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1 Introduction

In the �rst part (I) of this work we have studied the zero curvature formulation of
systems described by means of a complete ladder �eld, the components of which span
all possible form degrees. The present paper is devoted to analyse the zero curvature
equation in the case in which the completeness condition for the generalized ladder
�eld is relaxed. This means that we shall deal with a gauge ladder eA for which the
form degree of the highest component is strictly lower than the space-time dimension
D, i.e. eA = c+A+ '�12 + :::+ '1�q

q ; 1 � q < D : (1.1)

As we shall see in the following, the noncomplete case will display a set of remarkable
features which will make it quite di�erent from the previous complete case. The �rst
interesting aspect, as already mentioned in the introduction of part I, is that the
consistency of the zero curvature condition

eF = ed eA� i eA2 = 0 (1.2)

implies now the existence of a set of new operators (G1�k
k ; 2 � k � D) which are in

involution, according to the algebra

G�12 =
1

2
[ � ; d ] ;

G1�k
k =

1

k

h
� ; G2�k

k�1

i
; k > 2 ;

(1.3)

� being the operator which together with the BRS operator b decomposes the exterior
space-time derivative d as

d = � [b; �] : (1.4)

The second interesting feature of the noncomplete case is that the cohomology of
the BRS operator b is richer than the corresponding one of the complete case.
Indeed, the noncompleteness of eA will allow us to introduce a set of curvatures
(R1�m

m+1; 1 � m � q) which are a generalization of the familiar two-form gauge �eld
strength F = dA� iA2. It follows then that, in addition to the usual ghost cocycles
(Tr c2n+1) of the complete case (see Sect. 4 of I), the cohomology of b now includes
also invariant polynomials in the highest curvature (R1�q

q+1).

As a consequence of these new features, the expressions of the polynomials
!G+D�j
j (0 � j � D) which solve the descent equations

b !
G+j
D�j + d!

G+j+1
D�j�1 = 0 ; 0 � j � (D � 1) ;

b !G+D
0 = 0 ;

(1.5)

will get modi�ed with respect to the complete case. This modi�cation will result
in the appearence of a set of local polynomials 
G+D�j

j (q + 1 � j � D) in the
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curvatures (R1�m
m+1) which have to be added to the cocycles obtained from the expan-

sion of the generalized terms (Tr eAG+D). These polynomials, as already observed
in [1, 2] in the case of Yang-Mills, turn out to be characterized by a set of consistency
conditions involving the operators G1�k

k .

The second part of the work is organized as follows. In Sect. 2 we present
the zero curvature condition for the noncomplete gauge ladder. Sect. 3 is devoted
to the study of the cohomology of the BRS operator. In Sect. 4 we solve the
descent equations. Sect. 5 and Sect. 6 are �nally devoted to the discussion of
several examples among which one �nds the zero curvature formulation of the pure
Yang-Mills gauge theory.

2 The zero curvature condition

In part I (cf. Sect. 2) the BRS transformations of the various components of
the gauge ladder eA have been obtained by constraining the latter to obey a zero
curvature condition. Equivalently, as we have seen in Sect. 3 of I, once the BRS
transformations of the �elds have been given, the zero curvature condition becomes
a consequence of the existence of the operator � which realizes the decomposition
(1.4). This second procedure will be taken as the starting point for the discussion
of the zero curvature condition in the present noncomplete case. The gauge laddereA takes now the following form

eA = c+A+ '�12 + :::+ '1�q
q ; 1 � q < D ; (2.1)

D being the dimension of the space-time. We will assume therefore that the nilpotent
BRS transformations of the components '1�j

j (0 � j � q) of (2.1) will be the same
as those of the corresponding complete case (see Sect. 2 of I), i.e.

bc = ic2 ;

bA = �dc+ i[c;A] ;

b'
1�j
j = �d'2�j

j�1 +
i

2

jX
m=0

h
'1�m
m ; '

1�j+m
j�m

i
; 2 � j � q ;

(2.2)

where, as usual, [a; b] = ab � (�1)jajjbjba denotes the graded commutator and, as
done in I, we shall work in the functional space V of form-valued polynomials built
up with the �elds '1�j

j and their di�erentials d'1�j
j , i.e.

