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Abstract

The position representation of the evolution operator in quantum mechanics is analogous

to the generating function formalism of classical mechanics. Similarly, the Weyl represen-

tation is connected to new generating functions described by chords and centres in phase

space. Both classical and quantal theories relie on the group of translations and reflec-

tions through a point in phase space. The composition of small time evolutions leads

to new versions of the classical variational principle and to path integrals in quantum

mechanics. The strong resemblance between the two theories allows a clear derivation of

the semiclassical limit in which observables evolve classically in the Weyl representation.

The restriction of the motion to the energy shell in classical mechanics is the basis for a

full review of the semiclassical Wigner function and the theory of scars of periodic orbits.

By embedding the theory of scars in a fully uniform approximation, it is shown that the

region in which the scar contribution is oscillatory is separated from a decaying region by

a caustic that touches the shell along the periodic orbit and widens quadratically within

the energy shell.
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Introduction

The Wigner function was originally devised with the purpose of reconciling quantum sta-

tistical mechanics with classical phase space [1, 2, 3]. An apparent contradiction with the

uncertainty principle tends to surround this Weyl representation of the density operator

with a certain mystery. As a result, the Wigner function can be negative-valued, disal-

lowing its direct correspondence with the classical Liouville probability density. However,

its projections correspond to probabilities in positions or momenta, and its smoothing,

known as the Husimi function [4, 5], is also positive definite.

The study of the semiclassical limit of pure quantum states has also directed attention

to the Wigner function [6, 7]. The important point is that the features that distinguish

integrable from chaotic motion in classical mechanics manisfest themselves most clearly in

the full phase space picture. Thus, it is expected that their emergence in the semiclassical

limit should be optimally iluminated by the Weyl representation. Indeed, Berry [7] showed

that the amplitude peak of theWigner function for the pure state of an autonomous system

with a single freedom lies close to the energy shell and Ozorio de Almeida and Hannay

[38] generalized this picture for the invariant tori of classical integrable systems.

For a point x within the torus, Berry obtained the phase of the oscillating semiclassical

Wigner function by an appealing ”chord construction”: the phase is proportional to the

symplectic area (or action) bounded by the torus and the torus chord that is centred

on x. Later, Marinov [8] found that an analogous chord construction determined the

semiclassical limit of the Weyl propagator, i.e. the Weyl transform of the evolution

operator. The difference is that in this case the tips of the chord centred on x must lie

on the same classical orbit. Marinov [9] showed that the phase of the Weyl propagator

satisfies a new version of the classical Hamilton-Jacobi equation, thus bringing the chord

construction into classical mechanics itself.

The derivation of a path integral for the Weyl propagator introduces the chord con-

struction into the core of quantum mechanics. Even though the original presentation by

Berezin and Marinov [8, 10] obscured this point by doubling the number of variables, the

present author [11] obtained a formula that is indeed analogous to the classical variational

principle for the centre generating function [12].

These new presentations of path integrals and classical variational principles are con-

nected with the traditional versions through the notion of double phase space. Since the
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dynamical state of a system is completely determined by a point in phase space, its evo-

lution after a time t is described by an ordered pair of such points, or, alternatively, by a

point in double phase space. For a Hamiltonian system with L freedoms, phase space has

(2L) dimensions and double phase space has (4L) dimensions, within which the classical

transformation is represented by a (2L)-dimensional surface. The uncertainty principle

only permits complete knowledge of half the coordinates of both the initial and the final

phase space, usually chosen to be positions, though the momenta are equally legitimate.

The Weyl representation relies on the alternative choice of the centre of the vector joining

each pair of initial and final phase space points.

For this reason I shall often refer to the Weyl representation as the centre represen-

tation, specially when considering the complementaty chord representation. The latter

arises from the perception that the family of affine vectors that we could choose for a

given centre are complementary variables to the centres themselves, in analogy to the

familiar relation between positions and momenta: In both cases we obtain a classical

action by integrating one variable with respect to the other. The centre representation of

the unitary evolution operator relies on half the coordinates of double phase space, just

as the usual position representation. In the latter case we forego the specification of the

momenta, whereas in the former it is chords that remain undetermined.

Though classical mechanics allows us to specifie complementary variables simultane-

ously, we can mimic the quantum view through the formalism of generating functions.

Determining a canonical transformation via a generating function that depends only on

positions, the complementary initial and final momenta result from appropriate deriva-

tives. We can also specify a canonical transformation by its centre generating function,

from which we obtain the corresponding chords by differentiation. It is in this sense

that we may speak of a Weyl representation in classical mechanics. The Legendre trans-

form of the centre generating function coincides with the chord generating function and

vice versa, whereas symmetrized Legendre transforms connect these with the familiar

position or momentum generating functions. All these transformations of representation

are a consequence of the Lagrangean property of the (2L)-dimensional surface in double

phase space that defines a canonical transformation, that is, it is a null surface for the

appropriate action (or two-form).

The relationship between each of the centre, chord, momentum or position representa-
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tions in quantum mechanics bears exact analogy with that connecting the corresponding

classical generating functions if we merely substitute Fourier for Legendre transforms. I

shall not attempt to provide a fully comprehensive survey, but will reveal here instead

the novel aspects of this conceptual web.

The unifying thread is provided by the fundamental operations of translation and

reflection in phase space. By reflection, I shall always mean reflection through a point,

synonymous to inversion or half-turn [13]. It is well known that the translations form a

group, but the fact that this is contained in a wider group which includes the reflections

about each point in phase space [13] has not been widely appreciated in dynamics. In

quantum mechanics, the unitary reflection operators are defined as Fourier transforms of

the familiar translation operators.

Consider the uniform translation, of the points x = (p1, · · · , pL, q1, · · · qL) in (2L)-

dimensional phase space, by a vector α,

x+ = Tα(x−) = x− + α ,

and the corresponding quantum operator T̂α. The reflection through the point a is defined

as

x+ = Ra(x−) = −x− + 2a ,

corresponding to the quantum operator R̂a. The Weyl (centre) representation of an

arbitrary linear operator B̂ is the function B(x) defined by the trace of R̂xB̂. Similarly,

the trace of T̂−ξB̂ defines its chord symbol B(ξ).

In classical mechanics, the full canonical transformation C : x+ = C(x−) is either

obtained by expressing ξ = x+ − x− in terms of x = (x+ + x−)/2, or vice versa. In the

former case we start with the centre generating function S(x) and ξ is determined by its

derivatives, whereas, in the latter, we differentiate the chord generating functions S(ξ).

We can also determine ξ directly, given x, by noting that x− = x− ξ/2 is the fixed point

of the combined transformation Rx ◦ C. Likewise, if we start with a given displacement

ξ, we obtain x− as the fixed point of T−ξ ◦ C.
Thus we again find a close analogy between the chord or the centre representations

in quantum and in classical mechanics. In both cases we combine the operation to be

described with either a translation or a reflection. Then we take the trace in quantum

mechanics or find the classical fixed point.
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There are definite advantages of the centre representation over the one in terms of

chords. The former is ideally suited for the description of transformations close to the

identity and, therefore, continuous time evolution, for which the chord representation

becomes singular. Another advantage is that the Weyl representation of a Hamiltonian

operator is necessarily real and, of course, there are the many desirable properties of the

Wigner function. However, it turns out that there is a great increase of analytic flexibility,

simplifying the development of the theory if we develop the chord along with the centre

representation.

The first three sections of this review are dedicated to classical mechanics. Linearizing

the flow in the neighbourhood of a classical orbit leads to the Cayley parametrization

of symplectic matrices and hence to the quadratic centre and chord generating functions

for linear canonical transformations. Section 1 also develops the relationship between

these classical representations and the fundamental group of translations and reflections

in phase space, a normal subgroup of the full affine symplectic group.

The second section is concerned with the composition of canonical transformations.

These are described by polygons in phase space, specified by the centres of their sides in

the case of the Weyl representation. Dividing a finite time flow into an arbitrarily large

number of steps, we obtain a new derivation of the variational principle: Among all the

infinite-sided polygons where the centre of one of its sides is kept fixed, the symplectic area

is only stationary when all the other sides together coincide with a classical trajectory.

There follows a derivation of the more usual formulations of the variational principle and

of Marinov’s version of the Hamiltonian-Jacobi equation. Further mathematical results

concerning the geometry of polygons in phase space are provided in Appendix A.

Section 3 deals with the variational principle for fixed energy. The construction of

the corresponding orbits that lie on the energy shell, such that their tips are centred on

a given point in phase space, leads us to the definition of the centre map. The desired

orbits determine fixed points of this variation of more familiar Poincaré maps. For the

latter, the fixed points determine periodic orbits, so we obtain a family of solutions of the

centre variational principle for each periodic orbit. The centre representation breaks down

along centre caustics, corresponding to the caustics of the semiclassical Wigner function

[7]. It is shown that in the case of more than one freedom there is one fold caustic for

each period orbit, along which the caustic touches the energy shell. Inside the shell the
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caustic widens smoothy. Traversal of such caustics involves a passage through the chord

representation.

From then on the presentation is concerned with quantum mechanics. The definition

of the operator for translations in phase space in section 4 is chosen so that compositions

of translations generate polygons analogous to those in classical mechanics. Together with

the reflections obtained as their Fourier transform, they reproduce the classical group. To

end this section we review the representations of quantum states, introducing the Husimi

representation in terms of the diagonal matrix elements in the basis of coherent states.

Section 5 presents the centre and chord representations for quantum operators, con-

necting them with the usual representations. We study a few examples of the Wigner

function, from which we obtain the Husimi representation as a Gaussian smoothing of the

Weyl representation.

The chord representation of the products of operators leads to a generalized formula

for the Weyl representation of an arbitrary number of operators, which is a semiclassi-

cal expansion in powers of Planck’s constant in the case of observables, generalizing the

Groenewold rule [32]. The rest of section 6 is dedicated to the path integral for the Weyl

propagator, obtained from the integral formula for the centre representation of the prod-

uct of operators. The evolution is expressed as a superposition of phases defined as the

symplectic area of all the infinite sided polygonal lines with ends centred at a given phase

space point. The trace of this operator is defined by the set of closed polygonal lines.

The deduction is quite analogous to that of the classical variational principle, so that the

semiclassical limit becomes specially transparent. Relying on the group of metaplectic op-

erators, corresponding to classical linear transformations, we find that observables evolve

classically in the semiclassical limit of the Weyl representation.

In the final section, we take the time Fourier transform of the Weyl propagator to

obtain the spectral Wigner function and hence discuss the nature of stationary states

and their semiclassical limit. Building on the classical theory presented in section 3, we

obtain a uniform theory for the semiclassical limit as the evolution point passes into the

energy shell. This includes a curvature correction to the Berry theory for the scars of

periodic orbits [14] which damps the contribution of far away orbits. There results a

new obstacle to be surmounted by the ressumation of the periodic orbits for the spectral

Wigner functions.



– 6 – CBPF-NF-062/96

The geometrical constructions underlying the results in sections 3 and 7 are more

complicated than those necessary for the time dependent theory. Thus, the reader that

is not primarily interested in the energy shell structure may profitably skip directly from

§ 2 to § 4.

The basic purpose of this report it to present a selfconsistent formalism for nonrela-

tivistic classical and quantum mechanics based entirely on centres and chords. We can

certainly translate all the quantal results into the familiar position representation of wave

mechanics, just as we can also derive all of classical mechanics from a Lagrangean formu-

lation, but the Weyl representation stands on its own as an alternative. In spite of the

length of this text, it has been pruned so as to present strictly the main line of reasoning.

Thus there are many important subjects, such as Weyl ordering, for which the reader will

depend on the basic references provided.

