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Abstract

An Abelian gauge model, with vector and 2-form potential �elds linked by a topologi-
cal mass term mixing the two Abelian factors, is shown to exhibit Dirac-like magnetic
monopoles in the presence of a matter background. In addition, considering a `non-minimal
coupling' between the fermions and the tensor �elds, we obtain a generalised quantisa-
tion condition that involves, among others, the topological mass parameter. Also, it is
explicitly shown that 1 loop (�nite) corrections do not shift the value of such a mass
parameter.
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Introduction

Magnetic monopoles were �rstly proposed by Dirac [1] in the framework of Classical
Electrodynamics with the main aim to provide a physical explanation of why the electric
charges appear only as integer multiples of the elementary one (electron or proton charge,
denoted by e). Indeed, Dirac obtained that \ if there exists one quantum magnetic pole

in Nature, go, interacting with electric charges, then Quantum Mechanics demands the

quantisation of the latter according to:1

qgo = 2��hc ;with q = ne ; n integer:00 (1)

Among other features, his work pointed out the relation between gauge invariance and
the singular structure of gauge potentials, the non-physical string (see also Ref.[2], section
2.5 and Ref.[3]).

In general, these objects are `put in by hand' in Electrodynamics-type models
(Maxwell, Proca, etc.) by breaking the Bianchi's identity of the A�-sector (so, circum-
venting the Poincar�e's lemma on di�erential forms). Their presence restore the duality be-
tween the electric and magnetic sectors, lost after the introduction of the electric current.
Therefore, Dirac's monopoles render Electrodynamics more symmetric, and the U(1)-
gauge group compact: the Abelian and unitary operator S which implements the gauge
transformations becomes single-valued. In particular, this aspect is crucial for non-Abelian
theories which have their vacuum symmetry broken by scalar �elds (Higgs' mechanism).
In these cases, if the original non-Abelian gauge group of the vacuum is broken to U(1)-
compact group, then the classical dynamical equations yield static solutions carrying
(Abelian) magnetic charge (at large distances, looking as Dirac's monopoles). This was
�rstly shown by 't Hooft [4] and Polyakov [5], dealing with the Georgi-Glashow's [6] model;
see Ref.[2], Sections 5 and 6, for the extension to arbitrary simply-connected gauge groups
(see also the references listed in [7]). Recently, it was shown that N = 2-supersymmetric
Yang-Mills theories present monopole condensation, which seems to be essential for the
understanding of quark con�nement [8]. Eventually, if such non-Abelian gauge theories
(supersymmetric or not) are correct, then their magnetic monopoles must exist.2

There are some similarities and di�erences between 't Hooft-Polyakov' and Dirac's
monopoles. Here, we wish to pay attention to one of these di�erences: while the �rst
type coexists with massive vector boson (the masses of both being given by the scalar
�elds, after the spontaneous symmetry breaking) the same does not happen to the second
one. In fact, it seems that for Abelian theories (de�ned on Minkowski's 
at space-time),
Dirac's monopoles can appear only if the vector boson is massless [10]-[13]. This has been
shown in several works to be true for the Proca's model (the simplest �nite-range exten-
sion of Maxwell's theory, where the boson mass stems from explicity breaking the gauge

1We are using Lorentz-Heaviside's units for Electrodynamics. In his original paper Dirac [1] used
Gaussian ones.

2Nevertheless, the observation of such objects is deeply jeopardized by their huge masses. For example,

for SU (5)- gauge group these masses are of the order of 1016Gev, increasing with the enlargement of the
group because the energy breaking scales are shifted up. See, for example, Ref. [9].
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symmetry) and, in addition, some attempts have been made to bypass this impossibility,
by considering pairs of monopoles (with opposite charges) joined by a Dirac' string [12],
or even the presence of a `massive tachyon' as being the superluminal counterpartner of
the `physical massive photon' [13].

