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I. INTRODUCTION

Over the past decade many studies were devoted to the understanding of quantum man-
ifestations of classical chaos. This interest can be explained by the fact that this subject
has applications in many di�erent areas of physics, like properties of complex systems, fun-
damental aspects of the correspondence principle, transport in ballistic mesoscopic cavities,
etc.. Most of the theoretical studies have concentrated on spectral properties of closed sys-
tems, accumulating a large body of numerical evidence of universality and some analytical
understanding of this fact. Comparatively few studies have so far been devoted to open
systems, and the scattering problem still lacks some solid �ngerprints which serve to clearly
distinguish integrable from chaotic classical scattering. For this reason, it is desirable to
study an observable which bridges the well understood quantum aspects of closed chaotic
systems and the still unclear features of open ones. The Wigner-Smith time delay [1,2] is
such an object, since it is intimately related to the level (or resonance) density of the system
and it is a genuine scattering observable. The present study deals with the universal features
of the time delay common to all chaotic scattering systems.

The concept of time delay in quantum scattering was �rst considered by Eisenbud [3]
and Wigner [1] in the context of one channel scattering. Later on, Smith [2] extended the
previous discussions to the many channel problem by introducing the lifetime matrix

Qab(E) = �i�h
�X
c=1

Sac(E)
d

dE
Sy
cb(E) ; (1)

where S is the standard scattering matrix and the sum runs over all � open channels denoted
by c. By averaging over the eigenvalues of Q, one arrives at the so{called Wigner{Smith
time delay

� (E) = �
i�h

�
Tr

"
Sy(E)

d

dE
S(E)

#
= �

i�h

�

d

dE
log detS(E) ; (2)

which is then interpreted as the typical time spent by the particle in the interaction region.
Even though this interpretation has some limitations in the case of wave packet scattering
[4], no di�culties arise when the incoming wave can be considered monoenergetic, a common
situation, e.g. in applications to mesoscopic transport phenomena [5,6] and microwave cavity
experiments [7{9].

In general, one can distinguish two regimes associated with a scattering process: a fast
response (corresponding to direct processes) and a delayed response related to the formation
of a long{lived resonance. In the energy domain, direct processes rule the energy{averaged
behavior of � (E). Alternatively, strong uctuations on the scale of the mean resonance
spacing � are associated to quasi{bound states, and are, in turn, intimately linked to the
classical dynamics in the interaction region.

Our analysis deals with a speci�c model which illustrates very nicely the most important
properties of chaotic scattering and is well suited to study the Wigner-Smith time delay.
Some steps in our considerations take into account system speci�c properties. However, our
main results can be easily extended to other chaotic scattering potentials. Our model consists
of an irregularly shaped cavity (denoted by R in Fig. 1) attached to a pipe (corresponding to
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the region L). The boundary between the pipe (or \waveguide") and the cavity is arbitrarily
chosen at the entrance of the cavity, at x = D (the region R need not necessarily be a
billiard). The quantum propagation in the direction parallel to the pipe axis is free. In the
transversal direction there are quantized modes �c(y) of energy �c, de�ning the scattering
channels c. At x = 0, with D chosen to be su�ciently large, the wave function  (x; y;E) is
expressed as a superposition of propagating modes

 (x; y;E) =
�X
c=1

 
ace

ikcx �
�X

c0=1

Scc0(E)ac0e
�ikcx

!
�c(y) ; (3)

with the wavenumbers kc given by

�h2

2m
k2c = E � �c : (4)

From this equation it becomes evident that by choosing jkjD� 1 we ensure that no evanes-
cent mode survives at x = 0 and Eq. (3) is valid. All the information about the scattering
process is contained in the energy dependent scattering matrix S(E).

For chaotic systems, we derive a formula which shows how to calculate the quantum time
delay using information about the classical orbits trapped inside the system. We further
explore this formula to compute time delay correlators, which show universal features. The
universal correlators typically scale with quantities like the average dwell time inside the
system, �dwell, and the mean resonance spacing � (also given in terms of the Heisenberg
time � = 2��h=�H). We show that the universal curves obtained in the semiclassical theory
are in good agreement with the statistical theory of random matrices when �H=�dwell � 1.