Is there any merrit in presenting yet another reformulation of mechanics? Though

it is early to predict the possible uses of the present theory, I believe that the funda-

mental point concerns the invariance of the theory with respect to different groups of

transformations: classical mechanics is invariant with respect to the full group of canon-

ical transformations, whereas quantum mechanics is not. The generating functions of

classical mechanics also lack this flexibility, though each type of generating function is

invariant with respect to a particular subgroup of canonical transformations. In particu-

lar, the position generating functions are invariant with respect to point transformation,

i.e. those where the positions transform among themselves without mixing with the mo-

menta. Obtained from coordinate transformations of the Lagrangean, we can also bring

this invariance into wave mechanics. The prevalence of simple Hamiltonians where the

momentum dependence is separate and quadratic accounts for the enormous success of

wave mechanics.

Quantum mechanics is also invariant with respect to metaplectic transformations,

corresponding to linear canonical transformations. This fact becomes self-evident in the

Weyl representation and is reflected in the invariance of the chord and centre generat-

ing functions with respect to symplectic transformations. The basis of the semiclassical

approximation is the linearization of the motion along a classical orbit, so that the semi-

classical approximation becomes exact for linear motion. It is natural that the deepest

insight into the semiclassical limit should be obtained in the representation that is sym-
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plectically invariant.

Work is in progress along some of the many directions that are left open by the follow-

ing presentation. The most obvious need is for a complete theory of Morse and Maslov

indices for the semiclassical approximation, since these are only determined explicitly in

the text for small times. Another challange that is being tackled is to derive a ressumed

formula for individual Wigner functions. All the same, I felt that the remarkable evolution

of both the extent and the global coherence of the present theory since my last papers

on this subject [11, 12] warranted the publication of this report resulting from a series

of lectures presented in CBPF (Rio), IF-USP (São Paulo) and finally the Institut Henri

Poincaré (Paris), whose hospitality I thank. I am grateful to all the discussions, with

numerous colleagues and students, in particular, S. Fishman, J. Keating, R. Prange, A.

Rivas, P. Rios, M. Saraceno, A. Voros and W. Wrezinsky throughout the past year, that

have continuously clarified my views on the subject and greatly refined the presentation

of this review.

1 Linear Transformations in Classical Mechanics

Dynamical systems obtained as the classical limit of quantum mechanical systems are

characterized by a Hamiltonian functionH(x, t), where x is a point in an even-dimensional

phase space. Usually the coordinates of this (2L)-dimensional space are separated into L

momenta and L positions, so that x = (p1, · · · , pL, q1, · · · , qL). In any case, Darboux’s

theorem [15] guarantees that this coordinatization is always possible. The dynamical

system is defined by Hamilton’s equations,

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
, (1.1)

which may be compactified into the form

ẋ = J
∂H

∂x
, (1.2)

with the definition of the (2L× 2L)-dimensional matrix

J =


 0 −1

1 0


 (1.3)

It is important to note that the transpose J′ = J−1 = −J.
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Since the equations of motion are of first order, there exists exactly one orbit passing

through each point in phase space. Let us choose the origin to be on the orbit that we

wish to study; then we obtain the neighbouring orbits for a short time by expanding the

Hamiltonian in a Taylor series:

H(x) = H(0) +
∂H

∂x

∣∣∣∣∣
0

.x+
1

2
xH0x+ · · · , (1.4)

where H0 is the Hessian matrix ∂2H/∂x2 evaluated at the origin.

The velocities near the origin become, for t = 0,

ẋ(x) = J
∂H

∂x

∣∣∣∣∣
0

+ JH0x+ · · · , (1.5)

so that

δẋ = ẋ(x)− ẋ(0) = JH0x = JH0δx (1.6)

to first order in δx. Thus the short time motion surrounding a chosen orbit is determined

by a linear dynamical system. I have not included the time dependence explicitly because

it will only affect the matrix H0 and not the form of the equations.

After an infinitesimal time δt, we may shift the origin to x = δtẋ(0) and there obtain

a new expansion. Iterating this procedure, we find that the flow x(0) → x(t) in the

neighbourhood of a given orbit x(0, 0) → x(t, 0) may be approximated by a linear flow

δx(0) → δx(t) resulting from the time dependent linear Hamiltonian system

δẋ = JH(x(t), t)δx. (1.7)

Since the product of (infinitesimal) linear transformations is necessarily linear, we can

define the matrix Mt such that

δxt = Mtδx0 . (1.8)

It should be noted that for the critical points of the Hamiltonian, where ∂H/∂x = 0, the

orbit of x0 reduces to an equilibrium point, simplifying the foregoing theory.

The study of the possible matrices Mt, or linear maps, that can arise in Hamiltonian

systems is of fundamental importance. The most important property is that they preserve

the sympletic area (or action) of any closed circuit γ in phase space:

S =
L∑

�=1

S� =
L∑

�=1

∮
γ�

p�.dq� =
∮
γ
p.dq , (1.9)
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where the γ� are projections of γ onto the L conjugate planes (p�, q�) as displayed in Fig.

1.1.

This property results from the conservation of the symplectic area of the parallelogram

formed by any pair of vectors ξ and η:

L∑
�=1

(ξp�
ηq�

− ξq�
ηp�

) = (Jξ).η ≡ ξ ∧ η , (1.10)

where the last identity defines the skew product of ξ and η. Note that the projections onto

the L conjugate planes are also parallelograms, as shown in Fig. 1.2. Since

d

dt
(ξ ∧ η) = (Jξ̇).η + (Jξ).η̇ = (JJHξ).η + (Jξ).JHη = −(Hξ).η + ξ.(Hη) = 0,

(1.11)

the total change in this symplectic area is zero. Using ξt = Mtξ and ηt = Mtη, we must

then impose that

(JMtξ).(Mtη) = Jξ.η , (1.12)

which reduces to

Mt
′ JMt = J , (1.13)

the definition of a symplectic matrix. Thus, the linearized flow in the neighbourhood of

any orbit in a Hamiltonian system is determined by a symplectic matrix.

An immediate consequence of the symplectic property is that

det Mt = 1. (1.14)

Taking determinants of the product in (1.13), we obtain the unit modulus. Then conti-

nuity, with the fact that M0 = 1, the unit matrix, determines the sign. Thus linear flows

preserve phase space volumes.

The properties that we have found for linear systems are extendable to nonlinear flows.

Any circuit may be divided into an arbitrary number of parallelograms for which sym-

plectic area is preserved in the limit of smallness, so the full symplectic area is invariant.

Likewise, any phase space volume may be indefinitely subdivided into hypercubes for

which volume conservation holds.

It is easy to see that the product of symplectic matrices is also symplectic, that is,

symplectic matrices form a group. It follows that similarity transformations between
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symplectic matrices are symplectic. We will now show that symplectic matrices that are

diagonalized or taken to Jordan normal form are also symplectic and hence this is also a

property of the matrices that reduce them, though they may be complex.

To see this we show that if γ is an eigenvalue of M, so is γ−1. Consider the following

manipulations on the characteristic polynomial

P (γ) = det[M− γ1] = det[J−1M′ −1J − γ1] = det[M′ −1 − γ1]

=
(−γ)2L
det(M′)

det[M′ − γ−11] =
γ2L

det(M)
det[M− γ−11]. (1.15)

Thus,

P (γ) = ±γ2LP (γ−1) (1.16)

and if γ0 is a root of P (γ), so is γ−1
0 .

It is immediately verified that the matrix

M =




γ1

γ2 0
. . .

0 γ−1
1

γ−1
2

. . .




(1.17)

is symplectic, so it was diagonalized by a symplectic transformation. However, this trans-

formation will only be real if all the eigenvalues are real.

Exponentiation permits us to generate symplectic matrices from symmetric matrices.

Indeed, if 1
2
xHx is a time-independent quadratic Hamiltonian, the linear flow after a time

t is simply

x(t) = exp[tJH]x(0) = Mt x(0). (1.18)

Though this is an explicit construction of the symplectic matrix, it relies on an infinite

series and it does not include all the possible matrices that could result from a quadratic

time independent Hamiltonian, such as

M =


 −γ 0

0 −γ−1


 . (1.19)
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In both respects there is a definite advantage in using the Cayley parametrization [16]:

M = [1− JB][1 + JB]−1 = [1 + JB]−1[1− JB]. (1.20)

Direct insertion of (1.20) into the definition (1.13) shows that this is necessarily a sym-

plectic matrix, unless JB has the eigenvalue −1. The inverse is immediately obtained

as

JB = [1 +M]−1[1−M] = [1−M][1 +M]−1. (1.21)

Thus, it is only symplectic matrices with eigenvalue −1 for which there is no Cayley

parametrization. In the same way as with the exponential parametrization, changing the

sign of B generates M−1:

[1 + JB][1− JB]−1[1− JB][1 + JB−1] = 1. (1.22)

The significance of the Cayley parametrization is emphasised by interpreting

S(x) = xBx (1.23)

as a function that implicitly generates the transformation x− → x+, where

x± = x± 1

2
ξ (1.24)

and

ξ = −J
∂S

∂x
(= −2JBx). (1.25)

We will henceforth refer to x as the centre of the transformation and ξ as the chord.

Evidently, the matrix for the linear transformation (1.24) generated by the quadratic

form (1.23) is exactly (1.20), so the transformation is symplectic. Rewriting

S(x) =
1

2

∂S

∂x
.x = −1

2
J
∂S

∂x
∧ x =

1

2
ξ ∧ x , (1.26)

we can interpret S(x) as the area of the triangle with corners at 0, x− and x+, as shown

in Fig. 1.3.

If we expand a general nonlinear function S(x) in a Taylor series:

S(x) = S(x0 + δx) = S(x0) + α0 ∧ δx+ δxB0δx+ 0(δx3) (1.27)
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while keeping the implicit definition of the transformation x− → x+ given by (1.24) and

(1.25), we obtain

ξ(x) = α0 − 2JB0δx+ 0(δx2). (1.28)

Therefore the Jacobian of the transformation is the matrix (1.20), i.e. even the non-

quadratic S(x) is the centre generating function of a canonical transformation. We shall

usually refer to it as the centre function, for short. It is easily seen that, if M0 is the

symplectic matrix corresponding to B0, then the transformation generated by (1.27) up

to second order is

x+ = M0(x− + α0/2) + α0/2 (1.29)

that is, we sandwitch the linear transformation M0 between two translations by α0/2.

For small times t = ε, we may identity

Sε(x) = −εH(x) +O(ε3), (1.30)

since the flow is simply

x+ = x− + ξ = x− + εJ
∂H

∂x
+ 0(ε3), (1.31)

i.e. B0 is just the Hessian −(ε/2)H0. In general, exchanging t → −t implies ξ → −ξ,
so St(x) must be an odd function of t. The third order correction to (1.30) is derived in

Appendix B.

Even for finite times, the chord ξ will be tangent to the surface S(x) = constant, just

as shown in Fig. 1.3, because ẋ is tangent to H(x) = E. In particular, the critical points

of S(x) correspond to fixed points of the canonical transformation. These will coincide

with the equilibria of H(x) in the case of a Hamiltonian flow. In a way, −S(x) is a finite

time Hamiltonian, for which we obtain a single canonical transformation, specified by

ξ(x), instead of a group of transformations by integrating ẋ(x). For this reason we cannot

simply add the generating functions so as to compose transformations. In the following

section we shall study the delicate geometrical patterns involved in the composition of

centre generating functions.

The simplest kind of motion that we can consider is that generated by a linear Hamil-

tonian H(x) = −a ∧ x. Hamilton’s equations will then just be ẋ = a, so that immediate
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integration renders the flow after the time t as x+ = ta + x−. In short, the canonical

transformations representing the flow will be merely the uniform translations of phase

space x+ = Tα(x−), where α = ta.

We shall find that translations play a fundamental role in the following theory. Ev-

idently, the composition of translations, Tα2 ◦ Tα1(x−) = Tα1+α2(x−) forms a continuous

group. The centre function for Tα is just the linear function S(x) = α ∧ x, such that

the chord ξ = α, a constant. This is the only case where the short time relation (1.30)

between H(x) and S(x) can be extrapolated for all time. It is pleasing that the definition

of the centre function makes sense even when its quadratic part (which motivated the

definition) cancels.