It is precisally on this subject that lies our motivation for this work: are there any
physical arguments that rule out the coexistence of both massive vector bosons and Dirac
monopoles within an Abelian model de�ned on 
at Minkowski space-time? Would such
an impossibility arise from the structure of a particular theory or from the speci�c mech-

anism for gauge boson mass generation?
At the attempt of taking some glance on this question, we shall study a particular model,
within which two Abelian sectors (a vector and a 2-form gauge potentials) are linked by
a topological mass term, giving us a massive vector boson as its particle physical content,
Ref.[14, 15].

We should stress that, even though we are not presenting here a general proof for the
question raised above; our purpose is to provide one more explicit example of a theory
in which Dirac-like monopoles do not show up while the intermediate gauge boson is
massive. The particular mechanism for gauge-�eld mass generation does not seem to be
relevant for the suppression of the monopoles: once the gauge-�eld propagator develops a
non-trivial pole, Dirac monopoles are ruled out (we shall come to this matter throughout
our paper).
To conclude the presentation of the arguments that motivate our work, we should draw
the attention to a peculiar feature: the monopole appearing in the CSKR model is such
that the gauge-�eld mass parameter enters the charge quantisation relation, as it will
become clear at the end of our paper.
This paper is outlined as follows: in Section 1, we start by presenting the model as well as
some of its basic characteristics. In Section 2, we show that the model under consideration
does not admit, consistently, the coexistence of both Dirac's monopoles and massive vector
boson, unless we take a special ansatz for the current, previously incorporated in the model
interacting with A� gauge �eld. We start Section 3 by allowing an `extra-coupling' between
the fermionic current and the tensorial gauge sector, by means of a gauge and Lorentz
invariant term. In addition, it is shown that if the current ansatz is implemented, we get
a generalised quantisation condition, which contains, among others, the mass parameter.
This section is closed with a discussion on the no-shift of the topological mass parameter
by (�nite) 1 loop contributions. The relevant Feynman's graph and its result are presented
in the Appendix. Finally, we conclude the paper by making a brief discussion about the
results and some possible consequences of them.

1 The model and some basic aspects

The Cremmer-Scherk-Kalb-Ramond (CSKR) model [14, 15] in the absence of matter �elds
reads:

L1 = �1
4
F��F

�� +
1

6
G���G

��� + �0�����A
�@�H�� ; (2)
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with the de�nitions for the �eld strengths:

F�� = @�A� � @�A� and G��� = @�H�� + @�H�� + @�H�� ; (3)

H�� = �H��. Here, we are using Minkowski metric diag(���) = (+;�;�;�) and �0123 =
+1 = ��0123 for the four-dimensional Levi-Civita symbol; greek indices run 0; : : : 3; latin
characters go from 1 to 3.

As it can be easily checked, the action S1 =
R
dx4L1 is invariant under the independent

local Abelian gauge transformations:

A�(x)
U(1)A�7�! A0�(x) = A�(x)� @��(x) ; (4)

H��(x)
U(1)H��7�! H 0��(x) = H�� (x) + @���(x)� @���(x) ; (5)

provided that we assume that the parameters � and �� vanish at in�nity.
From (2), there follow the �eld equations:

@�F
�� = ��0�����@�H�� = ��0

3
�����G��� ; (6)

@�G
��� = +�0�

����@�A� = +
�0
2
�����F�� ; (7)

and, from the antisymmetric property of the �eld strenghts, we get the Bianchi's identities
(geometrical equations):

@� ~F
�� = 0 and @� ~G

� = 0 ; (8)

with: ~F�� =
1
2�����F

�� and ~G� = 1
6�����G

��� de�ning the dual tensors.
The linking term between the gauge �elds is topological because it does not contribute

to the gauge invariant energy-momentum tensor (and so, carrying no energy and prop-
agating no physical degrees of freedom), what is obvious since it requires no metric for
its de�nition (like the Chern-Simons term in 3 dimensions). On the other hand, one sees
that one gauge �eld (or more precisally, its �eld strength) provides a current for another,
and vice-versa, having these currents came about from the topological term.

