetime admits an even number of time directions,
under the assumption t+ = t� = m, t = 2m.

The B-structure turns out to be de�ned only for spacetimes with even number of
timelike (+ signature) and even number of spacelike (- signature) directions.

The strategy to prove the above statements is the following.
For what concerns the computation of a we can start with the euclidean case. In this

case we can consistently assume

��y = �� (63)

By using (25) we get that a in the euclidean is a = D. The (27) \Wick rotation" applied
to the � direction leads to a change of sign in the contribution of ���� (indeed +1 7! �1),
which proves the above result.

For what concerns c we proceed as follows. At �rst we notice that any Wick rotation
leaves unchanged the contribution of the corresponding direction so that c does not depend
on the signature of the spacetime. It is therefore enough to compute c in the euclidean
case. We can do it iteratively by determining the value cD+2 of c in (D + 2)-dimensions
from its D-dimensional value cD. It is convenient to do so with the help of the (39)
formula, taken with the \extremal" decomposition q = 0, p = D. We get for �D+2

�:

�D+2
� = (�D

~�; �D+1; �i � 11D) (64)

where ~� = 0; 1; :::;D � 1. The two last terms on the right hand side give opposite
contributions which cancel each other to the computation of cD+2. Therefore cD+2 = cD.
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On the other hand an immediate computation shows that in D = 2, c2 = 0. The (62)
formula is therefore proven.

The above result is just one way of proving the well-known property that in the
Weyl representation the �-matrices can all be chosen simultaneously either symmetric or
antisymmetric under transposition

��T = ��
T��; ��

T = �1 (65)

and that the number of \symmetric" �+ directions (��+
T = +1) is equal to the number

of \antisymmetric" �� directions (��
�

T = �1).
Due to the transformation (58) the (anti-)symmetric character of the �� along the �

direction (and therefore the sign in (65)) is arbitrary and conventional since (58) reverts
the symmetry properties under transposition. The relative sign between two arbitrary
directions however is left unchanged and acquires an absolute meaning.

For later purposes it is convenient to introduce the sign ��
� as

�� � = ��
��� (66)

We remark that ��� changes sign when a Wick rotation is performed along �.
It should be noticed that in an evenD = t+s spacetime with (t; s)-signature the choice

of which � matrices should be assumed T -symmetric (T -antisymmetric) can be made in
di�erent ways. Let us denote with t+ (t�) the number of time-directions associated to T -
symmetric (T -antisymmetric) � matrices; s+ (s�) will denote the number of T -symmetric
(T -antisymmetric) spatial directions. Clearly, from the previously stated results

t = t+ + t�

s = s+ + s�

t+ + s+ = t� + s� =
1

2
(t+ s) (67)

It turns out that b can be recovered from the computations already performed by setting

�� � ��
� = �� � (��

T )y =

= ��+ � ��+
y � ��� � ��

�

y = (t+ � s+ � t� + s�) � 11�;

that is, due to (67), b = 2(t+ � t�). QED.

8 An index labelling the inequivalent �-structures

under real orthogonal conjugation and their asso-

ciated Wick rotations.

At this point of our analysis it is convenient to make a little digression in order to
explain the algebraic signi�cance of the coe�cient b which can be reintroduced through
the position (b = 2I):

I =
1

2
D
2 +1
� tr(�� � ��

�) = (t+ � t�) (68)
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I is an index with a deep algebraic meaning. We recall at �rst a fundamental property
of the �-structures (de�ned in section 4), known as the \fundamental Pauli theorem"
(see [10]), stating that they are all unitarily equivalent. This implies that given two �-
structures, denoted as �I

�, �II
�, a unitary matrix S (S�1 = Sy) can always be found

such that �II
� = S�I

�Sy for any �. Moreover, up to a normalization factor, S is uniquely
determined. As a consequence the representation-independence of the Dirac equation is
guaranteed.

The index I, as shown by the previous section computations, is not de�ned on the
above equivalence class. However one can easily realize that I is well-de�ned on the
class of equivalence of �-structures which are conjugated under a real and orthogonal
transformation, i.e. such that �II

� = O�I
�OT for any �, with O a real-valued matrix

belonging to the orthogonal group O(2
D
2 ), 2

D
2 being the dimensionality of ��. The in-

dex I is therefore mathematically meaningful and can �nd useful applications in issues
where reality conditions, not just unitary equivalence, have to be imposed. We already
know that there exists spacetimes for which I assumes di�erent values. Such spacetimes
support inequivalent �-structures under real and orthogonal conjugation. The fact that
inequivalent real structures arise out of a single \complex" structure is of course not at all
surprising. In a related area we have the example of the real forms which are associated
to a given complex Lie algebra.