The next instance where we may hope to obtain the explicit form of the centre function

is for the homogeneous linear transformations from which we started. Combining (1.18)

with (1.21), we obtain, for H(x) = 1
2
xHx,

JB = [1− exp(tJH)][1 + exp(tJH)]−1. (1.32)

Obviously, the job of inverting and exponentiating matrices will be simplified if they are

first diagonalized. The easiest case is when the eigenvalues of JH are real. In the case of

one freedom, then H = γpq, so that JH =


 −γ 0

0 γ


 and JB will also have the diagonal

form


 tanh tγ

2
0

0 −tanh tγ
2


. It follows that S(x) = −2tanh(tγ/2)pq. So, in this particular

case, H(x) and S(x) have the same level curves, as shown in Fig. 1.4(a). We also notice

that the Cayley parametrization is never singular.

Let us now examine the more familiar case of the harmonic oscillator H(x) = w
2
(p2 +

q2). Then we cannot diagonalize JH by a real symplectic transformation, but it is

easy to verify that the equation of motion has the well known solution


 p+

q+


 =


 coswt −sinwt
sinwt coswt




 p−

q−


. Since the movement is merely a rotation of the phase plane,

we may rely on elementary geometry to observe that the chord ξ, between x− and x+, is

tangent at its midpoint x, to a circle of the same concentric family where H(x) is constant.

We can easily calculate the area of the triangle whose base is ξ and height |x| = √
q2 + p2,

so that using (1.26), S(x) = −tanwt
2
(p2 + q2).
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Again we find a close family resemblance to the Hamiltonian, as shown in Fig. 1.4(b),

but now the centre representation breaks down when wt = π. At this instant the flow

of the harmonic oscillator reduces to a reflection through the origin: x+ = R0(x−) =

−x−. Indeed, the centre function becomes singular whenever the map reduces locally to

a reflection Rx about any point in phase space, i.e. the map is such that (x+ − x) =

−(x− −x), represented in Fig. 1.5. Evidently, we obtain a degenerate chord structure for

this point x.

This problem is neatly dealt with by defining the complementary chord generating

function S(ξ) for the transformation x− → x+, or chord function, for short. We still use

(1.24), but now we obtain the centre from

x = J
∂S

∂ξ
. (1.33)

Expanding this generating function in a Taylor series

S(ξ) = S(ξ0) + δξ ∧ a0 +
1

4
δξβδξ + · · · , (1.34)

we obtain the Jacobian of the transformation in the form

M = −(1 + Jβ)(1− Jβ)−1, (1.35)

which is a complementary parametrization of symplectic matrices, unless Jβ has the

eigenvalue 1. Observing its inverse

Jβ = (M− 1)−1(M+ 1), (1.36)

we see that it is only the symplectic matrices with eigenvalue 1 that cannot be parametrized

in this form, including, of course, the identity matrix.

The simplest example of a chord function is just linear: S(ξ) = ξ ∧ a. We then

obtain that a is the centre for all chords ξ. In short, this is the generating function for

the reflection Ra. So, if a representation in terms of centres is complementary to that

of chords, in a similar sense, translations Tξ are complementary to reflections through a

point: Rx. This theme will be developed in the following theory.

Let us now pursue our simple quadratic examples. For H(x) = γpq, Jβ will again

be diagonal,


 −coth tγ

2
0

0 coth tγ
2


, so that S(ξ) = 1

2
coth

(
tγ
2

)
ξpξq. We thus see that the
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chord function becomes singular as t → 0. This is a general feature for all Hamiltonian

flows.

For the harmonic oscillator, H(x) = w
2
(p2 + q2), it is now easy to verify that the chord

function for the flow after a time t is just S(ξ) = 1
2
cot(wt

2
)(ξ2

p + ξ
2
q ). Again, this is singular

as t → 0. However, we now have a generating function that is perfect for dealing with

the singular region of the centre function, since at wt = π we just have S(ξ) = 0, which

is the generating function for the reflection at the origin, R0.

The general role of reflections and translations in the definition of the centre and the

chord generating functions is revealed as we enquire into the existence of a chord for a

given centre, or vice versa. When a canonical transformation C : x− → x+ is described by

a centre function S(x), the existence of a chord ξ(x) is tantamount to the existence of a

point x−(x), such that C(x−) = Rx(x−). Since Rx ◦Rx = 1, the identity transformation,

it follows that the point x− is determined as the fixed point of C composed with Rx:

x− = Rx ◦ C(x−), (1.37)

as showing in Fig. 1.6.

Conversely, if we describe the transformation C by a chord function S(ξ), the centre of

the given chord x(ξ) is defined when we can find a point x−(ξ), for which C(x−) = Tξ(x−),

as shown in Fig. 1.6. In this case the point x− is defined as the fixed point of C composed

with T−ξ:

x− = T−ξ ◦ C(x−). (1.38)

Thus, it is fair to describe the centre function as “viewing the transformation” as

a reflection, whereas the chord function “views it” is a translation. The feasibility of

using either description will depend on the existence of the fixed point for the appropriate

compound transformation. To this end we return to the first order expansions of the

generating functions (1.27) and (1.34). We have seen that S(x) = α ∧ x generates a

translation, Tα, while S(ξ) = ξ ∧ a generates the reflection, Ra. Therefore the existence

of the required fixed point depends on the products of translations and reflections.

Though we have seen that the set of all translations form a group,

Tξ2 ◦ Tξ1 = Tξ1+ξ2, (1.39)
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this is not true of the reflections. Indeed, we easily verify with reference to Fig. 1.7(a)

that the product of two reflections is always an uniform translation:

Rx2 ◦Rx1 = T2(x2−x1). (1.40)

However, since the product of a reflection and a translation is itself a reflection, such that

according to Fig. 1.7(b)

Tξ ◦Rx = Rx+ξ/2, (1.41)

Rx ◦ Tξ = Rx−ξ/2, (1.42)

we see that, together, the set of all reflections and translations does form a group. This is

the product of the translation group with the group of reflections at the origin R0, which

is identical to the group Z2 of the ordinary product of 1 and −1. Indeed, according to

(1.41) and (1.42), Rx equals the product of T±2x with R0, depending on the order, or

Rx = TxR0T−x.

With the aid of these results, we see immediately that, if C reduces to a reflection, the

fixed point of (1.38) exists, but not that of (1.37). Conversely if C is a uniform translation,

it is only Rx ◦ C that has an unique fixed point. In other words, the chord function is

ideal for considering near-reflections viewed as translations, whereas the centre function

is constructed to view near-translations as reflections. The great advantage of the centre

function is that we are mostly concerned with the arbitrarily small translations that are

generated by the Hamiltonian flow.

The general problem of determining all the chords through all the centres x in phase

space reduces to that of finding the fixed points of the (2L)-parameter family of maps

Kx ≡ Rx ◦C. Likewise, the problem of obtaining the centres for each chord ξ depends on

the (2L)-parameter family Kξ ≡ T−ξ ◦ C.
Let us, therefore, establish the continuity of the fixed points y(λ) of a one-parameter

family of maps, Kλ : x− → x+ = Kλ(x−), with respect to the parameter. Differentiating

y = Kλ(y) with respect to λ,

dy

dλ
=
∂Kλ

∂y

dy

dλ
+
∂Kλ

∂λ
, (1.43)

we note that ∂Kλ/∂y = Mλ, the symplectic matrix for the linearized transformation near

the fixed point. Thus, its rate of change with the parameter is just

dy

dλ
= (1−Mλ)

−1∂Kλ

∂λ
. (1.44)
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Therefore, the implicit function theorem allows us to define the family of fixed points

y(λ), except at the resonant parameters, where

det(1−Mλ) = 0. (1.45)

What goes wrong at these parameter events? We can ascribe them to coalescing fixed

points. The deduction of (1.44) presupposed that we follow an isolated fixed point, so

this formula breaks down when they come together. Meyer [17] proved that the generic

resonance of a an area preserving map is a bifurcation where two fixed points merge and

disappear. In this case there exists a canonical coordinate system such that the centre

generating function for the map takes on the local form [17]

Sλ(x) =
q2

2
+ λp+

p3

3
, (1.46)

in which p(λ) = (±√−λ, 0). It is easy to verify that one of these fixed points is unstable

(real eigenvalues eγ and e−γ) and the other is stable (eigenvalues e±iw). At λ = 0, the

eigenvalue is unity. The bifurcation diagram is shown in Fig. 1.8.

The simplest application of this theory should be to the Hamiltonian flow. The pa-

rameter of the family of maps is then just the time. However, all the points of a periodic

orbit with a given period will be fixed points of the flow for this time. So, we cannot

apply directly the above theory, which presupposes an isolated fixed point. Instead, the

theory of the bifurcation of periodic orbits relies on sections through the orbits that we

shall study in section 3.

Returning to the chord problem, we seek the fixed points of the mapping Kx = Rx ◦C,
so x itself is now the (2L)-dimensional parameter of the matrix Mx in (1.45). This

equation defines the surfaces, centre caustics, where pairs of chords coalesce. In other

words, they are the loci where the mapping x→ ξ becomes singular. Since ξ is determined

by the gradient of S(x), we obtain the alternative equation for the centre caustic as

det
∂2S

∂x2
(x) = ∞. (1.47)

However, we easily find that the mapping ξ → x is nonsingular along the centre caustic

and that, indeed

det
∂2S

∂ξ2
(ξ) = 0 (1.48)
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along this surface. Of course there will be chord caustics where ξ → x is singular, but

these will be nicely described by the centre function. The great advantage of the latter is

that S(x) → 0 for a small time flow, so that (1.47) is entirely avoided. Conversely S(ξ)

is globally singular as t→ 0.

The chord function and the centre function are reciprocally related as Legendre trans-

forms. Indeed, according to (1.25) we may write the differential of S(x) as

dS = ξ(x) ∧ dx. (1.49)

Thus, if we define

F (x, ξ) = ξ ∧ x− S(x) (1.50)

and

S(ξ) = F (x(ξ), ξ), (1.51)

with x(ξ) prescribed by ∂F/∂x = 0, we obtain precisely equation (1.33).

Let us consider x and ξ as alternative coordinates for the double phase space (4L

dimensions) of initial positions x− and final positions x+. Then the fact that (1.48) is an

exact differential implies that there exists a (2L)-dimensional surface in which

∮
ξ ∧ dx =

∮
[ξp.dq − ξq.dp] = 0 (1.52)

for any reducible circuit. Therefore we can furnish double phase space with a symplectic

structure of the same form as ordinary phase space by considering that now ξpi is the

conjugate variable to qi, whereas −ξqi becomes the conjugate variable pi. In other words,

the canonical coordinates of double phase space are (x, Jξ) or (−Jx, ξ). It follows that

(1.52) defines a Lagrangean surface in double phase space, along which Stoke’s Theorem

[15] leads to

dξp ∧ dq − dξq ∧ dp = 0. (1.53)

By making more exchanges of variable we arrive at the traditional generating functions

of classical mechanics. Indeed, recalling that q = (q− + q+)/2 and defining

F
(
q+ + q−

2
, p
)
= S

(
q+ + q−

2

)
+ p(q+ − q−), (1.54)
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we find that the function

S(q+, q−) = F
(
q+ + q−

2
, p(q+ − q−)

)
, (1.55)

with p(q+ − q−) given by ∂F/∂p = 0, is the generating function of the canonical transfor-

mation determined implicitly by

p+ =
∂S

∂q+
, p− = − ∂S

∂q−
. (1.56)

Therefore the surface in double phase space that determines the canonical transformation

has zero action

∮
p+.dq+ −

∮
p−.dq− = 0, (1.57)

which can be obtained directly from Stoke’s theorem and (1.52), since

(dp+ − dp−) ∧
(
dq+ + dq−

2

)
− (dq+ − dq−) ∧

(
dq+ + dp−

2

)
= dp+ ∧ dq+ − dp− ∧ dq− = 0.