V = polynomials in
�
'
1�j
j ; d '

1�j
j ; 0 � j � q

�
: (2.3)
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Having assigned the BRS transformations, let us turn to the introduction of the
decomposition (1.4). To this purpose we de�ne the operator � as

eA = e�c ;

� '
1�j
j = (j + 1)'�jj+1 ; 0 � j � q � 1 ;

�'1�q
q = 0 ;

(2.4)

and
� d'1�m

m = (m+ 1) d'�mm+1 ; 0 � m � q � 2 ;

� d'
2�q
q�1 = q d'1�q

q � (q + 1)

0@d'1�q
q �

i

2

qX
j=1

h
'
1�j
j ; '

j�q
q�j+1

i1A ;

� d'1�q
q =

i

2
(q + 1)

qX
j=1

h
'
�1�q+j
q+2�j ; '

1�j
j

i
:

(2.5)

One easily checks that, on the functional space V, the operators b and � realize
the decomposition (1.4), i.e.

d = � [b; �] : (2.6)

Comparing now equations (2.4), (2.5) with the corresponding ones of the complete
ladder case (see Sect. 2 of I) one sees that, while the action of the operator � on
the components ('1�j

j ) is the same, the transformations of the di�erentials of higher

form-degree, i.e. (d'2�q
q�1) and (d'1�q

q ), are now nonvanishing. This fact implies that,
contrary to the complete case, the operator � does not commute anymore with the
exterior derivative d,

[�; d] 6= 0 : (2.7)

In addition, depending on the dimension of the space-time D and on the number q
of components of the gauge ladder eA, the commutators

[�; [�; [�; :::::; d]]] (2.8)

turn out to be nonvanishing as well.

This algebraic structure, which generalizes that of ref. [1, 2], will have impor-
tant consequences on the zero curvature condition. The latter, repeating the same
argument of Sect. 3 of I, is obtained by applying the operator e� on the BRS
transformation of the zero-form ghost �eld c, i.e.

e� b e��e�c = e� i c2 : (2.9)

Recalling now that eA = e�c and de�ning the generalized operator ed as

ed = e� b e�� ; (2.10)

we get the zero curvature condition

ed eA = i eA2 (2.11)
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for the noncomplete ladder case. Equation (2.11) is, however, only apparently similar
to the corresponding condition of the complete ladder case. In fact, due to eqs.(2.7)
and (2.8), the operator ed is now given by

ed = b+ d +
DX
n�2

1

n!
[�; [�; [�; :::::; d]]]| {z }
(n-1)-times

; (2.12)

so that, de�ning the operators

G�12 =
1

2
[ � ; d ] ;

G�23 =
1

3!
[ � [�; d]] =

1

3

h
�;G�12

i
;

G�34 =
1

4!
[�; [�; [�; d]]] =

1

4

h
�;G�23

i
;

::::::::::::::::::

(2.13)

we have ed = b+ d +
DX
k�2

G1�k
k (2.14)

with

G�12 =
1

2
[ � ; d ] ;

G1�k
k =

1

k

h
� ; G2�k

k�1

i
; k > 2 :

(2.15)

One thus sees that in the noncomplete case the zero curvature condition is ac-
companied by a set of operators G1�k

k which are in involution, according to eq.(2.15).
We underline, in particular, that the origin of the operators G1�k

k actually relies on
the noncomplete character of the gauge ladder (2.1). It is very easy, using the
equations (2.4) and (2.5), to derive the explicit form of the various operators G1�k

k

appearing in the eq. (2.11). In particular, as we shall show later on in the examples,
the number of operators G1�k

k which do not identically vanish depends both on the
dimension D of the space-time and on the number q of components of the gauge
ladder eA. We also notice that these operators are absent when q = D, i.e. they are
not present in the case in which the ladder is complete.

Moreover their existence implies that the cohomology of the operator ed is no more
directly related to that of the operator (d + b). Therefore the cohomology classes
of ed do not immediately provide solutions of the descent equations (1.5). It turns
out indeed that in order to obtain a solution of the tower (1.5) we must add to the
cohomology classes of ed, i.e. Tr eA2n+1, certain polynomials 
G+D�j

j (q+1 � j � D)

which obey a set of consistency conditions involving the operator G1�k
k . In other

words, the presence of the G1�k
k 's requires a modi�cation of the solution of the

descent equations with respect to the complete ladder case (see Sect. 5 of I).
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Let us conclude this section with the following remark. Instead of having assumed
the BRS transformations (2.2) we could have started directly with the zero curvature
condition (2.11). It is easily veri�ed then that the introduction of the operators G1�k

k

is needed in order to avoid the appearence of constraints among the components of
the noncomplete ladder �eld eA.