The spectrum of the model is the following: if we take �0 = 0 (free Lagrangean), A�

describes a massless vectorial boson and H�� behaves as a massless scalar �eld. Therefore,
we have 3 degrees of freedom (on-shell). In the other case (�0 6= 0), we have a massive
vector boson (with mass M2 = +2�20). Here, this particle can be described by A� as well
as by H�� . Thus, in both cases, the model has 3 on-shell degrees of freedom, what is
physically convincent, because the topological term introduces no additional ones, as we
said earlier. In fact, it provides a mass generating mechanism, that was called topological

dynamic symmetry breaking, by Cremmer and Scherk [14]. Kalb and Ramond [15] studied
it in the context of classical interaction of strings in dual models.

Moreover, it has been shown that the model is unitary and renormalisable (in the
presence of fermions interacting with the A� gauge �eld; the model presented in section 2,
equation (17)), and also that its mass generating mechanism is di�erent (at quantum level)
from the Higgs when this is added to the Maxwell theory [16]. Among others features,
the vacua funtional for the model was obtained by Amorim and Barcelos-Neto [17].
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2 The matter background and the Dirac-type monopole

con�guration in the model

Here, we shall show that, at a na��ve step, Dirac's monopoles cannot appear within the
CSKR-model. Nevertheless, situation can be changed (at low momentum limit) if we in-
troduce matter current in the model behaving in a particular way. We start by introducing
classical con�gurations of Dirac's magnetic monopole in the CSKR-model. This is done
by `breaking' the Bianchi's identity for the A�-sector[1, 2], say:3

@� ~F
�� = 0

monopole7�! @� ~F
�� = �� ; (9)

where the conserved magnetic 4-current is given by: �� = (�0; ~�).
For our purposes, should be more convenient to work with the �eld equations in vector

notation. So, we de�ne:

A� � (�;+ ~A) H�� =

�
H0i � (+~a)i
Hij � ��ijk(~')k; ; (10)

and the �eld strengths as:

F�� =

�
F0i � +( ~E)i
Fij � ��ijk( ~B)k

G��� =

�
G0ij � ��ijk(~E)k
Gijk � +�ijk B ; (11)

which give us: ~G� = (B;+~E).
Now, the set of equations (6,7,9) and the identity @� ~G� = 0, describing a static and

point-like magnetic monopole (�0 = +g�3(x); ~� = 0 and the static limit for the �elds)
take the forms:

r^ ~B(~r) = �2�0~E(~r) ; r � ~E(~r) = �2�0B(~r) (12)

r^ ~E(~r) = +�0 ~B(~r) ; r � ~E(~r) = 0 (13)

r � ~B(~r) = �0(~r) = g�3(~r) and r^ ~E(~r) = 0 (14)

rB(~r) = ��0 ~E(~r) (15)

Now, to study the self-consistency of the above equations, we split them in two sets:
one involving the B and ~E �elds, and the another with ~B and ~E vectors . For the �rst
set, it is easy to �nd good solutions [10, 18]:

~E(~r) =
~E0

4�
exp(�

p
2�0j~rj) and B(~r) = B0

4�
exp(�

p
2�0j~rj); (16)

with
p
2�0B0r̂ = + ~E0. Nevertheless, for the other set we have troubles: the monopole-like

solution that comes from: ~B(~r) = +g~r=4�r3 � ~BD(~r) is inconsistent with r ^ ~B(~r) =

3We shall use the expressions electric and magnetic for the A� sector, by its analogy with the Maxwell's
Electrodynamics.
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�2�0 ~E(~r) (6= 0, a priori). Even here, we may search for a more general solution for ~B:
~B(~r) = ~BD(~r) + ~B0(~r) (and similar forms to ~A and ~E [10, 18]) with ~B0 given by:

~B0(~r) = r^
~E 0(~r)
�0

= +
2�0
4�

Z
d3~r0(1 +

p
2�0R)

exp(�p2�0R)
R3

(~ED(~r0) ^ ~R);

whith ~R � (~r � ~r0). Unfortunately, these new solutions prevent us from obtaining a con-

served angular momentum operator, J , and so from quantise the system of an electrically
charged particle placed into this magnetic �eld4 (at the non-relativistic limit), whose La-

grangean is Lp =
1
2
m _r2 + q ~A � _~r, with ~A = ~AD + ~A0.