The index I admits another interpretation. It classi�es the inequivalent ways a Wick
rotation can be performed from the euclidean D-dimensional space to a given (t; s =
D � t) pseudoeuclidean space. We will brie
y discuss this topic in the following. Our
considerations will be simpli�ed if we analyze not just the index I itself, but its modulus
jIj. By taking into account the (58) transformation, jIj classi�es the equivalence-classes

of �-structures under conjugation for the tensor group O(2
D
2 )
 Z2.

Without loss of generality (to recover the condition below it is su�cient to perform a
t$ s exchange), we can further restrict t to be t � D

2
. Under this restriction the index jIj

for an odd number of time-directions (t = 2k +1) assumes all the possible k +1 di�erent
odd-values jIj = 1; 3; :::; 2k + 1 (i.e. for t+ = 0; 1; :::; k in the reverse order), while for
an even number of time directions (t = 2k) it assumes all the possible k + 1 even values
jIj = 0; 2; :::; 2k (here again for t+ = 0; 1; :::; k in the reverse order).

Please notice that not only in the euclidean, but even in the generalized Minkowski
case (t = 1; s = D � 1), jIj detects just one class of equivalence.

In practice Wick rotations corresponding to a given value of jIj can be quite easily
constructed. Let us start with the euclidean D = 2n space. The directions are splitted
into two classes on n elements each, according to the (anti-)symmetry property under
transposition for their associated �-matrices (or equivalently, their ��� (66) sign). We can
list them as [SS:::SjAA:::A] or as [+ + :::+ j � �:::�]. We recall that the Wick rotation

ips the ��� sign so that

([SS:::jAA:::]� [+ + :::j � �:::]) 7! ([(iS)S:::jA:::]� [�+ :::j � �:::]) (69)

with a clear use of the symbols.
It is evident that for any n the passage from the euclidean (2n; 0) space to the (1; 2n�

1)-Minkowski spacetime can be done unambiguously when (58) is taken into account,
indeed jIj can only be jIj = 1. However, starting from the t = 2 case, the Wick rotation
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can be done in inequivalent ways. For instance the passage from the euclidean (4; 0) space
to the (2; 2) spacetime can be done through either

i) [+ + j � �] 7! [+ + j++] (70)

(i.e. t+ = 0, t� = 2) so that jIj = 2, or

ii) [+ + j � �] 7! [+� j �+] (71)

(i.e. t+ = t� = 1) with jIj = 0.
Similarly, the passage (6; 0)! (2; 4) can be done through either

i) [+ + +j � ��] 7! [+ + +j �++] (72)

(t+ = 0, t� = 2, jIj = 2) or

ii) [+ + +j � ��] 7! [+ +�j � �+] (73)

(t+ = t� = 1, I = 0).
As from the Wick rotations (6; 0)! (3; 3), we can have either

i) [+ + +j � ��] 7! [+ + +j+++] (74)

(t+ = 0, t� = 3, jIj = 3), or

ii) [+ + +j � ��] 7! [+ +�j �++] (75)

(t+ = 1, t� = 2, jIj = 1).
The iteration of the procedure to more general cases is now evident.
In all the above transformations we have picked up a Wick rotation which is repre-

sentative of its class of equivalence. The fact that inequivalent �-structures, labelled by
the index jIj, can be associated to a given space-time has immediate consequences to our
problem of �nding a 2D matrix-valued complex structure. Indeed, as discussed in section
6, the only structure which endorses a complex structure for the Z, Z matrix-coordinates
is the B-structure. Formula (50) applies and we get

Z = Z� (76)

As remarked in the previous section the only spacetimes which allow a 2D-matrix valued
complex calculus are those for which b � I = 0. We already noticed that this implies
an even number of time coordinates (and an even number of space coordinates due to
the assumption that D is even). The discussion of this section shows however that in
order to get a 2D-matrix valued complex calculus, it is not su�cient just to pick up a
(2k; 2n � 2k) spacetime. A \correct" Wick rotation from the euclidean (one of those
leading to t+ = t� = k) has to be performed. For even times there is a � structure
which satis�es jIj = 0. Such a � structure (with its associated Wick rotations) has to be
carefully determined. In the (2; 2) case for instance it corresponds to the formula (71),
while the Wick-rotation (70), belonging to a di�erent �-structure, must be discarded.
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We conclude this section by remarkig that issues involving two-times physics are at
present quite investigated, see e.g. [11].