3 Cohomology of the BRS operator

The �rst step in order to solve the descent equations (1.5) is that of computing the
cohomology of the BRS operator b. This task, due to the noncomplete character
of eA, will turn out to be simpli�ed by the introduction of the following curvatures
R1�m
m+1 of total degree two:

R1�m
m+1 = d'1�m

m �
i

2

mX
k=1

h
'1�k
k ; 'k�m

m+1�k

i
; 1 � m � q : (3.1)

In particular, for m = 1 the expression (3.1) reduces to

R0
2 = dA� iA2 = F ; (3.2)

i.e. one recovers the familiar two-form gauge �eld strength. We also remark that, for
m > 1, the curvatures R1�m

m+1 possess the property of having negative ghost number.

The great advantage of working with the curvatures R1�m
m+1 relies on the fact that

they transform covariantly under the action of the BRS operator, i.e.

bR1�m
m+1 = i

h
c;R1�m

m+1

i
: (3.3)

This feature, following the well known Yang-Mills case [3, 4, 5, 6], suggests that it
is convenient to use the curvatures R1�m

m+1 as independent variables instead of the
di�erentials d'1�m

m , i.e. we replace everywhere the variables d'1�m
m by R1�m

m+1 making
use of eq.(3.1). Consequently, for the functional space V we have

V = polynomials in
�
c ;A ; '1�m

m ; 2 � m � q ; dc ;R1�j
j+1; 1 � j � q

�
; (3.4)

and, for the nilpotent BRS transformations,

b c = ic2 ;

bA = �dc+ i[c;A] ;

b '1�m
m = i [c; '1�m

m ]�R2�m
m ; 2 � m � q ;

b d c = i [c; dc] ;

bR
1�j
j+1 = i

h
c;R

1�j
j+1

i
; 1 � j � q :

(3.5)
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Let us turn now to the computation of the cohomology of b. Introducing the �ltering
operator N

N c = c ; NA = A ;

N'1�m
m = '1�m

m ; 2 � m � q ;

N d c = dc ; NR
1�j
j+1 = R

1�j
j+1 ; 1 � j � q ;

(3.6)

the BRS operator decomposes as

b = b0 + b1 ; (3.7)

with
b0 c = 0 ;

b0A = �dc ; b0 d c = 0 ;

b0 '
1�m
m = �R2�m

m ; b0R
2�m
m = 0 ; 2 � m � q ;

b0R
1�q
q+1 = 0 ;

b20 = 0 :

(3.8)

Equations (3.8) show that all the variables except the zero-form ghost c and the
highest curvature R1�q

q+1 are grouped in BRS doublets. This implies that the coho-
mology of b0 and, in turn, that of the full BRS operator b depend only on c and
R
1�q
q+1. More precisely, using the general results of refs. [3, 4, 5, 6], it follows that the

cohomology of b on the functional space V is spanned by invariant polynomials in
the variables (c;R1�q

q+1) built up with factorized monomials of the form 
Tr

c2n+1

(2n + 1)!

!
�

 
Tr (R1�q

q+1)
m

!
; n;m = 1; 2; :::: : (3.9)

One sees that in the noncomplete ladder case the cohomology of the BRS operator
b, in addition of the usual ghost cocycles (Tr c2n+1), includes also polynomials in the
highest curvatures R1�q

q+1. Notice �nally that, being the ghost number of the highest

curvature R1�q
q+1 negative for q > 1, the cohomology classes of b are nonvanishing in

the negative charged sectors.

We conclude this section by remarking that the highest curvature R1�q
q+1 is actually

related to the ghost �eld c through the action of the operator G�qq+1,

G�qq+1 c = (const)R1�q
q+1 ; (3.10)

the proportionality factor being easily computed by means of the eqs.(2.4), (2.5).
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4 Solution of the descent equations

Having characterized the cohomology of the BRS operator b, let us focus on the
cohomology of b modulo d, i.e. let us try to solve the descent equations

b !
G+j
D�j + d!