This paper is structured in the following manner. In Section II, a novel derivation of
the quantum time delay in terms of the underlying classical phase space of the repeller is
presented. Some applications of this formula are explored in Section III. The comparison
with random matrix theory is presented in Section IV, where we also discuss the range of
validity of the correspondence between semiclassical and statistical theories. In Section V
we present the conclusions of this study.

II. WIGNER{SMITH TIME DELAY AND TRAPPED PERIODIC ORBITS

This section is devoted to the derivation of a semiclassical equation for the Wigner-
Smith time delay in terms of classical periodic orbits trapped inside the scattering region.
Our derivation relies on the association of the S-matrix with the quantum Poincar�e map,
following closely the formalism developed by Bogomolny [10] for closed systems. A similar
result was previously obtained by Balian and Bloch [11], based on a construction proposed
by Friedel [12] for a separable system. The derivation presented below is more transparent
than the one in Ref. [11], making the approximations more controllable when dealing with
actual systems.

We begin by showing a simple construction relating the energy derivatives of two sets
of invariants of the �-channel scattering matrix S, namely the eigenphases f�1; �2; : : : ; ��g
and the traces fTrSn; n = 1; 2; : : :g (the construction remains valid for an arbitrary unitary
matrix depending on one parameter). For this purpose, let us consider the periodic function
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F (�) = � mod2� ; (5)

which has a Fourier expansion given by

F (�) = � � 2
1X
n=1

sinn�

n
: (6)

Summing over all S-matrix eigenphases in both sides in Eq.(6) and using ImTrSn =P�
c=1 sinn�c we obtain

�X
c=1

F (�c) = �� � 2 Im
1X
n=1

1

n
TrSn : (7)

The convenience of this arbitrary choice of F becomes apparent after di�erentiating all terms
in (7) with respect to the energy E,

�X
c=1

@�c
@E

= 2�
�X
c=1

@�c
@E

�(�c mod2�)� 2 Im
1X
n=1

1

n

@TrSn

@E
; (8)

since by recalling (2) it is easy to identify the l.h.s. of the above expression with the Wigner-
Smith time delay. Eq. (8) was �rst obtained by Bogomolny [10] and later rederived by
Rouvinez and Smilansky [13]. Those authors were interested in using the transfer (or scat-
tering matrix) approach to develop a quantization procedure for closed systems. The ideas
presented below are quite di�erent, since we are interested in open systems. Indeed, we use
the closed system to understand the scattering problem, which is the reverse of the procedure
in Refs. [13,14]. To this end, Eq. (8) only becomes useful after the following steps.

First, we shall consider the scattering matrix S (at the energy E) for the speci�c system
discussed in Section I. Far away from the cavity, at x = 0, the inuence of the evanescent
modes to the wave functions is negligible, since jkcjD� 1 (see Fig. 1). Therefore, according
to Eq. (3), the exact quantization condition for the system closed at x = 0, becomes det(S�
1) = 0, as has already been observed [14]. In other words, one of the eigenphases of the
S-matrix must vanish

�c mod2� = 0 : (9)

With this quantization condition, the �rst term in the r.h.s. of Eq. (8) is now easily identi�ed
with the density of states, �L+R(E), of the system closed at x = 0. After proper averaging
over some energy interval, �L+R(E) can be decomposed into a smooth and a uctuating part

�X
c=1

@�c
@E

�(�c mod2�) = �avL+R(E) + �L+R(E) ; (10)

where L and R stand for the pipe and cavity regions respectively (see Fig. 1).
In the present context, the matrix S is interpreted as the quantum Poincar�e map of the

closed system L+ R associated with the section S (x = 0+ in Fig. 1). The construction is
quite obvious, but for sake of completeness let us be explicit: Take an asymptotic incoming
wavefunction at x = 0+ and let it be scattered by R. As a result, one has a matrix that
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matches the incoming asymptotic waves into the outgoing ones. This de�nes the quantum
return map for x = 0+ and it is also the de�nition of the S-matrix. In order to obtain the
Poincar�e map, one still needs to describe what happens for x < 0�. This, however, is trivial,
since x < 0� de�nes the asymptotic region (there is no coupling between channels) and the
corresponding Poincar�e map is the identity matrix. For the geometry considered here, the
reection by the hard wall is equivalent to the reinjection procedure, de�ning the so called
Poincar�e scattering map, originally proposed by Jung [15]. In this way, the S-matrix can
also be viewed as the quantization of the Poincar�e scattering map. It is noteworthy that
the quantization condition de�ned by Eq. (9) has an interesting semiclassical counterpart.
For closed systems, the accuracy of the semiclassical quantization procedure based on a
Poincar�e section requires the section to be traversed by all periodic orbits, such a condition
de�ning a \good" section. If this is not the case, evanescent corrections become essential. By
closing the system su�ciently far away from the cavity region we ensure that the evanescent
contributions die out, making the exact quantum problem simpler.