(1.58)

Evidently, we have returned to the conservation of symplectic area for canonical trans-

formations, with which we started. However, in the context of double phase space, we

now find that (1.53) and (1.58) are equivalent properties of the same (Lagrangean) sur-

face that determines the canonical transformation. We always use half the coordinates

of double phase space when generating the canonical transformation, in such a way that

the number of old coordinates equals that of the new; which we choose, is a matter of

convenience. Further discussion of double phase space is found in references [49, 12, 48].

One important criterion selects those generating functions that do not become sin-

gular in the neighbourhood of the identity map. These are S(p+, q−), S(p−, q+) and the

centre function S(x); they also share the property that their critical points are fixed

points of the transformation. However, another criterion is the ease of composing trans-

formations. Here S(q+, q−) has a distinct advantage. Indeed, we compose transformations

using S(p+, q−) by taking their Legendre transforms, obtaining S(q+, q−). We shall study

the beautiful patterns resulting from the composition of the centre functions in the next

section and hence derive the variational principle.



– 20 – CBPF-NF-062/96

2 Classical Variational Principles

How do we obtain the centre function for the composition of two canonical transforma-

tions, S1(x) and S2(x) respectively. The requirement is that the chord η1 through x1 in

the first transformation join onto the chord η2 through x2, to form the chord through

some centre x for the composition. We will refer to the resulting triangle formed by η1, η2

and η as the circumscribed triangle to the midpoints x1, x1, and x, as opposed to the

inscribed triangle with corner at these points.

This simple geometry is displayed in Fig. 2.1. It is important to note that a circum-

scribed polygon in the full phase space projects into L polygons in the conjugate planes

that are circumscribed around the projections of the midpoints. Hence the following sym-

plectic geometry is reduced to plane geometry. The symplectic area of the circumscribed

triangle is the sum of the areas of each projection:

∆3(x, x1, x2) = 2(x1 − x) ∧ (x2 − x) = 2[x1 ∧ x2 + x2 ∧ x+ x ∧ x1] , (2.1)

from which we obtain

∂∆3

∂x1
= −2J(x2 − x) = −Jη1 ,

∂∆3

∂x2
= 2J(x1 − x) = −Jη2 , (2.2)

where ηj is the j’th side of ∆3, in the clockwise direction.

For the desired composition of the two canonical transformations, we demand that the

chords for each transformation satisfy

ξ1 ≡ −J
∂S1

∂x1
= η1 and ξ2 ≡ −J

∂S2

∂x2
= η2 , (2.3)

which is equivalent to imposing zero derivatives for

S(x, x1, x2) = S1(x1) + S2(x2) + ∆3(x, x1, x2) . (2.4)

Indeed, we verify that

∂S

∂x1
=
∂S1

∂x1
+
∂∆3

∂x1
= Jξ1 − 2J(x2 − x) = 0 ,

∂S

∂x2
=
∂S2

∂x2
+
∂∆3

∂x2
= Jξ2 + 2J(x1 − x) = 0 . (2.5)

Consider now the ‘multiple Legendre transform’ S(x, x1(x), x2(x)), obtained by substitut-

ing the solutions of (2.5) into (2.4). Then the chord for this generating function is just
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given by −J
dS

dx
, where

dS

dx
=
∂S

∂x1

∂x1

∂x
+
∂S

∂x2

∂x2

∂x
+
∂S

∂x
. (2.6)

But, because of (2.5),

dS

dx
=
∂S

∂x
=
∂∆3

∂x
= 2J(x2 − x1) = J(ξ1 + ξ2) . (2.7)

Therefore, S(x, x1(x), x2(x)) is the desired generating function.

As a simple example, we consider the composition of homogeneous translations by α1,

and α2 in phase space. The centre functions are simply Sj(x) = αj ∧ x and conditions

(2.5) then become

x1 = −α2

2
+ x , x2 =

α1

2
+ x , (2.8)

so that

S(x) = α1 ∧
(
x− α2

2

)
+ α2 ∧

(
x+

α1

2

)
+ 2

(
−α2

2

)
∧
(
α1

2

)
= (α2 + α2) ∧ x+ constant ,

(2.9)

as expected. For linear transformations Sj(x) = xBjx, conditions (2.5) become a system

of 4L linear equations. The solutions are linear in x, so that (2.4) is again a quadratic

form in x. The geometrical interpretation of S(x) as the symplectic area of a triangle

fits nicely with the composition rule. Consider Fig. 2.2; as drawn, Sj = 1
2
ξj ∧ xj have

negative areas (the skew product obeys the left-hand rule), whereas ∆3 has positive area.

It follows that the three terms in (2.4) combine to give the (negative) area of the triangle

joining ξ to the origin, as required.

The important point that we must consider in order to generalize the composition rule

(2.4) is that, according to (2.2), the derivatives of the symplectic area of the triangle ∆3

are speficified by the corresponding sides. The side η does not depend on the centre x,

since it may be considered as the translation resulting from the reflections at x1 and x2.

All compositions of these two reflections generate the same translation by η = 2(x2 − x1)

according to (1.40), so we may place the centre x anywhere without changing η.

If we now add two more reflections at arbitrary points x3 and x4, we again obtain a

specific uniform translation by 2(x3 − x4). Since it also has a free centre, we can always

fit these together to obtain η = 2(x4 − x3) + 2(x2 − x1) as shown in Fig. 2.3. Evidently,
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we may repeat this procedure for any even number of reflections to obtain the remaining

side of an odd-sided polygon as

η = 2
2n∑
j=1

(−1)jxj , (2.10)

which is independent of x, just as for the triangle.

Now, we may calculate the total symplectic area of the polygon ∆2n+1 by subdividing

it into an internal polygon with symplectic area ∆′
n+1 and n triangles. Any change of x

translates the internal polygon rigidly, hence ∆′
n+1 is independent of x. Therefore, if we

lable the fixed vector between x and the centre of the j’th side of ∆′
n+1 as αj , (see Fig.

2.4) we obtain

∆2n+1 = ∆′
n+1 +

n∑
j=1

2(x2j − x2j−1) ∧ (x+ αj − x2j) = constant + η ∧ x . (2.11)

We have defined the vector η as the sum of the other sides of the polygon ηj , so it has

the opposite orientation to theirs. For each of the other sides we can therefore generalize

(2.2) to obtain

∂∆2n+1

∂xk
= −Jηk. (2.12)

Here ηk is the k’th side of the polygon, so the condition that this coincides with the chord

ξk of the k’th canonical transformation is equivalent to the constraint that the derivative

of

S(x) = S1(x1) + · · ·+ S2(x2n) + ∆2n+1(x, x1, · · · , x2n) (2.13)

with respect to xk be zero. Substitution of all the centres xk as a function of x, obtained by

the zero gradient condition, defines the centre function of the composed transformation.

Consider now the flow generated by the Hamiltonian H(x). It was shown in §1 that for

a small time t = ε, the corresponding centre function is Sε(x) = −εH(x), to second order

in ε. We can now use the composition rule to estimate the correction, that is, choosing

ε = t/2, we obtain the time t flow as the composition of two ε-flows. Thus, distinguishing

the phase space velocity ẋ1 for the first interval and ẋ2 for the second, determines

∆3 =
1

2
(ẋ1ε) ∧ (ẋ2ε) , (2.14)
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according to Fig. 2.5. Introducing the ‘acceleration’,

ẍ ≡
[
ẋ · ∂
∂x

]
ẋ = JHẋ , (2.15)

so that ẋ2 � ẋ1 + ẍ1ε, we obtain

∆3 =
ε3

2
ẋ ∧ ẍ =

ε3

2
ẋHẋ , (2.16)

according to Fig. 2.5. Here, the Hessian matrix of the Hamiltonian can be evaluated

at the point x, to lowest order in ε. We must now evaluate −εH(x1) and −εH(x2) to

calculate the centre function for the composition (2.4). Expanding

H(x± εẋ) = H(x) +
ε2

2
ẋHẋ+ · · · (2.17)

we obtain, to lowest order in ε,

H(x1) = H(x2) = H(x) +
ε2

2
ẋHẋ . (2.18)

Therefore, the composition of two short time flows is approximately

St(x) = −tH(x)− 1

2

(
t

2

)3

ẋHẋ . (2.19)

Comparing this result with (B.10) in Appendix B, we find that we have overestimated

here the nonlinear term: We shall show that St depends on the area between the smooth

trajectory and the chord, rather than the triangle ∆3.

It is now possible to obtain higher order corrections to the centre function for a time t

flow by composing four elemetary generating functions of the form −εH(x), with ε = t/N ,

in the guise of two transformations generated by (2.19). However, our immediate objective

is to note that composing an even number N of flows for time ε = t/N we obtain the

centre function

St(x) =
N∑

n=1

St/N (xn) + ∆N+1(x, x1, · · · , xN)

= − t

N

N∑
n=1

H(xn) + ∆N+1(x,x1, · · · , xN) +O
(
t3

N2

)
. (2.20)

Increasing the number of subdivisions of the interval to infinite, we thus obtain

St(x) = lim
N→∞

{
− t

N

N∑
n=1

H(xn) + ∆N+1(x, x1, · · · , xN)
}
. (2.21)
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The polygon ∆N+1 has one large side ξ passing through the centre x and N small

chords

ηj = ξj −→
N→∞

t

N
J
∂H

∂xj
, (2.22)

that is, they are tangents to the orbit as N → ∞. Throughout the limiting process, we

guarantee that ∂St/∂xj = 0, so that we arrive at the centre variational principle: The

centre action

St(x) =
∮
x
p · dq −

∫
H(x(t))dt (2.23)

is stationary along the classical trajectory. The paths to be compared always have their

endpoints centred on the point x. The second integral is evaluated along this path,

whereas the symplectic area defined by the first integral is closed off by the chord centred

on x, as displayed in Fig. 2.6. Note that St(x) is necessarily an odd function of t.

This particular version of the variational principle dispenses with any specification of

appropriate topologies for sophisticated spaces of paths. For any large but finite N , the

path becomes a polygonal line, uniquely specified by the centres of each of its sides and

the point x. In the large N limit, the sides of the stationary polygonal line shrink to form

a smooth curve that coincides with the trajectory. What is the result of moving one centre

xj from the polygonal approximation for the trajectory? We have seen that the side ξj is

unaffected, whereas, according to (2.10), all the other sides will be altered by δξk = ±2δxj .

Therefore, the neighbouring paths are also polygonal lines with small sides of order δxj .

Evidently, there will be collective variations of centres such that the variations of the sides

of the polygonal line remain bounded and therefore smooth in the limit N → ∞: The

centre action will still be stationary among this subset of paths. Conversely, no matter

how large we take N , general paths defined by an arbitrary choice of centres will be very

jagged polygons which may self-intersect many times! This is illustrated in Fig. 2.7.

We can guarantee that there exists an unique solution to the centre variational problem

for sufficiently small times. To see this, recall that the tip of the chord x− is determined

by (1.37), where now the canonical transformation C is just Gt, the Hamiltonian flow.

If t is small enough, the stationary chord through x is just ξ = tẋ. Expanding the

Hamiltonian about the orbit to second order (see §1), we obtain the linear transformation,

δx+ = Mtδx−, such that Mt has the Cayley parametrization (1.20). Since the centre
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function is proportional to H(x) for small times, we obtain

Mt = [1 +
tJH
2

][1− tJH
2

]−1 , (2.24)

where H is the Hessian matrix for H(x). For small times Mt is close to the unit matrix

and therefore Gt is far from being locally a reflection. It is only when t is large enough

for Gt to become locally a reflection that a bifurcation will occur, beyond which there will

be more than one chord for each centre.