Alternatively, based on the Wu-Yang's approach [20], one can demonstrate the non-
existence of a Abelian and unitary operator S which would relate two functionsAa

� and A
b
�,

in a overlapping region around the monopole, by a gauge transformation (this is worked
out in Ref.[18]). Consequently, at this �rst stage, the CSKR-model is not compatible
with Dirac's monopoles and this comes about due the massive character of the vectorial
boson. In other words, the mass parameter prevents the magnetic �eld created by the
monopole from being spherically symmetric and this, in turn, leads us to the troubles
discussed above.

Let us carry on our work and take the CSKR-model with matter �elds (say, fermionic).
The Lagrangean reads:

L1 matter7�! L2 = L1 +  (x) ({D�

� �mf ) (x) ; (17)

with L1 already de�ned in (2) and D� (x) � (@� + {eA�) (x).
It is easy to see that S2 is U(1)A� 
 U(1)H�� -invariant, provided that the fermionic

�elds transform in the usual way:  (x) 7!  0(x) = e+{e�(x) (x) and  (x) 7!  0(x) =
e�{e�(x) (x).

From L2, the dynamical equations for the fermions follow:

({D�

� �mf) (x) = 0 and  (x)({

 

@� 

� + eA�


� +mf ) = 0 : (18)

Analogously, for the gauge �elds, we obtain their dynamical equations:

@�F
�� = ��0�����@�H�� + eJ� = �2�0 ~G� + eJ� ; (19)

@�G
��� = +�0�

����@�A� = +�0 ~F
�� ; (20)

and also the Bianchi's identities (8). Here, the conserved fermionic 4-current is de�ned

by: J� �  
� = (�; ~J).
As we did earlier, introducing static and point-like monopole and taking the equations

describing it, with fermionic 4-current, we get:

r^ ~B(~r) = +e ~J(~r)� 2�0 ~E(~r) ; r � ~E(~r) = e�� 2�0B(~r) (21)

r^ ~E(~r) = +�0 ~B(~r) ; r � ~E(~r) = 0 (22)

r � ~B(~r) = +�0 = +g�3(~r) ; r^ ~E(~r) = 0 (23)

rB(~r) = ��0 ~E(~r) : (24)

4This point is not so obvious. The arguments which lead us to this result are presented in Ref.[10],
and are based upon SU (2) algebra analysis.
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It is clear that, the presence of this current in the above equations leads us to describe
another type of magnetic monopoles, di�erent of those Dirac's ones. This di�erence will
be later clari�ed.

Let us study the self-consistency of these equations: again, for the set of ~E and B
�elds it is easy to obtain well-behaved solutions:

B(~r) = �e�0
4�

exp(�p2�0j~rj)
j~rj ; ~E(~r) =

e

4�
(r �

p
2�0r

2)
exp(�p2�0j~rj)

j~rj3 r̂

Now, to solve the former problem presented by the another set, we look for L2 at low
momentum5

L2 p!0�! Lp!0 � +�0�
����A�@�H�� � eJ�A� + (fermionicmass term) ; (25)

(` � ' stands for approximately to). Taking the �eld equation for A�, we get:

eJ� = +2�0 ~G� ; (26)

Here, we are dealing essentially with the non-relativistic limit (low momentum) of a phys-
ical system (particle into a external magnetic �eld); therefore, it is physically acceptable
to take the following ansatz:6

e ~J(~r) = +2�0~E(~r) : (27)