Since the S matrix can be obtained by the quantization of a classically chaotic map, in
the semiclassical approximation its traces can be expressed as a sum over periodic orbits.
Actually, the sum over the traces of S in Eq. (8) results in an expression very similar to
the standard Gutzwiller trace formula [16] for the oscillatory part of the density of states of
the system de�ned by L + R [13]. The important di�erence is that in our case the sum is
restricted to those periodic trajectories that touch the section S. Decomposing the full set
of periodic orbits of the system L+R into a set that reaches S and a set which never leaves
the cavity R, one can write

1

�
Im

1X
n=1

1

n

@

@E
TrSn � �L+R(E)� �R(E) ; (11)

where �R(E) can be expressed in terms of periodic orbits constricted to the region R.
Substituting the relations (10) and (11) into Eq. (8), we obtain

�

2��h
� (E) � �avL+R(E) + �L+R(E)�

�
�L+R(E)� �R(E)

�
; (12)

yielding

� (E) �
2��h

�

�
�avL+R(E) + �R(E)

�
: (13)

This is already very close to the expression we are looking for. The problem is that � is
measured with respect to x = 0 and we are interested in the time that the particle spends in
the cavity region, i.e., the time delay with respect to x = D. As a consequence, we still have
to translate the origin of coordinates to the entrance of the cavity. Under this operation,
the S-matrix transforms as

S(x0) = e�ikDS(x)e�ikD ; (14)

where x0 = x � D and k is a diagonal matrix having the kc's as elements. Taking into
account that the time delay is additive with respect to the product of unitary operators,
namely,
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Tr
�
(S1S2)

y d

dE
(S1S2)

�
= Tr

�
Sy
1

d

dE
S1
�
+ Tr

�
Sy
2

d

dE
S2
�

(15)

we arrive at

� 0 = � �
2�hD

�

d

dE

�X
c=1

kc : (16)

The second term in the r.h.s. of (16) is a smooth function of energy. It is proportional to
the density of states of the region L (the pipe in Fig. 1),

2�hD

�

d

dE

�X
c=1

kc =
2D

�

�X
c=1

1

vc
=

2��h

�
�avL (E) : (17)

The �rst identity above says that under a spatial translation by D, the time delay varies
by the classical time it takes to travel to the point displaced by D and back, averaged over
the channels. The second identity is obtained by using the Weyl formula for the quasi one-
dimensional density of states in a waveguide, expressed in terms of the longitudinal velocities
vc = �hkc=m. Inserting (16) and (17) into (13), we obtain

� 0 �
2��h

�

�
�avR (E) + �R(E)

�
: (18)

This is the main result of this section. The �rst term in the r.h.s. of Eq. (18) represents
the mean time spent in the cavity, h� i = 2��h=(��) = �H=�, in agreement with Levinson's
theorem (which holds irrespective of whether the underlying classical dynamics is chaotic or
not; see e.g. [17]). The second term is given by [16]

� fl(E) �
1

�

X
�m

T�(E)A�m(E)e
ims�(E)=�h�i

�

2
��m ; (19)

where the sum runs over the primitive periodic orbits � which do not leave the cavity and
their m-th repetitions. As usual, one needs from each periodic orbit � its period T� , action
s, Maslov index �� , and the amplitudes A� given in terms of the monodromy matrix M�

[16],

A�m =
1q

jdet(Mm
� � 1)j

: (20)

We base all considerations that follow on Eq.(19). One has to keep in mind that Eq.(19) is
a semiclassical result, sharing most of the usual limitations of the standard trace formula for
bound systems. It must be also emphasized that for the quantization of the bound systems,
one is free to seek a Poincar�e map which includes all the periodic orbits (in our system this is
the Birkho� bounce map). Then, the r.h.s. of Eq. (11) is zero and the \delay time" for this
map is just the smooth Weyl density of states as discussed by Rouvinez and Smilansky [13].
The scattering map is predetermined in our case. This is a chaotic, singular, discontinuous
classical map because of its exclusion of the repeller, which accounts for the uctuations of
the time delay. For this reason we cannot use the time delay calculated directly from the
semiclassical scattering map, reworking the theory on the basis of the repeller.
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III. UNIVERSAL CORRELATIONS IN THE QUANTUM TIME DELAY