G+j+1
D�j�1 = 0 ; 0 � j � (D � 1) ;

b !G+D
0 = 0 :

(4.1)

As mentioned before and as already observed in the case of pure Yang-Mills (i.e.
q = 1), the presence of the operators G1�k

k in the zero curvature condition (2.11)
requires a slight modi�cation of the climbing procedure presented in the previous
complete ladder case (see I).

Repeating indeed the same argument of [1], it is easy to convince oneself that,
once a solution !G+D

0 of the last equation of (4.1) has been obtained, an explicit
expression for the higher polynomials !G+D�j

j is provided by the generalized cocycle
~!G+D of total degree (G +D)

~!G+D =
DX
j=0

!
G+D�j
j ;

~!G+D = e�

0@!G+D
0 +

DX
j=q+1


G+D�j
j

1A ;

(4.2)

where !G+D
0 is

!G+D
0 = Tr

cG+D

(G +D)!
; (4.3)

and the quantities 
G+D�j
j are determined recursively by means of the consistency

conditions8>><>>:
b
G+D�j

j = (j � 1)(�1)j G1�j
j !G+D

0 +
(j�1)X
k=2

(k � 1)(�1)kG1�k
k 
G+D�j+k

j�k ;


G+D�j+k
j�k = 0 if (j � k) < q + 1 :

(4.4)

As we shall see, the latters turn out to be easily disentangled by using the results
(3.9) on the BRS cohomology. Moreover, setting q = 1, equations (4.4) are seen
to reproduce those already met in the pure Yang-Mills case [1]. In particular, from
equations (4.2) and (4.3), we see that the solution of the tower (4.1) in the noncom-
plete case turn out to be deformed with respect to the corresponding solution of the
complete ladder case (see Sect. 5 of I) by the inclusion of the cocycles 
G+D�j

j .
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5 Example I: Pure Yang-Mills theory as a zero

curvature system

As a �rst important example of a noncomplete ladder system let us present here the
zero curvature formulation of the pure Yang-Mills gauge theory in any space-time
dimension, corresponding to a generalized ladder with q = 1, i.e.

eA = c+A : (5.1)

It is worthy to recall that, since the Yang-Mills theories are power-counting non-
renormalizable for space-time dimensions greater than four, the �eldsA and c, unlike
the three dimensional Chern-Simons case discussed in I, are now regarded as un-
quantized external �elds coupled to currents of quantum matter �elds. Therefore,
the existence of gauge anomalies at the quantum level, will correspond to a violation
of the conservation law of the matter currents and to the appearence of Schwinger
terms in the corresponding current algebra.

It is easily checked that in this case the consistency of the zero curvature con-
dition (2.11) requires that only the �rst operator G�12 of eq.(2.14) is nonvanishing.
Therefore for the operator ed we get

ed = b+ d + G�12 ; (5.2)

and from ed eA = i eA2 ; (5.3)

we obtain
b c = ic2 ;

bA = �d c + i[c;A] ;
(5.4)

and
G�12 c = �dA+ iA2 = �F ;

G�12 d c = i[A;F ] ;

G�12 A = G�12 F = 0 :

(5.5)

From equations (2.4), (2.5), for the operator � we have

� c = A ; � dc = �dA+ 2iA2 ;

�A = 0 ; � dA = 0 ;
(5.6)

and

d = �[d; �] ; G�12 =
1

2
[�; d] ;

[�;G�12 ] = [b;G�12 ] = [d;G�12 ] = 0 :
(5.7)

For what concerns the solutions of the descent equations (4.1) here we shall limit our-
selves only to state the �nal result, reminding the reader to the detailed discussion
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and proofs already given in [1]. We underline in particular that, as proven in [2], the
cocycles 
G+D�j

j appearing in eq.(4.2) can be summed up into a unique closed gen-
eralized expression which collects both the gauge anomalies and the Chern-Simons
terms. The latters are given respectively by

!1
2n =

nX
p=0

i(n�p)

(2n � p + 1)!p!