9 The 2D-matrix formalism revisited.

In this section we collect all the results previously obtained concerning the 2D-matrix
calculus and present them in a single unifying framework which makes formally similar
the analysis of the three A, B, C cases discussed so far. The \splitting case" S, whose
discussion is postponed to a later section, also �ts the following formulas.

Let us introduce at the �rst the matrices 
�
(?) � 
�, 


�

(?) � 

�
, where the (?) index

denotes one of the constructions (A, B, C or S) which proves to work. In the following the
(?) index will be omitted in order not to burden the notation, but it should be understood.

The 
's and 
's matrices, with 

�
6= 
�, are constructed to satisfy the anticommuta-

tion relations


�

�
+ 
�


�
= 2���11



�

� + 


�

� = 2���11 (77)

An useful identity which immediately follows is



�

� = 
�
� = D � 11 (78)

A further requirement which has been imposed is expressed by the formula


�
� = 

�

� = 0 (79)

(here and above the Einstein convention is understood). The latter relation, in the A,
B, C cases, is a consequence of the vector-contractions properties of �-matrices, and the
conditions when is satis�ed have been discussed section 7.

We can introduce the matrix coordinates Z, Z, and their relative matrix derivatives
@Z , @Z through

Z = x�

�

Z = x�

�

(80)

@Z =
1

D
@�


�

@Z =
1

D
@�


� (81)

It is convenient to formally de�ne the following (anti)-commutators


�
� � 
�
� = ��
��



�


�
� 


�


�

= ��
��


�

�
� 
�


�
= 
��



�

� � 


�

� = 


��
(82)
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For our purposes we do not need to compute them esplicitly, however the formulas for

�� , 


��
will be presented at the end.

The following commutation relations hold

[Z;Z] = 0

[@Z; Z] = [@Z; Z] = 11�
1

4D
l��(


��
+ 
��)

[@Z; Z] = �
1

2D
l����

��

[@Z; Z] = �
1

2D
l����

�� (83)

where l�� = x�@� � x�@�.
When either the A (� y) or the C structure (� T ) are employed we have (as before

# � y; T )


(A;C)
� =

�
0 ��

�� # 0

�
; 
(A;C)

�
=

�
0 ~�� #

~�� 0

�
(84)

When the B (� �) structure is employed we have


(B)
� =

�
0 ��

~�� � 0

�
; 
(B)

�
=

�
0 �� �

~�� 0

�
(85)

In this case


(B)
�

= 
(B)
� � (86)

Due to the hermiticity property of the euclidean �-matrices in the euclidean space the
B-structure and the C-structure coincide.

Let us furnish here for completeness the expression for 
�� , 

��

in the three A, B, C
cases. We get


(A;C)
�� =

�
��� 0
0 �~��� #

�
; 
(A;C)

��
=

�
���� # 0

0 ~���

�
(87)

and respectively


(B)
�� =

�
��� 0
0 ~��� �

�
; 
(B)

��
=

�
��� � 0
0 ~���

�
(88)

The solutionsof the free equations of motion in the 2D- matrix formalism (confront dis-
cussion at the end of section 2) are expressed with the help of K = k�


�, K = k�

�

through

k�x
� � 11 =

1

2
(K � Z + ZK) (89)

so that

@Ze
ik�x

��11 =
i

D
Keik�x

��11

@Ze
ik�x

��11 =
i

D
Keik�x

��11 (90)
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10 A relativistic separation of variables.