Employing this relation in the �rst equation of (21), the sectors of ~B and ~E �elds become

consistent. In other words, the ansatz (27) damps the ~B0 part of ~B . Physically, what seems

to happen (at low energy level) is that the ~E (or more precisaly, the matter background

current, ~J) �eld cuts the e�ect of ~B0, at least as the total �eld felt by the electric charge.
Returning to the presence of the fermionic current in eqs. (21-24), we shall interpret

this current as a material background onto which the magnetic monopole con�gurations
are placed. It is just in this sense that we distinguish between them and those of Dirac's
types: these latter are classical con�gurations in the vacuum (Classical Electrodynamics
in vacuum, to be more precise), and so, they need no material media for their `existence'.
Even though, our monopoles cannot appear in vacua, they would con�gurate, for exemple,
in a superconductor medium, inside which the Cooper's pairs of electrons would be this
background, at any stationary limit, because er� ~J = 2�0r� ~E = 0). In addition, notice a
similarity: both, the CSKR-model and a superconductor medium appear to have massive
`photon'.

Another point that should be stressed concerns the background: we suppose, and this
seems reasonable, that the charges acting as the sources for the electric and magnetic
�elds that yield the monopole con�guration weakly a�ect the background, so that the

5Noticing the correspondence: {@� $ p�, we take the low momentum limit by p2 � p and write L2

up to terms proportional to p (or better @). In words, we consider the kinetical terms small as compared
with others.

6Let us remind the London's ansatz for superconductivity: j� = �A�. Despite of the nature of the

�elds (A� is a gauge �eld and ~G� a gauge invariant quantity), both forms are quite similar.
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back reaction on the latter does not in
uence the conditions that allow `monopole forma-

tion'. However, if the density of charges becomes very high and the energy of the system
of electric and magnetic �elds is comparable to the energy density of the background,
then our assumptions would be jeopardised. In short, we understand that we are relying
on the approximation that the sources do not a�ect the background.
This background current seems to be very formal, introduced only to accomodate our
monopole-like solution. The interesting question that now we raise is how to systemati-
cally propose a potential in the Dirac's equation in such a way that its solution,  , leads
to a current ~J such that (27) is ful�lled. From our analysis, we have obtained that an
arbitrary potential, V , yielding a current given by (27) does not lead to a separable form

of the Dirac's equation. Imposing that ~J is known, V is not uniquely �xed, i.e., di�erent
families of non-separable V lead to the same expression for ~J , and we are attempting at
an explicit solution for  as a result from the Dirac's equation with a particular potential.

Now, writing the non-relativistic Lagrangean for the system: Lp =
1
2m _r2+ q ~A � _~r, with

~A = ~AD, and search for a conserved angular momentum vector, we �nd7

~J = ~r ^ ~p � gq

4�c
r̂;

and quantising its radial component (here, treated as a quantum operator) according to
Quantum Mechanics [21], we get:

r̂ � J =
n

2
=) qg

4��hc
=
n

2
n = 1; 2; : : : : (28)

Therefore, we obtain a quantisation condition for the problem (analogous to eq. (2)).
[However, the di�erence put between the two types of such Abelian monopoles must
be remembered and taken into account]. The using of others procedures (e.g. single-
valuedness of the wave-function or Wu-Yang's approach) shall lead us to the same result,
eq. (28).

To close this section, we draw the attention to the fact that a similar treatment to
Proca's theory would lead us to a quite analogous conclusion: this theory is compatible
with the monopoles that were here introduced. On the other hand, we justify our choice
by CSKR model because it presents another very interesting feature: the mass parameter
appears in a more general quantisation condition. This will be the goal of the following
section.