Here we apply the results of the last section to analyze the uctuations of the time delay
as a function of energy. We study the crossover regime in which time reversal symmetry is
lost due to the presence of an external magnetic �eld B. Our derivation extends previous
results by Bohigas and collaborators [18] (closed systems at the crossover regime) and by
Eckhardt [19] (open systems with preserved time-reversal symmetry). Our presentation
closely follows the discussion in [18].

A usual measure to characterize the time delay uctuations is the correlation function

K� (";B) =
D
� fl(E + ";B)� fl(E;B)

E
E
; (21)

where h: : :iE stands for energy average. The semiclassical approach to the calculation of this
correlator begins by inserting (19) in (21) (the dependence of all quantities on B will now
remain implicit to simplify the notation):

K� (") =
1

�2

X
� m�0m0

hT�(E + ")T�0(E)A�m(E + ")A�
�0m0(E) (22)

� exp [ims�(E + ")=�h � i���m=2 � im0s�0(E)=�h � i���0m0=2]i
E
: (23)

Here the average is taken over an energy interval �E which, to be meaningful, must be
large as compared with the quantum scale � in order to include many resonances. On the
other hand, for practical purposes, �E must be small enough to allow for the use of classical
perturbation theory. According to these considerations, the most important e�ect of varying
the energy is on the actions, as they are measured in units of �h. We write

s(E + ") � s(E) + "T ; A(E + ") � A(E) ; and T (E + ") � T (E) : (24)

Next, to evaluate K� ("), we use the \diagonal approximation", neglecting contributions
of pairs of orbits having distinct actions, as they cancel out upon averaging over energy. This
approximation is accurate for orbits with periods shorter than some critical value, whose
typical scale is the Heisenberg time �H . We shall come back to this point later.

For B = 0 only two kinds of pairs of orbits survive: the pairs of identical orbits and the
pairs of time-reversed partners. As the magnetic �eld B grows, the contribution to the cor-
relation function of time-reversed partners gradually decreases. Keeping both contributions,
we have

K� (") =
1

�2

X
�m

D
T 2
� jA�mj

2ei"mT�=�h
h
1 + eim�s�=�h

iE
E
; (25)

where �s � �s(E;B) stands for the action di�erence between a pair of time-reversed orbits.
Next, we group orbits having periods in a small interval �t around t (containing many
orbits). This introduces a kind of averaging procedure, de�ning smooth functions of t. We
then integrate over all t

K� (") =
1

�2

Z 1

�1
dt jtj ei"t=�h

* D
jtjA2

E
t

Dh
1 + ei�s=�h

iE
t

+
E

; (26)
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where we discarded the multiple repetitions jmj 6= 1, which are exponentially negligible with
respect to primitive orbits.

To evaluate the time average of the amplitudes A we use the sum rule for open chaotic
systems [20,21]: D

jtjA2
E
t
= e�(E)jtj ; (27)

where (E), the so called escape rate, is  = 1=�dwell, with �dwell de�ned in the Section
I. Eq. (27) has a simple physical interpretation: As we increase the period, periodic orbits
proliferate exponentially (with a rate given by the entropy) as their stability tend to decrease
also exponentially (the rate given by the sum of positive Lyapunov exponents). For  = 0,
both e�ects cancel and one recovers the sum rule based on the uniformity principle for closed
systems [22]. For open systems the disbalance between the entropy and Lyapunov exponents
is just the escape rate resulting in (27) [23,24].