Instead of using Z, Z we can make a change of variables and introduce the 2D-matrix
coordinates Z� de�ned as follows:

Z� = Z � Z (91)

The commutativity property clearly still holds

[Z+; Z�] = 0 (92)

while the @� matrix-derivatives can be introduced

@� =
1

2
(@Z � @Z) (93)

in order to satisfy, as a left action on Z�,

@�Z� = 11; @�Z� = 0 (94)

The (pseudo)-euclidean quadratic form ds2 � 11 can now be read as follows

dZ � dZ =
1

4
(dZ+

2 � dZ�
2) (95)

Therefore Z+ (Z�) can be regarded as single-matrix coordinates, as those introduced
in section 2, for the (pseudo)-euclidean spaces associated (up to a global sign) to the
quadratic forms dZ+

2 and dZ�
2 respectively. In this context (91) can be seen as a sepa-

ration of variables which preserves the relativistic structure of the theory.
It is not di�cult to prove that, while the Z, Z matrix-coordinates are constructed

with the full set of x� coordinates, no matter which structure has been used to de�ne
them, Z+ involves only half of the x� coordinates. The remaining \half-sector" of the
x�'s appears in Z�. The even D = (2n)-dimensional spacetime is therefore splitted in two
n-dimensional relativistic spacetimes.

Such a result is a consequence of the following easy-to-prove equalities


� + 

�

= �� + �
�


� �

�

= �D+1 � (�� � �
�
) (96)

where �D+1 has been introduced in (9). �
�
denotes �� y, �� T or �� � according to the

context.
Let us analyze in detail the situation for each one of the three A, B, C structures so

far investigated.
The A structure (the adjoint case) works only when the D = 2n spacetime admits n

space directions and n time directions. We recall that the y-conjugation property of ��

depends on its signature. It turns out as a consequence that both Z+, Z� describe an
euclidean n-dimensional space (we apply on the space described by Z� an overall change
of the signature).



{ 22 { = CBPF-NF-063/98

For what concerns the C-structure we recall the results presented in the previous
sections. We can denote as t+ and s+ the number of respectively timelike and spacelike
directions which are associated to symmetric �-matrices. Similarly t� and s� are the
number of timelike and spacelike directions whose �-matrices are antisymmetric. The
relations (67) among t�, s� hold. As a consequence the Z+ (Z�) coordinate describes a
relativistic spacetime with signature (t+; s+) (and respectively (t�; s�)).

The same result applies also when the B (complex) structure is considered. The
vanishing of the index I as introduced in (68) now requires t+ = t� and s+ = s�. Let us
(t; s) � (2k; 2n� 2k) be the signature of the original spacetime. The spacetime described
by Z+ results having the same signature as the spacetime furnished by the Z� matrix
coordinate i.e.

(t+; s+) = (t�; s�) = (k; n� k):

This is the last result which completes our analysis concerning the relativistic separation
of variables.

11 The splitting case.

In this section we present a di�erent way, alternative to the construction so far em-
ployed, of solving the set of relations (77). It is based on the �-matrices realization
expressed by the formula (39). Due to the presence in (39) of tensor products of lower-
dimensional spacetimes � matrices, the construction based on (39) will be referred as
the \splitting case". It proceeds as follows. At �rst we introduce two matrix-valued
coordinates X+ and X� through the positions

X+ = xm �

�
0 11q 
 
p

m

11q 
 
p
m 0

�
(97)

and

X� = xm �

�
0 
q

m 
 11p

q

m 
 11p 0

�
(98)

The conventions introduced in section 5 are employed. In particular m takes value in a
(p + 1)-dimensional space and m in a (q + 1)-dimensional one. The total spacetime is
D = p+ q + 2 (38).

Clearly X� commute

[X+;X�] = 0 (99)

The matrix coordinates X� realize a relativistic separation of variables since the quadratic
pseudoeuclidean form ds2 can be written as

ds2 � 11 = dX+
2 + dX�

2 (100)

The matrix derivatives @� can be introduced through

@+ =
1

(p + 1)
� @m

�
0 11q 
 
p

m

11q 
 
p
m 0

�
(101)
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and

@� =
1

(q + 1)
� @m

�
0 
q

m 
 11p

q

m 
 11p 0

�
(102)

@� are correctly normalized so that their left action on X� produce

@+X+ = @�X� = 11 (103)

Moreover the disentangling condition

@+X� = @�X+ = 0 (104)

is veri�ed.
With the help of X� we can construct the matrix-valued Z, Z which allow to decom-

pose the quadratic form ds2 through

ds2 � 11 = dZ � dZ

This can be done by setting

Z = X+ + iX�

Z = X+ � iX� (105)