3 The `non-minimal' coupling and mass quantisa-

tion

In this section we shall introduce a new kind of `coupling' into the model. This will
be done by the following gauge covariant derivative: r� (x) � (@� + {eA� � {� ~G�) (x),

7The �rst term is the angular momentum of a point-like object with momentum ~p and the second
comes from the interaction between the electromagnetic �elds of both particles. In addition, we know
that in the quantummechanical context its counterpartner operator must commute with the Hamiltonian
operator and satisfy the SU (2) algebra.
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where � is the parameter that measures the strength of the coupling between the fermions
and the tensorial sector. Hence, the model is:

L3 = L1 +  (ir�

� �mf) ; (29)

(here, we choose e; � > 0, as we have already taken for �0) .8

The in
uence of non-minimal coupling on the 3-dimensional Maxwell-Chern-Simonsmodel
has been discussed in a series of works (some of them are listed in Ref. [22]).

From (29), there follow the dynamical eqs. for the femions:h
({@� � eA� + � ~G�)


� �mf

i
 (x) = 0

 (x)

�
({
 �
@ � + eA� �� � ~G�)


� +mf

�
= 0 ;

and those for the gauge �elds:

@�F
�� = ��0�����@�H�� + eJ� = �2�0 ~G� + eJ� ; (30)

@�G
��� = +�����@�

�
�0A� +

�

2
J�

�
= +�0 ~F

�� +
�

2
�����@�J� ; (31)

also, the already known Bianchi's identities (8).
Doing the same considerations as before to introduce magnetic monopoles (static and

point-like classical con�guration onto a matter background), we get the following equa-
tions:

r^ ~B(~r) = +e ~J(~r)� 2�0~E(~r) ; r � ~E(~r) = +e�(~r) � 2�0B(~r); (32)

r^ ~E(~r) = +�0 ~B(~r) +
�

2
r^ ~J(~r) ; r � ~E(~r) = 0 (33)

r � ~B(~r) = �0(~r) = g�3(~r) ; r^ ~E(~r) = 0; (34)

rB(~r) = ��0 ~E(~r) + �

2
r�(~r): (35)

Now, we see that both sets of equations (one mixing B and ~E and another relating ~B

to ~E) present inconsistencies. Fortunately, what happens here is that the 4-dimensional
ansatz, eq. (26), can solve all these problems So, implementing it in the above equations,
we get (after ordering the equations):

r^ ~B(~r) = +e ~J(~r)� 2�0 ~E(~r) = 0 ; r � ~E(~r) = +e�(~r)� 2�0B(~r) = 0 (36)

r^ ~E(~r) =
�

e�0
e� ��0

�
~B(~r) ; r � ~E(~r) = 0; (37)

r � ~B(~r) = +g�3(~r) ; r^ ~E(~r) = 0; (38)

rB(~r) = �
�

e�0
e� ��0

�
~E(~r): (39)

8A question must be asked: why the fermions are coupled to ~G� and not to the gauge �eld H��

(as was done for A�)? We answer this question by saying that this is the simplest form to write such
\coupling" in a Lorentz covariant way and, at the same time, preserving the gauge invariance of the
model. Nevertheless, it is clear that this vertex is non-renormalisable. Here, such aspect brings no major
problems, since we are dealing with a non-relativistic Quantum Mechanical treatment. Actually, another
\coupling" allowed in this way is:  ~G�


�
5 , what is clearly non-parity invariant; but here, we are not
dealing with aspects of parity breaking, so we return to our former choosing.
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It is clear that, hereafter we shall be considering regimes of the model for which e 6= ��0
is satis�ed.

Now, placing a particle (with electrical q = eq0 and \tensorial" Q = � charges9; mass
m) into the external magnetic �eld (those assumptions done before, in Section 2, must be
taken also here), we get its non-relativistic Lagrangian:

L2 =
1

2
m _r2 + q ~A � _~r � �~E � _~r:

And, the conserved angular momentum vector reads:

~J = ~r ^ ~p� g

4�c

�
q +

e��0
e� ��0

�
r̂:

Now, the second term, that is related with the `electromagnetic' angular momentum,
brings us information about the tensorial gauge sector, by de�ning an `e�ective charge'

as:
�
q + e��0

e���0

�
.