The time average of the crossover term has been discussed in detail in Ref. [18]. Further
theoretical arguments [25] and numerical evidence [26] suggest the exponential decayD

1 + ei�s=�h
E
t
= 1 + e�B

2�(E)jtj=�h2 : (28)

Here �(E) is a purely classical quantity, which measures the rate of decay of the appropriate
correlations in the chaotic system. For more details see Ref. [18]. Identifying (E) and �(E)
with their mean values (the energy averaging interval is small) we write

K� (") =
Z 1

�1
dt jtj ei"t=�h�jtj

�
1 + e�B

2�(E)jtj=�h2
�
: (29)

This integral is easily evaluated, resulting in

K� (!) =
1

2
h� i2

(
�2 � !2

[�2 + !2]2
+

(� + y)2 � !2

[(� + y)2 + !2]2

)
; (30)

where, for the sake of future comparisons, we have de�ned

! = �"=� ; � = ��h=� ; y =
B2��

�h�
: (31)

When B = 0, we note that Eq. (30) reduces to the result obtained by Eckhardt [19] for the
time reversal symmetric case. Alternatively, putting  = 0 we recover the results of Ref.
[18] for the density{density correlator of the closed problem.

One of the most interesting properties of the semiclassical approximation to K� (!) is
that in this case we obtain an intrinsically more accurate result than the density-density
correlators for closed systems, that have been extensively semiclassically studied. The reason
is that the semiclassical approximation starts to fail for energy domains of the order of the
mean level spacing �, corresponding to times longer than �H = 2��h=�, and such times are
normally unimportant for the computation of K� . The physics of the scattering problem
provides us with a natural cut-o� for the summation over periodic orbits, which is given by
the typical escape time 1=, explicit in (27). Since the semiclassical theory is only applicable
if the waveguide L has many open channels, 1= must be much smaller than the Heisenberg
time �H , corresponding to the regime of strongly overlapping resonances. Although we do
not have a control over the magnitude of the accuracy, by increasing the number of open
channels in actual systems, K� (!) converges to the semiclassical approximation (30).
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IV. COMPARISON WITH THE STATISTICAL APPROACH

The statistical properties of the Wigner-Smith time delay for chaotic systems have been
also investigated by using the Random Matrix Theory [27{31]. In analogy with the semi-
classical approach, the statistical approach requires a decomposition of the Hilbert space
into an asymptotic region L and a \complex" scattering region R, following the notation of
Fig. 1. As before, depending on the energy E, one will have � propagating channels in the
pipe, labelled by c. By introducing arbitrary boundary conditions at x = D one can de�ne
a set of quasi-bound states j�i in region R and a set of scattering states j�c(E)i in L. These
states form a complete set Q+P = 1, with Q =

P
� j�ih�j and P =

P
c

R
dEj�c(E)ih�c(E)j.

Thus, the Hamiltonian is given by

H = QHQ+ PHP +QHP + PHQ � HQQ +HPP +HPQ +HQP ; (32)

where HQQ is interpreted as an \internal" Hamiltonian, and HPQ (HQP ) are the couplings
between the interior R and the channel region L . After some algebra, one can show [32,17]
that the resonant S-matrix can be written as

S = I � 2�iHPQ
1

E �HQQ + i�HQP HPQ
HQP ; (33)

in the absence of direct reactions, implying that HPP is diagonal. The decomposition of the
Hilbert space in projectors P and Q can, in principle, be employed for a large variety of
problems, which makes Eq. (33) a very useful parameterization of the S-matrix. It follows
that the Wigner-Smith time delay is given by [31]

� (E) = �
2

�
ImTr

�
E �HQQ + i�HQP HPQ

��1
: (34)

This expression is akin to the one obtained semiclassically (18), as it should. Here � (E)
is equated to the level density of the \closed" system, de�ned by the operator Q (which is
quite arbitrary) and smoothed by the coupling to the exterior world by the imaginary term
in (34). Although conceptually similar to Eq. (18), it is not a simple task to arrive at the
semiclassical expression starting from Eq. (34).

Since one expects signatures of chaos in scattering processes to be manifest for times
much longer than the typical traversal time, we focus our attention only in the resonant
part of S. This is the physical justi�cation for neglecting direct (fast) reactions in Eq. (33).
Moreover, the object which is responsible for classical chaos in scattering is the repeller,
implying that chaos is a property of the \internal" Hamiltonian. Therefore, in analogy with
Bohigas' conjecture [33] for closed systems, a statistical modelling of quantum chaos in open
systems can be made by taking HQQ as a member of an ensemble of random matrices [17].
For instance, for preserved time-reversal symmetryHQQ belongs to the Gaussian Orthogonal
Ensemble (GOE) and for broken time-reversal symmetry to the Gaussian Unitary Ensemble
(GUE). This conjecture allows us to study universal uctuations in scattering processes
by calculating S-matrix correlation functions. Those are obtained by ensemble averaging,
which is equivalent to an energy averaging based on the ergodic hypothesis.