Z, Z commute. They can be regarded as 2D matrix-valued coordinates as discussed in
the introduction. In order to de�ne a calculus we need the introduction of the matrix
derivatives @Z, @Z. In the light of the \splitting approach" here discussed, this can be
done unambiguously by setting

@Z =
1

2
(@+ � i@�)

@Z =
1

2
(@+ + i@�) (106)

The above @Z, @Z derivatives satisfy all the required properties; they commute and more-
over

@ZZ = @ZZ = 11

@ZZ = @ZZ = 0 (107)

as left action.
The only crucial point left is whether @Z, @Z realize a factorization of the d'Alembertian

2 operator. It follows that

@Z@Z =
1

4
(@+

2 + @�
2) (108)

On the other hand @�
2 satisfy

@+
2 =

1

(p + 1)2
11q 
 11p2+

@�
2 =

1

(q + 1)2
11q 
 11p2� (109)
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where 2+ and 2� are the d'Alembertian for respectively the (p + 1) and the (q + 1)
dimensional subspaces. It turns out that the property

@Z@Z / 2

is veri�ed only in the case

p = q (110)

that is, the subspaces associated to X+, X� have equal dimensions.
We recall that p; q entering (39) are even dimensional, so that we can set p = q = 2n.

From the (38) condition D = p+ q+2, it follows that the 2D-matrix coordinate calculus
can be introduced with the splitting condition only for spacetimes whose dimensionality
D is restricted to be an even integer of the kind

D = 4n+ 2 (111)

for some integral n.
This conclusion furnishes also the proof that the \splitting case" here considered is

di�erent from the previously analyzed A, B, C cases. In such cases only restrictions
to the signature of the spacetimes (for the A and B structures) were found, while the
dimensionality itself of the spacetimes is no further restricted (besides the initial even-
dimesionality requirement).

Let us conclude this section by pointing out that Z, Z can be represented as

Z = x�

� = xm


m + xm

m

Z = x�

�
= xm


m + xm

m (112)

(� is an index which spans the D dimensional spacetime), where 
�, 

�
can be immedi-

ately read from (97,98) and (105).
One can easily check that the derivatives @� of formulas (101,102) can be represented

in the form

@Z =
1

D
@�


�

@Z =
1

D
@�


� (113)

only when the equality p = q is satis�ed. The algebra which has been analyzed in section 9
can be formally recovered in the splitting (S) case. The \splitting" is another construction
which allows satisfying the relations (77).

12 An application to forms.

In the introduction we mentioned that one possible application for the 2D-matrix
formalism consists in investigating abelian and Yang-Mills gauge theories. In this respect
it is convenient to outline how di�erential forms can be introduced in the light of the 2D
matrix formalism. We sketch it here. Notations and conventions are those reported in
section 9.
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With the help of the di�erentials dZ = dx�
�, dZ = dx�

�
we can construct the

wedge products

dZ ^ dZ =
1

2
dx� ^ dx� � ��

��

dZ ^ dZ =
1

2
dx� ^ dx� � 
�

��

dZ ^ dZ =
1

2
dx� ^ dx� � 
�

��

dZ ^ dZ =
1

2
dx� ^ dx� � ��

��
(114)

Notice that, due to the matrix character of the coordinates, dZ ^ dZ 6= 0 and similarly
dZ ^ dZ 6= 0, while dZ ^ dZ 6= �dZ ^ dZ.

The di�erential operator d which satis�es the nilpotency condition

d2 = 0 (115)

can be decomposed through

d � 11 = dx�@� � 11 = @ + @ (116)

where @, @ are given by

@ =
D

2
@Z � dZ

@ =
D

2
dZ � @Z (117)

The equality (116) is a consequence of the (77) relation.
Please notice that the order in which derivatives and di�erentials are taken is important

because they are no longer commuting in the matrix case.
The wedge products between the di�erential operators @, @ is in general complicated.