Now, in the context of Quantum Mechanics, we quantise the radial component of the
conserved angular momentum operator:

r̂ � J =
n

2
=) g

4��hc

�
q +

e��0
e� ��0

�
=
n

2
; (40)

(with n integer). Hence, we obtain what we have announced: that the mass parameter
might be present in a quantisation condition. Two limits of this relation take importance:

lim
�!0

7�! qg

4��hc
=
n

2
and lim

�0!0
7�! qg

4��hc
=
n

2
(41)

From (41), we see that, in the limit � ! 0 we recover the result obtained in Section
2, which is expected. But, if we take �0 ! 0 we recover the same result. This seems to
state that the interaction between the fermions and the tensorial sector is performed by
means of the topological term, that linkes both gauge symmetries.

It is noteworth to mention that the topological mass parameter does not get shifted
by 1 loop corrections induced by loop of matter �elds (scalars and/or spinors) minimally
coupled to A�, but non-minimally coupled to H�� . Indeed, by computing the self-energy
diagram that exhibits A� to H�� on the external legs, it has been shown that the (�nite)
fermionic 1 loop contribution does not shift the mass parameter �0, so that the quanti-
sation condition displayed in (40) does not su�er from (�nite) renormalization e�ects on

9The \current equation" for the tensorial sector may be writen as:

@�G
��� = j�� with j�� =

�
j0i � (~j1)

i

jij � �ijk(~j2)k
:

(it's clear that the conservation equation for j�� is @�j�� = 0). From this, we see that this sector carries
no charge attribute. What happens is that all fermions carry the same charge with respect to the tensorial
gauge group, Q = �.
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�0. Such a Feynman graph and its answer (for the case of scalar matter �elds) are quoted
in the Appendix.

Concluding Remarks

The main motivation of the present paper was the investigation of the possibility for the
existence of Dirac's monopole solutions associated to the massive spin 1 model described
by the mixing of a U(1) gauge �eld to a rank-2 tensor gauge �eld according to CSKR. We
have concluded that no such monopole emerges if matter is absent. Indeed, we have been
able to work out possible conditions on the matter background so as to trigger monopole
formation. We would however like to understand better the rôle of the matter background
on the physics of the monopole. For example, quantisation of the latter in the presence
of the background; or still, possible bounds on the monopole mass as dictaded by the
background.

Our quantisation relation involving the topological mass parameter does not mean
that the latter is quantised as it is the case for the topological mass parameter in Abelian
[23] or non-Abelian [24] Chern-Simons theory in (2+1) dimensions . All we get here is
a quantisation condition where all the parameters are mixed. If we assume electric (as
well as magnetic) charge quantisation, all we get is the quantisation of the product ��0.
However, this quantisation condition should be more deeply exploited.
Moreover, in the attempt of take some light to our motivating question, we have noticed
that the non-coexistence of massive vector boson and Dirac's monopole might lie in the
way Electrodynamics-type models are built up, i.e., in terms of 2-form �eld-strength (con-
taining the classical physical �elds); and not in the way of mass generation, as we had
initially suspected.
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Appendix

The Feynman graph that exhibits A� and H�� on the external legs with a loop of scalars10

is depicted below:

10A similar graph with spinor loop (instead of scalar one) may lead us to a slightly di�erent result, but
no shift of the mass parameter will occur by �nite 1 loop contributions.
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The result of the above graph, after dimensional regularisation has been adopted,
reads as follows:

I ��
� (p) = �i�2����� p�

�
p�p�

Z 1

0

dz (1� 2z)2 ln[p2z(1 � z)�m2]+

�1
3

�
2

�
� k

�
p�p� � 2���

��
2

�
� k + 1

��
m2 � p2

6

�

+

Z 1

0

dz (p2z(1� z)�m2) ln[p2z(1� z)�m2]

��
;

here, � (= 4 �D) is the dimensional regularisation parameter and k � 
 + ln� (
 is the
Euler's constant); m2 = 2�20 is the mass parameter.
The �niteness of these integrals (written in terms of Feynman parametrisation) is evident.
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