In particular, the calculation of the 2-point time delay correlation function K� ("; Y ),
studied in the previous section, requires the evaluation of
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K� ("; Y ) =
2

�2
Re
�
Tr g(E +

"

2
; Y )Tr gy(E �

"

2
; Y )� Tr g(E; Y )

2
�
; (35)

where O denotes the ensemble average of O and

g(E; Y ) =
�
E �HQQ(Y ) + i�HQPHPQ

��1
; (36)

with the variable Y parameterizing changes in the internal Hamiltonian. For instance, if
Y stands for an external magnetic �eld B, one can study K� ("; Y ) in the crossover regime
between preserved and broken time reversal symmetry by choosing HQQ = HGOE+Y HGUE.
The results are universal in terms of the scaled variable y = Y=Yc, where Yc is system speci�c.

From the technical point of view, the ensemble average in Eq. (35) implies a nontrivial
calculation based on the supersymmetric technique developed by Efetov [34]. This technique
was adapted to scattering problems by the Heidelberg group [35,36]. Ref. [35] is the starting
point of all works that use the statistical approach to study the time delay correlation
function [30,37,31] and related objects [38]. A discussion of the supersymmetric technique
is beyond the scope of this paper and we refer the reader to the excellent introductory text
in Ref. [39], and to the S-matrix review in Ref. [31].

Let us start with the simplest case, K� (!; y � 1) for broken time-reversal symmetry,
corresponding to taking HQQ as a member of the Gaussian Unitary Ensemble. The result,
given as usual in terms of a double integral, can be found in Ref. [31]

KGUE
� (!) =

h� i2

2

Z 1

�1
d�
Z 1

1
d�1 cos

�
!(�1 � �)

� �Y
c=1

 
2 + Tc(�� 1)

2 + Tc(�1 � 1)

!
(37)

where the transmission coe�cient Tc gives the probability of an incoming wave at the channel
c in the vicinity of x = D to enter the scattering region R. In order to compare with the
semiclassical theory, one has to take Tc = 1 for all channels c, since this theory does not
take into account any barriers preventing perfect transmission. Thus, keeping the notation
introduced in Section III and identifying h� i = 1=, the leading asymptotic term in powers
of ��1 of Eq. (37) becomes

KGUE
� (!) �

h� i2

2

�2 � !2

[�2 + !2]2
; (38)

in nice agreement with the semiclassical result. In Fig. 2 we present KGUE
� as a function of

the number of open channels �. As � increases, the agreement with the semiclassical theory
becomes much better, as it is nicely shown in the inset of Fig. 2. Even for relatively small
�, the exact result does not di�er signi�cantly from the semiclassical one. This is explained
by the fact that one can show that the next to leading order correction is smaller by a factor
�2.

The other simple limit is the case where time reversal symmetry is present, corresponding
to HQQ taken as a member of the GOE. Here the result is [30]

KGOE
� (!) =

h� i2

4

Z 1

0
d�
Z 1

0
d�1

Z 1

0
d�2 �(�; �1; �2)(2� + �1 + �2)

2 (39)

� cos
�
!(2� + �1 + �2)

�Y
c

 
(1� Tc�)2

(1 + Tc�1)(1 + Tc�2)

!1=2

; (40)
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with the measure � given by

�(�; �1; �2) =
(1 � �)�j�1 � �2j

[(1 + �1)�1(1 + �2)�2]1=2(� + �1)2(�+ �2)2
: (41)

In this case, even taking Tc = 1 for all c's the integral is still di�cult. However, we can use a
trick introduced by Efetov [34] or the asymptotic expansion proposed by Verbaarschot [36]
to obtain

KGOE
� (!) � h� i2

�2 � !2

[�2 + !2]2
; (42)

again in nice agreement with the semiclassical result. Here, higher order corrections are
smaller only by a factor �. This is manifest in Fig. 3, where one can see that the GUE case
converges faster than the GOE to the semiclassical result.