The simplest expression, the only one which deserves being here reported, is for @ ^ @:

@ ^ @ =
1

32
2dx� ^ dx�


��
(118)

A one-form A can be introduced with the positions

AZ = A�

�

AZ = A�

� (119)

Indeed we have for A

A = A�dx
� � 11 =

1

2
(AZdZ + dZAZ) (120)

In the abelian case a gauge transformation is simply realized by the mapping

A 7! A+ d� = A+ (@ + @)�
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where � is a matrix-valued 0-form.
The stress-energy tensors F�� are introduced as two-forms with the standard procedure

F = dx� ^ dx�F
�� � 11 =

1

2
dx� ^ dx�(@

�A� � @�A�) � 11 =

= dA = (@ + @)A (121)

13 Conclusions.

In this paper we have introduced a matrix-calculus to describe relativistic �eld the-
ories in higher-dimensional spacetimes. We discussed the single-matrix approach, which
can be applied for instance to scalar bosonic theories, and the 2D matrix calculus, by
far more general, which employes matrix-valued Z, Z coordinates. We pointed out the
manifest Lorentz-covariance of our approach; furthermore we investigated the consistency
conditions which made it possible.

In order to solve this problem we produced some other results as byproducts. The
recursive formula (39) to construct �-matrices is an example. The computation of the
coe�cients in the \vector-trace" formulas (57) is another one. This computation has
also lead us to introduce an index labelling inequivalent �-structures under conjugation
realized by real orthogonal matrices. Such an index describes as well the equivalence
classes of Wick rotations from the euclidean into the pseudoeuclidean spacetimes.

Since a short summary of the main results here presented has already been furnished
in the introduction, we do not repeat it now. Rather, we prefer to give some commentaries
concerning the potentialities of the formalism we have constructed.

It surely deserves being stressed the fact that the existence of a 2D matrix-calculus
relies on non-trivial properties concerning dimension and signature of spacetimes. These
properties are described by nice mathematical formulas. At a purely formal level we
dispose of a very attractive mathematical construction. Spacetimes of di�erent dimensions
and signature can be formally treated on equal footing. The di�erent properties they share
are automatically encoded in the calculus. This feature could be even more relevant for its
supersymmetric extension (presently under construction). It is expected to put even more
restrictions on the allowed spacetimes. It seems more than a mere possibility that the
spacetimes which can be consistently de�ned would be those obtained from superstring.
The question concerning the nature of the spacetime and its signature [12] can in principle
be raised for the 2D matrix calculus.

At a less formal level and more down-to-earth point of view, we have of course to ask
ourselves the question about the usefulness and applicability of the whole construction.
So, let us state it clearly. We dispose of a formalism which can be jokingly named as \fat

at space" (where \fat" stands for matrix). In the present paper we have just unveiled
the basic roots of such a formalism. Of course more work is required to introduce e.g.
lagrangians, Poisson brackets, hamiltonians and so on, or to deal with curved spacetimes,
but in fact there is no obstacle in performing such extensions. Indeed they can be car-
ried out quite straightforwardly. The main point here is that our construction can in
principle lead to investigate higher-dimensional relativistic �eld theories by borrowing the
techniques employed for standard 2D physics.
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In the introduction we already mentioned the issue of integrability. In fact we have a
lot more. In standard 2D physics hamiltonian methods are widely used. They are more
powerful than lagrangian methods and, due to the fact that the 2D Poincar�e invariance
admits only three generators, in just 2D the loss of the manifest Lorentz-covariance im-
plicit in the hamiltonian approach is not a such a big loss. Our Z, Z coordinates can
in principle be used for such a hamiltonian description. Moreover, issues like current
algebras can be investigated in the light of the 2D matrix approach. This could mean
the extension of WZNW theories to higher-dimensional spacetimes (see [13]), as well as
their possible hamiltonian reductions ([14]) to higher-dimensional relativistic Toda �eld
theories ([15]).

Another topic in mathematical physics which can pro�t of the present formalism con-
cerns issues of index theorem and computation of the index for elliptic operators in higher
dimension. The recursive formula (39) provides the basis for factorizing elliptic operators
(just repeating the steps done for the standard d'Alembertian). Heat-kernel computations
can be made in terms of the 2D-matrix calculus.

Let us �nally mention that the \splitting of variables" described in section 11 admits
an useful application in analyzing reductions from higher-dimensional spacetime to lower-
dimensional ones, with a procedure which can be regarded as a \folding" of spacetimes
(allowing to express e.g. de Sitter or anti-de Sitter spacetimes from an underlying 10-
dimensional theory). This is the content of a work currently at an advanced stage of
preparation.
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