Evidently, the action St(x) that is minimized by the variational principle is the centre

function that generates the Hamiltonian flow for the time t. In the special case of linear

transformations studied in § 1, we identified the centre function with the area of the

triangle in Fig. 1.3. If we extend the composition of an arbitrarily large number of

small time evolutions, such as shown in Fig. 2.2, we now identify the first integral in

(2.23) with the area between the orbit and the chord. If the quadratic Hamiltonian is

time-independent, the second integral is just Et, the area of the circular sector subtended

between x+ and x− in Fig. 1.4 (b), hence the difference is the area of the triangle. Indeed,

we can generally equate St(x) with the area of a curvilinear triangle between ξ and the

origin, but this is not often useful, because it requires the knowledge of time evolution of

orbits with different energies, whereas (2.23) depends on a single orbit.

To derive the usual variational principle with fixed positions, we merely perform the

symmetrized Legendre transform (1.54), (1.55) on S(x). Distinguishing the various actions

or generating functions only by their arguments, we obtain

S(q+, q−) = S
(
p,
q+ + q−

2

)
+ p · (q+ − q−) , (2.25)

with p determined as a function of (q+ − q−) by the condition that

ξq =
∂

∂p
S
(
p,
q+ + q−

2

)
= −(q+ − q−) . (2.26)

In other words, we are merely demanding that the chord ξ fit precisely between the two

planes q = q− and q = q+, as shown in Fig. 2.8. Since the symplectic area between ξ and

the q axes is equal to the last term in (2.25), we obtain

S(q+, q−) =
∫ q+

q−
p · dq −

∫
Hdt, (2.27)

in which the first integral is the entire area under the path.
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It remains to show that the action (2.27) of the trajectory Γ, joining the endpoints

q+ and q− in position space is stationary with respect to neighbouring paths with the

same endpoints and the same interval of time. But reference to Fig. 2.9 shows that all

such paths γ may also be considered as paths with the same centre that are closed by

an extra vertical segment, δ. The centre variational principle guarantees that the action

SΓ(p, q) is stationary among such paths. Since the two shaded triangles in Fig. 2.9 have

the same symplectic area, the difference in action between Sγ(p, q) and S(q+, q−) for all

the paths that are being compared is the constant p ·(q+−q−). Therefore S(q+, q−) is also
stationary among all the neighbouring paths γ. The deduction of the centre variational

principle from the one with fixed endpoints is presented in reference [12].

It is important to note that discretization of the variational principle with fixed end-

points is not favoured by the cancellation of the second order term as in (2.19). However,

it is simple to compose generating functions S(q+, q−) by using the rule that

S(q−, q+) = S1(q−, q1) + S2(q1, q2) + · · ·Sn(qn−1, q+) (2.28)

with

∂S

∂qj
= 0. (2.29)

This condition implies that the final momentum for the j’th transformation,

pjj =
∂Sj

∂qj
=
∂Sj+1

∂qj
= pjj+1 , (2.30)

where pjj+1 is the initial momentum for the (j + 1)th transformation, for all j, so that

we obtain an unique path. However, the small time decompositions Sj(qj , qj+1) are not

obtained directly from the Hamiltonian, forcing us to use a Lagrangean formulation which

is awkward for quantization.

If we enquire into the time variation of the centre function (2.23) defined along the

trajectory, we find that, to first order, δSt = −H(x+)δt, because of the variational prin-

ciple. Combining this with (1.24) and (1.25), we obtain a partial differential equation for

the action,

∂St

∂t
+H

(
x− 1

2
J
∂St

∂x

)
= 0, (2.31)

which is Marinov’s version of the Hamilton-Jacobi equation [9]. Actually, the deduction

from the variational principle shows that we could also use H(x + 1
2
J∂St/∂x) or any

weighted average of these two arguments of the Hamiltonian.
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To conclude this section we should discuss the composition of an odd number of

canonical transformations. This includes the important case of viewing a canonical trans-

formation C in new coordinates: C → C ′ = G−1CG. First we note that the general rule

(2.13) could have been obtained iteratively by joining successive triangles. For example,

the composition of four transformations can be viewed as C1 ◦C2 composed with C3 ◦C4.

Thus the pentagon that determines the transformation is considered as the sum of three

triangles in Fig. 2.3. In general we then view ∆2n+1 as the sum of a (2n−1)-sided polygon

with two triangles.

Evidently, we can then derive the composition of an odd number of transformations

by adding a single triangle to an odd-sided polygon. There results an even-sided polygon

– a circumscribed quadrilateral, in the case of three transformations. The problem is

that we are not free to place the centres of this even polygon just anywhere we wish. In

the case of the quadrilateral, there is a simple theorem that the inscribed quadrilateral

must be a parallelogram as shown in Fig. 2.10. In the general case, we recall that an

odd number of reflections about pre-assigned centres is again a reflection, rather than a

translation. So the centre of this reflection, which must coincide with the centre of the

remaining side of the even polygon, is uniquely determined by the other centres. Taken

together, we therefore have 2n reflections adding up to the identity. Considering the rule

for composing reflections (1.40), we obtain the compatibility condition as

2n∑
n=1

(−1)kxk = 0 . (2.32)

where we include the centre x = x2n.

Conversely, once we fix the remaining centre, so that we describe the polygon as

2n reflections, we can choose an arbitrary initial corner for the circumscribed polygon,

since the compatibility condition is just that these reflections add up to the identity

transformation. In the case of the quadrilateral it is obvious that the symplectic area

of all these quadrilaterals equals twice the area of the fixed inscribed quadrilateral, as

shown in Fig. 2.11. It is not hard to show that in general the symplectic area of the

circumscribed even polygon depends uniquely on the centres of its sides. The proof is

presented in Appendix A.

We can use the freedom in the choice of the circumscribed quadrilateral to fit three of
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its sides to chords obtained from the generating function being composed. Thus defining

S(x) = S1(x1) + S2(x1 + x3 − x) + S3(x3) + ∆4 , (2.33)

where we used (2.33) to eliminate x2, and then eliminating x1 and x3 through the condi-

tions

∂S

∂x1
=
∂S

∂x3
= 0 , (2.34)

we obtain the centre function for the full transformation. It should be noted that condi-

tions (2.34) will be satisfied only when all sides of ∆4 concide with the chords through

the centres of its sides.

We will not be concerned with the rules for comparing chord transformations. The

reader will find a presentation in reference [12]. They involve the description of phase

space polygons in terms of the vectors composing their sides, rather than the centres.

The relation of this rather more natural gometry to the specification in terms of centres

is discussed in Appendix A, which also presents general formulae for the symplectic area

of polygons and their variation with respect to arbitrary displacements of the centres.

3 The Energy Shell, Sections and Maps

So far we have considered paths that take the same time, rather than polygonal lines

whose centres have a fixed energy. However, for an antonomous system we know that the

N → ∞ limit of the action, i.e. the solution of the variational problem is a trajectory with

constant energy. Thus we can restrict the variations to other paths where all the centres

have the same energy, without violating the variational principle. Within this restricted

class, for which H(xj) = E, if we still demand that all paths take the same time, we find

that δSt = δ∆N+1. But the symplectic area of this polygon is not itself a function of time,

so we arrive at the energy (centre) variational principle: The symplectic area
∮
x p.dq = SE

between all the paths on the energy shell and all the chords centred on x is stationary for

a classical orbit. Evidently, we obtain the usual energy variational principle, defined in

terms of the end positions, by taking the symmetrized Legendre transform of the centre

action, in the same way as for the time variational principle.

Are there solutions to the energy variational problem? First, let us examine the

simplest case of a single freedom (L = 1), where the energy shell, S, defined by H(x) = E,
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is just a compact curve. The tips of the chord through x result from the reflection, Rx,

through this point. We therefore obtain the chord by reflecting the entire shell and taking

the intersection of S with RxS. This is displayed in Fig. 3.1.

Note that displacements, δx, merely translate the reflected curve rigidly by 2δx, be-

cause of (1.40) and (1.41). If S is convex, there will be no intersection of S with RxS
when x lies outside of S. If x is inside and close to S, there will be an unique chord.

Indeed, SE(x) is just the area sandwitched between the chord and the shell, whereas

ξ(x) = J∂S/∂x. Thus SE(x) grows as x is brought further into the interior of S.
Deep in the interior of S we run into a bifurcation, beyond which there are two new

chords. The locus of these points is known as the Wigner caustic, because it was first

studied by Berry [7] in the context of the semiclassical Wigner function. Within this

closed curve there are three chords and hence three functions SE(x) [7]. As x is moved

onto the Wigner caustic, two chords coalesce and vanish, so that their corresponding

centre functions become singular, according to (1.47), while the third centre function

moves regularly through the caustic. This process is depicted in Fig. 3.2. Notice that

the tangents to the shell at the tips of the degenerate chord are parallel. The implication

is that, if the curvature were ignored, there would be a continuum of chords in the shell

centred about the same point x, i.e., related by a reflection through x. Further discussion

of the Wigner caustic for L = 1 is provided by Berry [7], where it is shown that there are

always three cusps if S is convex.

To obtain the chords that solve the variational problem for a given centre x, when

L > 1, we again reflect the energy shell S and examine the intersection of S with RxS.
Since both of these surfaces have (2L−1) dimensions, their intersection defines the centre

section. This (2L − 2)−dimensional surface is the locus of the tips of all the chords on

the energy shell that are centred on x, the problem now being reduced to finding which

chord tips belong to the same orbit.

Let us now consider the orbits in S through a given neighbourhood of S ∩RxS. If S is

compact, these orbits will eventually reintersect the section, defining the centre map, Cx,

of the section onto itself (as a consequence of the Poincaré recurrence theorem [18, 19]).

Evidently the fixed points of the composition Rx◦Cx define the solutions of the variational

problem.

If S is convex (as well as compact) and x lies outside of S, then RxS does not intersect
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S and there are no solutions to the energy variational problem. As x moves onto S,
RxS is translated rigidly until we obtain a tangency of S with RxS. The chord then

coincides with the locally straight orbit through x and SE(x) is still zero. Moving x into

S determines a smooth family of maps Rx ◦Cx with (2L) parameters, the components of

x. The fixed points of these maps will be smooth functions of these parameters, unless

there are bifurcations. Therefore if x is close enough to the shell, we can guarantee the

existence of unique short orbit solutions to the variational problem.

However, these are not the only possible short chord solutions even if x is close to S.
Consider again the case of L = 1, where the section is just a pair of points. We may

consider the unique chord through x as pertaining to the short orbit or the long orbit, as

shown in Fig. 3.3, or to different multiples of these combined, so that we wind many times

around this periodic orbit while travelling from one tip of ξ to the other. Exactly the

same happens for a point x at the centre of a periodic orbit chord if L > 1. Each of these

different windings will introduce a chord corresponding to a different centre map for which

it is the fixed point. Since all these maps are smooth with respect to variations of x, we

also obtain solutions for nearby centres x, even though the segments no longer constitute

a periodic orbit. Thus, close to the shell, the chords can be classified as belonging to short

orbits or to smooth continuations of chords belonging to nearby periodic orbits.

It will be important to understand the geometric structure of the centre section. If x

lies close to the shell, this geometry is revealed by expanding H(x+X) in powers of X:

H(x+X) = H(x) +
∂H

∂x
·X +

1

2
XHxX + · · · , (3.1)

where Hx is the Hessian matrix at x, i.e. at X = 0. The centre section is defined by the

equations H(X) = E and H(X) = H(−X), which becomes

∂H

∂x
·X = 0 or J

∂H

∂x
∧ X = 0 (3.2)

to second order in X. Thus the section of SE by RxSE coincides in this limit with the

section by the plane tangent to the shell through the point x. This is the more familiar

construction for a Poincaré section usually chosen to a be plane cutting the energy shell.