 
P
�
c; F p; (A2)n�p

�
+ i(n� p)P

�
[c;A]; F p; A; (A2)n�p

�!
;

(5.8)
and

!0
2n+1 =

nX
p=0

i(n�p)

(2n� p + 1)!p!
P
�
F p; A; (A2)n�p

�
; (5.9)

where the integer n = 1; 2; ::: labels the various dimensions of the space-time and
P(J1;J2; :::;Jn) denotes the symmetric invariant polynomials de�ned as

P(J1;J2; :::;Jn) = J a1
1 J

a2
2 ::::::J an

n STr (T a1T a2:::::T an) ; (5.10)

STr being the symmetrized trace [7] and, following Zumino's notations [8], we have
used

P(J1;J2; :::;J
p) = P(J1;J2;J3;J ; :::;J| {z }

p-times

) : (5.11)

It is worthy to emphasize that, actually, the formulas (5.8), (5.9) represent one of
the most compact expression for the gauge anomaly and for the Chern-Simons term
in any space-time dimension.

6 Example II: the case D = 6, G = 1, q = 3

In order to clarify the role of the operators G1�k
k and of the generalized curvatures

R1�m
m+1, let us discuss in this second example the solution of the descent equations

(1.5) in the six dimensional case D = 6 with ghost number G = 1 and a gauge
ladder with q = 3, i.e. eA = c+A+ '�12 + '�23 : (6.1)

From eqs.(3.5), for the BRS transformations we have

b c = ic2 ;

bA = �dc + i[c;A] ;

b '�12 = i
h
c; '�12

i
�R0

2 ;

b '�23 = i
h
c; '�23

i
�R�1

3 ;

(6.2)

where R0
2, R

�1
3 are the generalized curvatures of eq.(3.1) whose expressions are given

R0
2 = F = dA� iA2 ;

R�1
3 = d'�12 � i

h
A;'�12

i
:

(6.3)
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In particular, for the highest curvature R�2
4 we have

R�2
4 = d'�23 � i

h
A;'�23

i
�

i

2

h
'�12 ; '�12

i
(6.4)

and
bR1�m

m+1 = i
h
c;R1�m

m+1

i
; 1 � m � 3 : (6.5)

The curvatures (R0
2; R

�1
3 ; R�2

4 ) obey the following generalized Bianchi identities

dR0
2 = i [A;R0

2]

dR�1
3 = i

h
A;R�1

3

i
+ i

h
'�12 ; R0

2

i
dR�2

4 = i
h
A;R�2

4

i
+ i

h
'�12 ; R�1

3

i
+ i

h
'�23 ; R0

2

i
:

(6.6)

They transform under the operator � of eqs. (2.4), (2.5) as

� R0
2 = 2R�1

3

� R�1
3 = �R�2

4 �
i

2

h
'�12 ; '�12

i
� R�2

4 = �i
h
'�23 ; '�12

i
:

(6.7)

For what concerns the operators G1�k
k of eq.(2.15) it is easily seen that in the present

example the zero curvature equation (2.11) implies the existence of a set of �ve
nonvanishing operators (G�12 ;G�23 ;G�34 ;G�45 ;G�56 ). Their action on the �elds and on
the curvatures is given respectively by8>>>>>>>>>>>><>>>>>>>>>>>>:

G�12 c = 0 ; G�12 A = 0 ; G�12 '�12 = �2R�2
4 ;

G�12 '�23 = 2i
h
'�23 ; '�12

i
;

G�12 dc = 0 ; G�12 R0
2 = 0 ;

G�12 R�1
3 = 2i

�h
'�12 ; R�1

3

i
+
h
'�23 ; R0

2

i �
;

G�12 R�2
4 = 2i

h
'�23 ; R�1

3

i
;

(6.8)

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

G�23 c = 0 ; G�23 A =
4

3
R�2
4

G�23 '�12 = �
4i

3

h
'�23 ; '�12

i
;

G�23 '�23 = 2i
h
'�23 ; '�23

i
;

G�23 dc = 0 ;

G�23 R0
2 = �

4i

3

� h
'�12 ; R�1

3

i
+
h
'�23 ; R0

2

i �
;

G�23 R�1
3 = 4i

h
'�23 ; R�1

3

i
;

G�23 R�2
4 = 0 ;

(6.9)
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8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

G�34 c = �
1

3
R�2
4 ; G�34 A =

i

3

h
'�23 ; '�12

i
;