For the crossover regime the supersymmetric expressions become even more complicated.
By performing a calculation similar to the one done by Pluha�r and collaborators [40], Fy-
odorov, Savin, and Sommers [37] obtained a closed expression for K� , �rst numerically
studied in Ref. [41] as the ballistic limit of electronic mesoscopic transmission. The leading
asymptotic term in inverse powers of � is

K� (!; y) =
h� i2

2

 
�2 � !2

[�2 + !2]2
+

(� + y)2 � !2

[(� + y)2 + !2]2

!
; (43)

identical to the semiclassical result Eq. (30).
The strength of the statistical method is in dealing with situations beyond the scope of the

semiclassical theory, either by analyzing situations where � is small, or by treating systems
where the scattering waves have to overcome barriers. In the latter case, the semiclassical
analysis needs some re�nements. Equally or even more problematic is the fact that whenP
Tc < 1, the resonances become isolated. This calls for a semiclassical theory that deals

with times larger than �H .
This is a good point to call the attention to one issue in the literature [24] that is often

confusing. The ensemble average is performed for a �xed number of channels and many
resonances between channel thresholds. The accuracy of the statistical approach increases
as the number of resonances increase. With such a construction it is not possible to use
this theory to statistically analyze the S-matrix of a system like the 3-disc problem, since
between channel thresholds there are very few resonances, explaining the disagreement in
[24]. However, since one takes the trace over the channels to obtain the Wigner-Smith time
delay, provided �� 1, a small change in � seems not to a�ect K� , as observed in Ref. [19].

V. CONCLUSIONS

In this paper we presented a semiclassical derivation of the formula connecting the
Wigner-Smith time delay � to the resonance density of the scattering region, corresponding
to a chaotic system. We showed that � can be written as a sum over the periodic orbits
inside the repeller. The physical interpretation of this relation is that the repeller is respon-
sible for the time spent in the cavity by the scattering trajectories. An open trajectory that
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closely approximates a periodic one, can spend a long time in the scattering region. This
dwell time essentially depends on the stability of the periodic trajectory that is approached.
As a result, the typical classical dwell time depends on few bulk characteristics of the scat-
tering system. The interesting achievement of the semiclassical theory is that it is possible
to write scattering observables in terms of classical trajectories that never leave the system.
Doing so, one avoids all problems inherent of a semiclassical formulation in terms of open
trajectories.

One of the striking features of the semiclassical approximation for a scattering system
is its accuracy. In distinction to the usual studies of density-density correlators in closed
systems, here one has no need to account for times of the order of �H , the time scale where the
semiclassical approach starts failing. Trajectories entering an open chaotic system cannot
typically stay inside the scattering region for times much longer than h� i. This fact provides
us with a natural cut-o� for any semiclassical summation formula, namely h� i itself. If
we assume that convergence is the only problem of the semiclassical formalism, systems
with increasing numbers of open channels will be described by the semiclassical theory with
increasing precision as compared with the exact theory.

Although we already know the exact statistical result for several correlators and distri-
butions involving the Wigner-Smith time delay, such an approach, by construction, does
not have information about non-universal quantities (like �, Yc, etc..). Those are usually
extracted from the experiment. The point of this paper is that this information is usually
available from the classical dynamics and the semiclassical approach can always be adapted
to give a recipe to compute the non-universal scaling factors. In summary, even if the semi-
classical theory cannot compete in accuracy, it can be used as a complement to the statistical
approach.
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FIGURES

FIG. 1. Schematic illustration of the scattering system under investigation. The \cavity" region

is denoted by R and the attached waveguide by L.

FIG. 2. Comparison between the semiclassical (solid lines) and the exact random matrix results

for the time{delay correlator (case where time-reversal symmetry is absent). We plot the normalized

correlatorsK�
� = 2�2K�=h�i

2 vs. the normalized energy !=�. Di�erent line styles indicate di�erent

number of open channels; dashed, dash{dot, and dotted correspond to � = 3; 5; 10, respectively.

Inset: di�erence between random matrix results and semiclassics.

FIG. 3. Comparison between the semiclassical (solid lines) and the exact random matrix results

for the time{delay correlator (case of preserved time-reversal symmetry). We plot the normalized

correlators K�
� = �2K�=h�i

2 vs. the normalized energy !=�. Di�erent line styles indicate di�erent

number of open channels; dashed, dash{dot, and dotted correspond to � = 3; 5; 10, respectively.

Inset: di�erence between random matrix results and semiclassics.
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