The form of the section is now revealed by including (3.2) in the expansion (3.1), so

that

E −H(x) =
1

2
XHxX . (3.3)
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Adopting coordinates such that the plane (3.2) becomes X2L = 0, the (2L−2)-dimensional

section becomes the ellipsoid (3.3) with X2L = 0. Therefore the topology of the centre

section is that of a (2L − 2)-sphere in the (2L − 1)−dimensional energy shell. As x

approaches the shell, this reduces to an ellipsoid, but, even when x is far from the shell,

the section remains invariant with respect to reflections about x.

Taking coordinates such that X2L = 0 is the tangent plane implies that locally H is

only a function of X2L. Therefore the nearly straight parallel orbits intersecting this small

ellipsoid will have the direction of the conjugate coordinate, which we shall call X2L−1.

Taking this as the vertical direction transverse to the plane X2L−1 = 0, we can use the

remaining coordinates (X1, · · · , X2L−2) as coordinates for the two halves of the ellipsoid,

as shown in the figure 3.4 for L = 2. The ususal definition of a Poincaré map involves

only one sense of the vertical traversal of the trajectory in or out of the sphere; since we

work directly with the coordinates in the (X1, · · · , X2L−2) plane, the Poincaré section is

considered as a disk. The centre map Cx concerns chords centred on x (i.e. X = 0), so

we must consider its full spherical structure.

Evidently, the spherical topology is preserved for large spheres centred on x far inside

S. The orbits that intersect such a sphere will divide it into an incoming and an outgoing

hemisphere, which correspond respectively to the lower and the upper hemispheres in the

previous coordinates. In the simplest case, L = 2, the two hemispheres are divided by a

line (the equator) where the orbits are tangent to the sphere.

The centre map, when viewed on the sphere, carries points from the incoming hemi-

sphere to the outgoing hemisphere. It should be born in mind that the definition of inside

and outside of the centre section is only natural when x is close to the shell. Since S
is compact, the two regions into which it is sectioned are also compact. So if we take x

continuously from one side of the shell to the other, we exchange the ‘natural’ inside and

outside of the sphere. In this traversal there may be further bifurcations analogous to

those for L = 1, but these have not been analysed so far.

Once we choose which side is labled incoming and which is outgoing, we see that the

usual Poincaré section is the composition of two maps between the hemispheres. First we

travel ‘inside’ the sphere, then return to the original hemisphere following an outer orbit,

as sketched in Fig. 3.5. This is analogous to the way that Bogomolny obtains his sections

in quantum mechanics [20].
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In the case of ordinary Poincaré sections by an arbitrary (2L− 1)-dimensional plane,

such as x2L = 0, we merely describe the appropriate hemisphere by means of the coordi-

nates x′ = (x1, · · · , x2L−2). That is why the section appears as a disc. For the description

of the centre map it is natural to define the equatorial surface of the sphere. This is the

locus of midpoints for the chords of all orbits that intersect the spherical surface as shown

in Fig. 3.6. We have verified that, as x→ S, the orbits collapse onto their straight chords.

Thus, in this limit, the equatorial surface becomes indistinguishable from the plane used

for the Poincaré section.

Let us now consider the restriction of the action SE(x) to the equatorial surface.

The chords generated by differentiating SE as a centre function, will be of the form

ξ(x′) = (ξ′, ξ2L−1, ξ2L), where ξ
′ is a vector within the tangent plane to the equatorial

surface, at the point x′. Since the centre function generates canonical transformations,

(1.53) holds, i.e.

dξ ∧ dx|x′ = dξ′ ∧ dx′ = 0 . (3.4)

(the geometrical basis for this equation is displayed in Fig. 3.7). This shows that the

projection of the transformation between the two hemispheres is canonical when restricted

to the tangent plane of the equatorial surface. In the limit of very small spheres, this

surface tends to a plane, along which the transformation will be canonical. However,

when the curvature of the equatorial surface must be taken into account, there will be

no single plane along which the transformation induced on the section will be seen as

canonical, even though the full symplectic action is preserved for any section. This is

consequence of the Poincaré-Cartan theorem [15], which may be directly obtained from

the classical variational principles [19].

The situation is simpler for the more familiar position action

SE(q+, q−) =
∫ q+

q−
p · dq , (3.5)

(where p(q) is an orbit on the energy shell) which is obtained by taking the Legendre

transform (1.54), (1.55) of SE(x). Obviously, we obtain the corresponding momenta

p± by taking the derivatives (1.56). Therefore the restriction to particular planes, q+L =

a+, q−L = a−, implies that this action, SE(q+, q−), becomes the generating function of the

canonical transformation x′− = (p1, · · · , pL−1, q1, · · · , qL−1) → x′+, through the equations

p′+ =
∂SE

∂q′+
(q′+, a+, q

′
−, a−) , p′− = −∂SE

∂q′−
(q′+, a+, q

′
−, a−) . (3.6)
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In the particular case where a+ = a− = a, we obtain the generating function for the

Poincaré maps.

Sections are ideal instruments for the study of periodic orbits. The Poincaré section

can often be chosen so as to include almost all the orbits in the shell as periodic points.

Conversely, by bringing a centre within the shell as close as we like to a periodic orbit, we

can make the spherical section as small as we like, thus excluding nearby periodic orbits.

It is true that, since these are dense, there will always be very long periodic orbits crossing

the section, but these will not appear as a fixed point in the first iteration of the map.

Let us consider a tube of trajectories that crosses the centre sphere and includes a

periodic orbit. This orbit will return to the section and it will bring back with it a

neighbourhood of non-periodic orbits as shown in Fig. 3.8. Eventually, nearly all the

orbits will return, because of the Poincaré recurrence theorem [18, 19], but they may

explore entirely different regions of the energy shell. Indeed, if the system is ergodic, they

will come arbitrarily close to any point in the shell.

The periodic orbit closes in a sequence of two mappings between the ingoing and the

outgoing hemispheres. We have seen that the in-map is trivial for all the orbits, in the

limit of small spheres. It is then approximately the identity map in the coordinates of the

equatorial plane. The action Sin(x
′) will thus be small for all the orbits, so that later we

shall use the results of Appendix B to estimate it. We can clearly decompose the action

of the periodic orbit itself as

SS =
∮
p · dq = Sin(x

′
p) + Sout(x

′
p) , (3.7)

where x′p is the centre of the chord for the periodic orbit (lying in the equatorial surface)

and Sout(x
′
p) is the action for the out-map. Thus there are two chords ξout(x

′
p) = −ξin(x′p)

shown in Fig. 3.9, corresponding to two different solutions of the variational problem,

centred on x′p.

These two solutions have very different actions, but, by adding two in-traversals to

the out-orbit, as shown in Fig. 3.10, we obtain a new solution with action Slong(x
′), for

which again ξlong(x
′) = −ξout(x′) = ξin(x

′). Evidently the long solution has nearly the

same action as the out solution, since

Slong(x
′
p) = SS + Sin(x

′
p) , (3.8)
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whereas Sout(x
′
p) = SS − Sin(x

′
p).

There is an evident extension for the case of multiple windings of the periodic orbit.

So far we have considered only chords lying on a periodic orbit. However, what we are

really interested in is the chord whose centre coincides with the centre, x, of the sphere.

Its tips need not lie on a periodic orbit. For any solution ξout(x), we will also find a

solution ξlong(x), obtained by adding two in-mappings to the out-map, as shown in Fig.

3.11. Let us define x′+ to be the centre of the chord for the in-map that extends the

out-map in the forward direction and x′− as the centre for the backwards extension. Then

clearly

Slong(x) = Sout(x) + Sin(x
′
−) + Sin(x

′
+) . (3.9)

For the chords centred on x, we will have x′+ = −x′−, but the corresponding centre actions

need not be equal. It is important to note that the relation (3.9) between the long action

and the out action is quite general for chords of orbits traversing a small section. It is

therefore entirely independent of our ability of expressing either of these actions in terms

of the action SS of a nearby periodic orbit.

Let us now suppose that indeed there is a periodic orbit traversing the section. Then

x′p will be a fixed point of the out-map, but x′+ = −x′− �= 0 if x′p �= 0. (If the periodic

orbit determines periodic points of the Poincaré map, then we must compose further in

and out maps so as to obtain a fixed point. In any case, reduction of the section can

eliminate all but one of the periodic points). Evidently, the action Sout at the centre of

the sphere can be obtained from the action of the periodic orbit:

Sout(x) = Sout(x
′
p) + δSout = SS − Sin(x

′
p) + δSout , (3.10)

Slong(x) = SS − Sin(x
′
p) + Sin(x

′
+) + Sin(x

′
−) + δSout . (3.11)

We may say that δSout takes care of “transverse” action differences with respect to the

periodic orbit of both Sout and Slong, since the “longitudinal” differences between these is

already taken into account by the Sin terms.

If we now linearize δSout around the fixed point x′p, we find that, according to (1.26),

δSout can be identified with the area of the triangle formed by (x′p, x
′
−, x

′
+), displayed in

Fig. 3.12. Thus

δSout � (x− x′p)Bp(x− x′p) = X ′
pBpX

′
p , (3.12)
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where

JBp = [1−mp][1 +mp]
−1 . (3.13)

For a small enough sphere, we can identify mp, the Jacobian matrix for the fixed point of

the out-map, with the stability matrix for the full return of the periodic orbit.

It only remains to estimate Sin(x
′) for the traversal of a small spherical section. The

symplectic area of a chord for a short interval is obtained to third order in time in (B.13)

of Appendix B. This is just Sin(x
′) for a point in the equatorial plane:

Sin(x
′) � t3

12
ẋ′ ∧ ẍ′ = t3

12
ẋ′H′ẋ′, (3.14)

where ẋ′ and ẍ′ are the velocity and the acceleration at the point x′ and H′ is the Hessian

of the Hamiltonian at this point. The ‘time of flight’ for the in-map can now be eliminated

by using (2.17) or (B.11):

E −H(x′) =
t2

8
ẋ′H′ẋ′ , (3.15)

so that

Sin(x
′) � 4

3
2

1
2
(E −H(x′))3/2

[ẋ′H′ẋ′]
1
2

. (3.16)

Thus the action of a small chord is obtained by placing x′ = 0 (at the centre of the

section), whereas Slong and Sout result from the evaluation of (3.16) for x′± and x′p, where

approppriate.

If we are merely calculating Sin itself, it is clear that this action is positive when the

shell is convex and tends to zero as the centre approaches the shell. Outside the shell,

we would obtain an imaginary action, according to (3.16). For the evaluation of Sout and

Slong, we must then calculate Sin at points where it is smaller than at the centre of the

section. Indeed, as x′± move to the boundary of the equatorial plane shown in Fig. 3.12,

H(x′) → E and we obtain Sout = Slong, according to (3.9). This is a Wigner caustic,

beyond which we again have imaginary action, even though the reflection centre is inside

the shell. The possibility of expressing the actions in terms of that of a periodic orbit

also clearly depends on this orbit crossing the section, since otherwise (3.16) becomes

imaginary for the orbit. In the original Berry theory [14], the various contributions of the

in-action were all evaluated at the reflection centre. This is an excellent approximation
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to the present theory, as long as x′p and x′± all lie well within the spherical section, but

it breaks down as the sphere is shrunk to zero by bringing the reflection centre onto the

shell away from a particular periodic orbit.

We can now resolve x′± in terms of x′p, within the linear approximation, using

X ′
− = −X ′

+ and

X ′
+ −X ′

p = mp(X
′
− −X ′

p) , (3.17)

where X ′
j = x′j − x and all vectors are restricted to the equatorial plane. It follws that

X ′
± = ± JBpX

′
p (3.18)

so that close to the shell

Sout(x) = SS +X ′
pBpX

′
p −

2

3
2

1
2
[E −H(x′p)]

3
3

[Ẋ ′
pHẊ ′

p]
1
2

, (3.19)

whereas

Slong(x) = Sout(x) +
8

3
2

1
2
[E −H(x′+)]

3
2

[Ẋ ′
+HẊ ′

+]
1
2

(3.20)

with x+ = x+JBpX
′
p. Note that the symmetric matrices Hj and Bp have distinct status.