G�34 '�12 = �
5i

2

h
'�23 ; '�23

i
; G�34 '�23 = 0 ;

G�34 dc =
i

3

� h
A;R�2

4

i
+
h
'�12 ; R�1

3

i
+
h
'�23 ; R0

2

i �
;

G�34 R0
2 =

i

3

� h
'�12 ; R�2

4

i
� 11

h
'�23 ; R�1

3

i �
;

G�34 R�1
3 = 0 ; G�34 R�2

4 = 0 ;

(6.10)

8>>>>>>>>>><>>>>>>>>>>:

G�45 c = 0 ; G�45 A =
6i

5

h
'�23 ; '�23

i
;

G�45 '�12 = 0 ; G�45 '�23 = 0 ;

G�45 dc =
16i

5

h
'�23 ; R�1

3

i
;

G�45 R0
2 = G�45 R�1

3 = G�45 R�2
4 = 0 ;

(6.11)

8>>>>><>>>>>:
G�56 c = �

i

5

h
'�23 ; '�23

i
;

G�56 A = G�56 '�12 = G�56 '�23 = 0 ;

G�56 dc = G�56 R0
2 = G�56 R�1

3 = G�56 R�2
4 = 0 :

(6.12)

Turning now to the descent equations

b !
1+j
6�j + d!

2+j
5�j = 0 ; 0 � j � 5 ;

b !7
0 = 0 ;

(6.13)

we have that, taking into account the result (3.3) on the cohomology of the BRS
operator b and the equation (4.2), a solution of the ladder (6.13) is provided by the
generalized cocycle of total degree seven

~!7 = e�
�
!7
0 + 
3

4 + 
2
5 + 
1

6

�
(6.14)

with

!7
0 = Tr

c7

7!
; (6.15)

and (
3
4; 


2
5; 


1
6) solutions of the equations (4.4), i.e.

b
3
4 = 3G�34 !7

0 ; (6.16)

b
2
5 = �4G�45 !7

0 ; (6.17)

b
1
6 = G�12 
3

4 + 5G�56 !7
0 : (6.18)
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This system can be easily solved by using the cohomology of b. Indeed, beggining
with the �rst equation (6.16) we have from (6.10)

G�34 !7
0 = �

1

6!
Tr

R�2
4 c6

3
; (6.19)

so that 
3
4 may be identi�ed with


3
4 = �

i

6!
Tr R�2

4 c5 : (6.20)

Concerning now the second equation (6.17), we get from (6.11) that

G�45 !7
0 = 0 : (6.21)

Moreover, since the cohomology of b in the sector of form degree �ve and ghost
number two is empty, we may choose 
2

5 to be vanishing as well


2
5 = 0 : (6.22)

Finally for the last equation (6.18), we get

b
1
6 =

2

6!
Tr
� h

'�23 ; R�1
3

i
c5 � i'�23 '�23 c6

�
: (6.23)

However, from

b

�
Tr'�23 '�23 c5

�
= Tr

� h
'�23 ; R�1

3

i
c5 � i'�23 '�23 c6

�
; (6.24)

we obtain


1
6 =

1

6!
Tr
� h

'�23 ; '�23

i
c5
�
: (6.25)

Summarizing, an explicit expression for the 
's is given by


3
4 = �

i

6!
Tr R�2

4 c5 ;


2
5 = 0 ;


1
6 =

1

6!
Tr
� h

'�23 ; '�23

i
c5
�
:

(6.26)

Of course, the above expressions are always determined modulo trivial b-cocycles.

Concluding, for the generalized cocycle ~!7 we have

~!7 = Tr
� eA7

7!
+ 
3

4 + �
3
4 +

�2

2

3
4 + 
1

6

�
: (6.27)

The expansion of ~!7 in terms of components of di�erent degree and ghost number
will give an explicit expression for the cocycles entering the descent equations (6.13).
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Conclusion

We have shown that the Yang-Mills type theories can be characterized by means
of a noncomplete gauge ladder �eld constrained to obey a zero curvature condition,
which implies the existence of a set of new operators G1�k

k . These operators give
rise together with the BRS operator b to a kind of descent equations which are
easily solved using the results on the cohomology of b. These solutions provide a
deformation of the cohomology of b modulo d with respect to the corresponding
complete ladder case presented in the part I.
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