The former represents local structure of the Hamiltonian near the point x, whereas the

latter depends on the motion along the full extent of the periodic orbit.

Finally we derive the local structure of the Wigner caustic where the second term

cancels in (3.20). Expanding H(x′+) about the point x, we obtain the energy difference

between the point xc on the caustic and the energy shell as

δE(xc) =
1

2
X ′

+HxX
′
+ = −1

2
X ′

pBpJHxJBpX
′
p , (3.21)

that is, we have a quadratic form in xc − xp. For X ′
p within the closed curve (3.21) there

are two chords; these coalesce on this ellipse and cease to contribute as xc is pushed way

from the periodic orbit leaving δE constant. Conversely, if we start on the same point,

but move onto the shell keeping X ′
p constant, we also cross the caustic into the classicaly

forbidden region.

We are now in a position to appreciate the multiplicity of chords and caustics for a

reflection centre that is not too close to the shell. It will then have several periodic orbits

appearing as fixed points of the out-map. Its present position could have been obtained
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by bringing it smoothly from the shell, starting on a point of any of these periodic orbits.

In each case this displacement would bring with it a pair of chords that would evolve

smoothly. In each of these one parameter families of maps there must be points where

the pair of chords ascribed to the other periodic orbits entre the section. Therefore, in

each of these evolutions the reflection centre crosses a sequence of Wigner caustics.

4 Quantum operators: representations

The formalism of quantum mechanics has become more familiar to physicists than the

more elementary structure of classical mechanics. Indeed, the ease with which we manip-

ulate the symbols of the compact Dirac notation hides the greater difficulties of deriving

rigorous results within the quantum theory. As we are not here concerned with rigor, it

will be sufficient to make a quick review of the general formalism, so as to establish the

notation and highlight the differences with classical mechanics.

The state of a dynamical system is represented by a vector |ψ > in Hilbert space

(or Banach space) when it is described by quantum mechanics, as opposed to a point in

classical phase space. The evolution of all the states for a finite time, analogous to the

canonical transformations that we have been studying, results from the action of a linear

unitary operator Ût:

|ψt >= Ût|ψ0 >, (4.1)

with the property that the adjoint Û †
t equals the inverse Û−1

t . The one-parameter family

of evolution operators Ût are the solutions of Schrödinger’s equation:

i�
∂

∂t
Ût = ĤÛt, (4.2)

where the Hamiltonian operator Ĥ is Hermitian, or self-adjoint: Ĥ† = Ĥ .

If the Hamiltonian is independent of time (autonomous), we can integrate (4.2) im-

mediately, to obtain

Ût = exp(−i�−1tĤ), (4.3)

where we define the exponential by its Taylor series. Conversely, we may define the

Hamiltonian as

Ĥ = i� lim
t→0

Ût − 1̂

t
, (4.4)
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where 1̂ is the identity operator. Thus any Hermitian operator can be considered as the

“infinitesimal generator” of a possible evolution in Hilbert space, just as any real function

in classical phase space is capable of generating a Hamiltonian flow.

The eigenvalues of Hermitian operators, being real, allow us to identify them with the

results of ideal measurements. These quantum equivalents of classical variables are thus

refered to as observables. For an arbitrary state |ψ > the average value predicted for the

measurement of the observable Â is

< A >=< ψ|Â|ψ > . (4.5)

Consider now the “evolution” of a classical variable A(x) under the flow of the Hamil-

tonian H(x). For any initial position x0, we obtain At(x0) = A(x(x0, t)), so that At results

from considering the classical states (i.e., phase space points) as fixed and attributing the

change experienced, because of movement of the state, to A itself. If we now assume this

same point of view for the quantum evolution (the Heisenberg “picture”) we find that,

attributing the change of < A >t to Â rather than to |ψ > in (4.5) implies that

Ât = Û †
t ÂÛt. (4.6)

Thus, to first order in t,

Ât = (1̂ +
i

�
tĤ)Â0(1− i

�
tĤ) = Â0 − i

�
t[Â0, Ĥ], (4.7)

using the definition of the commutator,

[Â, B̂] = ÂB̂ − B̂Â. (4.8)

So, the evolution of the observable Â is governed by Heisenberg’s equation,

d

dt
Â = − i

�
[Â, Ĥ]. (4.9)

It is well known that (4.9) corresponds precisely to the classical equation Ȧ = {A,H},
defined in terms of Poisson brackets [21, 23]. In particular, if A is just a component of

position or momentum, we recover one of Hamilton’s equations.

Just as in classical mechanics, we are primarily interested in the system’s position q0,

described as the eigenvalue of the operator q̂ for the eigenstate |q0 >:

q̂|q0 >= q0|q0 >, (4.10)
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and likewise the system’s momentum:

p̂|p0 >= p0|p0 > . (4.11)

The fundamental postulate is that these observables do not commute, indeed the compo-

nents q̂k and p̂j satisfy

[q̂k, p̂j] = i� δkj 1̂, (4.12)

where � is Planck’s constant.

The fact that the commutators (4.12) are a multiple of the identity operator (with the

dimension of action) has far reaching consequences. If we construct the family of unitary

operators

T̂q = exp(−i�−1q.p̂), (4.13)

where the L parameters qk have the dimension of distance in position space, we can trans-

form any observable Â→ Â′ = Â(q) according to (4.6). Obviously T̂q leaves the observable

p̂ invariant, but, if we take Â = q̂j and associate any of the parameter components qk

with the time in (4.9), we obtain the derivative of Â(q) as

∂

∂qk
q̂j =

−i
�
[q̂j, p̂k] = δkj 1̂. (4.14)

Integrating with respect to the parameter components qk, we then obtain the action

of Tqa on q̂, for a particular vector parameter qa, to be

q̂′a = T̂−qa q̂T̂qa = q̂ + qa 1̂, (4.15)

so that

q̂′a|qb >= (qb + qa)|qb > . (4.16)

Evidently, we are using the “Heisenberg picture”. In the “Schrödinger picture”, the

states are transformed rather than the operators; so, to obtain the new eigenvalue we

must have

T̂qa|qb >= |qa + qb > . (4.17)

In the same manner, we can form the operators

T̂p = exp(i�−1p.q̂), (4.18)
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obtaining from the fundamental commutator (4.12) that

p̂′ = T̂−pa p̂T̂pa = p̂+ pa1̂ (4.19)

and

T̂pa |pb >= |pa + pb > . (4.20)

We can now compose T̂p with T̂q to obtain operator equivalents of general translations

in phase space. The fact that these two families of operators do not commute is not a

major problem because of the fundamental theorem [21]: If both Â and B̂ commute with

their commutator, then

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂]. (4.21)

Since the condition is satisfied by p̂ and q̂, we obtain the translation operator by ξ = (p, q)

as

T̂ξ ≡ exp
(
i

�
ξ ∧ x̂

)
≡ exp

[
i

�
(p.q̂ − q.p̂)

]

= T̂pT̂q exp
[
− i

2�
p.q
]
= T̂qT̂p exp

[
i

2�
p.q
]
, (4.22)

where naturally x̂ = (p̂, q̂). In other words, the order of T̂p and T̂q affects only the overall

phase of the product, allowing us to define the translation as above since unitary operators

act in joint pairs to transform other operators in (4.6). However, we shall find that the

detailed form of these phase factors plays an important role in the following theory. T̂ξ is

also known as a Heisenberg operator.

The group property is maintained within a phase factor:

T̂ξ2T̂ξ1 = T̂ξ1+ξ2 exp[
−i
2�
ξ1 ∧ ξ2] = T̂ξ1+ξ2 exp[

−i
�
D3(ξ1, ξ2)], (4.23)

where D3 is the symplectic area of the triangle determined by two of its sides. Evidently,

the inverse of the unitary operator T̂−1
ξ = T̂ †

ξ = T̂−ξ and we can generalize (4.23):

T̂ξn · · · T̂ξ2T̂ξ1 = T̂ξ1+···+ξn exp[
−i
�
Dn+1(ξ1 · · · , ξn)], (4.24)

where Dn+1 is the symplectic area of the resulting (n + 1)-sided polygon defined in Ap-

pendix A. Thus, it can be said that the phase stores the memory of the sequence of
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translations of the Heisenberg group. This is known as a cocycle [22] in the theory of

representations of groups.

Let us now define a new family of linear operators as proportional to the Fourier

transform of the family of translations T̂ξ:

R̂x ≡ (4π�)−L
∫
dξ exp[

i

�
x ∧ ξ]T̂ξ = (4π�)−L

∫
dξ exp[

i

�
ξ ∧ (x̂− x)]. (4.25)

Evidently, this relation can be inverted, such that

(π�)−L
∫
dx exp[− i

�
x ∧ ξ]R̂x = (2π�)−2L

∫
dxdξ′ exp[− i

�
x ∧ (ξ′ − ξ)]T̂ξ′

=
∫
dξ′ δ(ξ − ξ′)T̂ξ′ = T̂ξ. (4.26)

Comparing the last integrand in (4.25) with the middle integrand in (4.26), we see that,

in a way, the R̂x corresponds to an operator version of the Dirac δ-function. However,

the following investigation of the properties of this family of operators through their

combinations with T̂ξ will reveal their true nature. First we verify that

R̂xT̂ξ = (4π�)−L
∫
dξ′ exp[

i

�
x ∧ ξ′]T̂ξ′T̂ξ = (4π�)−L

∫
dξ′ exp[

i

�
(x− ξ

2
) ∧ ξ′]T̂ξ+ξ′

(4π�)−L
∫
dη exp[

i

�
(x− ξ

2
) ∧ (η − ξ)]T̂η = exp[− i

�
x ∧ ξ]R̂x−ξ/2, (4.27)

whereas, similarly

T̂ξR̂x = exp[− i
�
x ∧ ξ]R̂x+ξ/2. (4.28)

These products may now be used to simplify the evaluation of

R̂x2R̂x1 = (4π�)−L
∫
dξ exp[

i

�
x2 ∧ ξ]T̂ξR̂x1 = (4π�)−L

∫
dξ exp[

i

�
(x2 − x1) ∧ ξ]R̂x1+ξ/2

= (π�)−L
∫
dη exp[

i

�
2(x2 − x1) ∧ (η − x1)]R̂η = exp[

i

�
x1 ∧ x2]T̂2(x2−x1). (4.29)

Comparing (4.24) and (4.27) to (4.29) with (1.39) through (1.42) we verify that the

operators R̂x and T̂x form a group that is analogous to the classical reflections and trans-

lations in phase space. From (4.29) we see that

R̂2
x = 1̂, (4.30)

so R̂x definitely does not correspond to a δ-function operator. Also, since it is obvious

that R̂†
x = R̂x, we find that R̂x has been defined as an unitary operator. Therefore the
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full group of R̂x and T̂ξ is an unitary quantal representation of the classical group of

translations and reflections.

These properties will be of fundamental importance when we come to study the Weyl

representation. But now we will start with the more familiar representations of quantum

mechanics. The eigenfunctions of position and momentum form a complete set, so we can

expand

|ψ >=
∫
dq|q >< q|ψ >=

∫
dp|p >< p|ψ >, (4.31)

where | < q|ψ > |2 and | < p|ψ > |2 are respectively the probability density that the state

|ψ > has the position q and the momentum p. Evidently,

< q′|q >= δ(q − q′) and < p′|p >= δ(p− p′), (4.32)

as a consequence of (4.31), whereas it is well known that

< p|q >= (2π�)−
L
2 exp[− i

�
p.q] . (4.33)

Therefore the state |q0 > has a specific position q0, but an uniform probability density for

its momentum, while |p0 > specifies the momentum rather than the position.

These representations depart radically from the classical concept of a state as being

represented by a point in phase space where both the momentum and the position are

precisely determined. It is therefore natural to seek representations in terms of states

such that both the position and the momentum are as narrowly determined as possible.

Recalling the definition of the mean value (4.5) of the observable Â for the state |ψ >, we
relate the uncertainty in A to the variance (∆A)2 =< (Â− < A >)2 >. Then, following

standard manipulations [21,23], one obtains the uncertainty principle:

(∆p)2(∆q)2 ≥ �
2

4
. (4.34)

The states of minimum uncertainty, for which the equality holds in (4.34), are known

as coherent states. Most of their basic properties (reviewed in references [24,25] and in

complement Gv of the standard reference [23]) are derived from the fact that coherent

states are eigenstates of

â = (2�)−
1
2 (w

1
2 q̂ + iw− 1

2 p̂), (4.35)
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the lowering operator for the harmonic oscillator:

Ĥ =
1

2
(p̂2 + w2q̂2) = w�

wq̂2 + w−1p̂2

2�
= w�[â+â +

1

2
], (4.36)

where the adjoint,

â† = (2�)−
1
2 (w

1
2 q̂ − iw− 1

2 p̂), (4.37)

is known as the raising operator. Indeed, recalling that the eigenstates of Ĥ have a

regularly spaced spectrum,

Ĥ|n >= w�(n+
1

2
)|n >, (4.38)

it is shown [21, 23] that

â†|n >= (n + 1)
1
2 |n+ 1 > and â|n >= n

1
2 |n− 1 > . (4.39)

(note that, for simplicity, we are now restricting consideration to the case L = 1).

The eigenvalues of the lowering operator (4.35) need not be real, since it is not self-

adjoint. Let us solve the eigenvalue equation

â|z >= z|z >, (4.40)

where we will express the eigenvalue z in terms of two real parameters, P and Q:

z = (2�)−
1
2 (w

1
2Q+ iw− 1

2P ) (4.41)

in a natural way. In the position representation p̂ = −i�∂/∂q, so that (4.40) becomes the

differential equation (
w

1
2 q + �w− 1

2
∂

∂q

)
< q|z >= z

√
2� < q|z >, (4.42)

with the normalized solution

< q|z >=
(
w

π�

) 1
4

exp
[
− w

2�
(q −Q)2 +

i

�
Pq
]
. (4.43)

Since the Fourier transform of a Gaussian has the same form, we obtain the momentum

representation of the coherent state as

< p|z >=
(

1

π�w

) 1
4

exp
[
− 1

2�w
(p− P )2 − i

�
Qp
]
. (4.44)
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It is evident from the form of (4.43) and (4.44) that the average values satisfy < q >z=

Q and < p >z= P . Furthermore, we can verify that the product ∆p∆q is independent

of w and of the eigenvalue z, providing the equality in (4.34). In the limit w → ∞,

except for the need to redefine the normalization, we obtain < q|z >→ δ(q−Q), i.e. |z >
becomes a position eigenstate. Alternatively, when w → 0, < q|z >→ exp[− i

!Pq], which

is a momentum eigenstate. By choosing w ∼ 1, we localize both the momentum and the

position within an �-area of the expected value (P,Q).

The coherent states would thus form an ideal “phase space basis”, if it were not for

their over-completeness. There are many ways of showing this and of determining a

complete subset of coherent states. Let us just note that in the limit w → ∞, the subset

of states with eigenvalue P = 0 becomes the set |q >, which is complete. Indeed, any

function P (q) specifies a complete subset of these “extreme” coherent states. All the same,

we shall verify that we still obtain useful expressions by treating the decompositions into

the full set of coherent states as if they were merely complete.

Another natural representation for the coherent states is the harmonic oscillator basis

|n > defined by (4.38) (with the same choice of frequency w). Expanding

|z >=∑
n

cn(z)|n >, (4.45)

we obtain

â|z >=∑
n

cn(z)
√
n|n− 1 >=

∑
n

zcn(z)|n >, (4.46)

using (4.39) and (4.40). Thus, normalizing the resulting recurrence relation, we obtain

|z >= e−|z|2/2∑
n

zn√
n!
|n > . (4.47)

We can now use this decomposition to represent an arbitrary state |ψ > in the coherent

state representation. Indeed, the expansion coefficient is

< z|ψ >= e−|z|2/2F (z∗), (4.48)

where

F (z) =
∞∑
n=0

zn

(n!)
1
2

< n|ψ > . (4.49)
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is an entire function, since the sum < n|ψ > is normalized to unity. It is then easy to

show that the scalar product can be decomposed in the usual form implied by the Dirac

notation,

< φ|ψ >= 1

π

∫
dz < φ|z >< z|ψ >=

∫
dPdQ

2π�
< φ|z >< z|ψ >, (4.50)

even though this representation is overcomplete. It follows that

< z|Â|ψ >= 1

π

∫
dz′ < z|Â|z′ >< z′|ψ >, (4.51)

where < z|Â|z′ > is the coherent state representation of the operator Â, and we can use

the matrix product rule:

< z|Â2Â1|z′ >= 1

π

∫
dz′′ < z|Â2|z′′ >< z′′|Â1|z′ > . (4.52)

Alternatively, we can employ the analiticity of the coherent state representation to

resolve its overcompleteness. It is known that if an entire function of z and z′ is zero

along z′ = z∗, then it cancels for all z and z′ [26]. Since

e
1
2
|z|2+ 1

2
|z′|2 < z|Â|z′ >=∑

n

|z∗|n|z′|m
(n!m!)

1
2

< n|Â|m > (4.53)

is an entire function of z∗ and z′, then it is uniquely determined by the diagonal elements

< z|Â|z >. The diagonal coherent state representation is known as the Husimi repre-

sentation [4,5] usually considered as a function of the real phase space variables (P,Q),

rather than of the complex number z:

AH(P,Q) =<
w

1
2Q+ iw− 1

2P

(2�)
1
2

|Â|w
1
2Q+ iw− 1

2P

(2�)
1
2

> . (4.54)

The essential analytic part of the Husimi representation is known as the Bargmann rep-

resentation [54, 55]. However, the present emphasis on the real phase space variables

justifies the former term.

We obtain a more intuitive grasp of the Husimi representation by rewriting

AH(P,Q) = Tr(|z >< z|Â). (4.55)

The projection operator |z >< z| onto the coherent state |z > is identified with the density

operator ρz for the pure state |z >. Recalling the definition of averages for operators,
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given the density ρ [21, 23], we find that AH(P,Q) =< Â >z, the average value of Â for

a system that is in the coherent state |z >.
As well as considering |z >< z| as a density operator, it is important to study the

Husimi representation of an arbitrary pure state density operator ρ = |ψ >< ψ|:

ρH(P,Q) = | < w
1
2Q+ iw− 1

2P

(2�)
1
2

|ψ > |2. (4.56)

We see immediately that this Husimi function represents the density operator as a real

non-negative function in phase space.

As an example, let us consider the Husimi function for the eigenstates of the har-

monic oscillator. Since the coherent state itself can be decomposed into eigenstates of the

harmonic oscillator (4.47), we obtain

< z|m >= e−|z|2/2 z
∗m

√
m!
. (4.57)

Therefore, the Husimi function will be

| < z|m > |2 =
1

2�m!
(wQ2 +

P 2

w
)2mexp

[
− 1

2�
(wQ2 +

P 2

w
)

]
, (4.58)

which is constant along the elliptical level curves of the classical Hamiltonian. It should

be recalled that (P,Q) = (< p >,< q >), i.e. the mean values for the coherent state |z >.
It is important to note that the simplicity of (4.58) depends on the choice of the

free parameter w′ for the coherent state as equal to w, the frequency of the harmonic

oscillator. If we chose w′ >> w, the Husimi function would have oscillations resembling

those of | < q|m > |2 instead of being smooth. In the case where w = 1, the elliptical

level curves of (4.58) become circles of radius |z|. The maximum intensity of the Husimi

function is found by taking

d

d|z|2 | < z|m > |2 =

[
−1 +

m

|z|2
]
| < z|m > |2 = 0, (4.59)

that is, at |z|2 = m. Recalling that the classical Hamiltonian is justHc(p, q) =
1
2
(p2+q2) =

�|z|2, we find that the maximum intensity of the Husimi function is obtained at

Hc(p, q) = m�, (4.60)

which is just inside the quantized circle 1
2
(p2 + q2) = (m + 1

2
)�, obtained as the classical

orbit with the energy of the m′th eigenstate.
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This example is not untypical of the marvellous way that the Husimi function high-

lights the classical structure underlying a quantum state. We see, however, that this

depends on an appropriate choice of the free parameter. The fact that the phase space is

complexified is not a major problem. Indeed, the classical theory of normal forms around

stable equilibria [15,19] relies on an entirely analogous procedure.

Retrieval of the phase of the coherent state representation of a given state from its

(Husimi) modulus involves analytic continuation. This can be neatly obtained from the

knowledge of the zeros of the Husimi function as a consequence of Hadamard’s factoriza-

tion theorem [27]. Thus, it is true to say that the zeros of the Husimi function encapsule a

minimal determination of a quantum state. Leboeuf and Voros [28,29] have verified that

the nature of the distribution of zeros in the phase plane is correlated to the chaotic or

regular character of the corrresponding classical motion. The remarkable feature is that

these zeroes do not generally lie in the region of classical motion. We shall see in the next

section that the previous simple example is quite typical, in that the Husimi distribution

has a smooth maximum on the classically allowed region, thus expelling the zeroes from

this neighbourhood.

The formulae beyond equation (4.34) in this section have been restricted to a single de-

gree of freedom so as not to encumber the notation. Thus, for instance, the representation

of a coherent state in the harmonic oscillator basis (4.47) generalizes to

|z1 · · · zL >= exp
{
−1

2
[|z1|2 + · · ·+ |zL|]2

} ∑
n1···nL

zn1
1 · · · znL

1√
n1! · · ·nL!

|n1 · · ·nL > . (4.61)

Here, each of the oscillators is free to have a different frequency: w1 · · ·wL, so that the

position representation will be a (2L)-dimensional Gaussian with L different widths. The

only difficulty lies in the analytic continuation required to obtain the phase of the coherent

state representation from the Husimi function, involving the analytic continuation for

several complex variables. In particular, the zeroes of entire functions will not be restricted

to points in phase space.

5 Centres and Chords in Quantum Mechanics

By expressing the Husimi symbol of an operator as the trace (4.55) of its product with

another operator, we attain a different level of representation in quantum mechanics.
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Indeed, the trace of an operator is invariant with respect to any unitary transformation

of the basis with which we represent it, so we may omit this basis from consideration.

We shall now develop this theme, while substituting different choices of unitary operators

Û for the projection operator |z >< z| onto a coherent state. First, let us note that

Tr Û corresponds intuitively to a measure of the fixed points of a classical mapping, since

| < ψ|Û |ψ > |2 is the probability that the quantum map,

|ψ′ >= Û |ψ > , (5.1)

brings the states |ψ > back onto itself.

Let us examine specifically the translation and reflection (unitary) operators defined

in the previous section. Starting with the translations,

TrT̂ξ =
∫
< q|Tξ|q > dq =

∫
dq exp

[
1

2�
ξp · ξq

]
< q|T̂ξq T̂ξp|q >

= exp
(
i

2�
ξp · ξq

) ∫
dq exp

[
i

�
ξp · q

]
< q|q + ξq >= (2π�)Lδ(ξp)δ(ξq)

= (2π�)Lδ(ξ) , (5.2)

and then taking the Fourier transform,

TrÎRx = Tr2LR̂x = (2π�)−L
∫
dξ exp

[
i

�
x ∧ ξ

]
TrT̂ξ = 1 , (5.3)

where, it is now also convenient to define the exact Fourier transform ÎRx of T̂ξ. We recall

that the classical transformation Rx has a single fixed point (x itself), whereas Tξ has fixed

points only if ξ = 0, when all points are fixed. These results are in general agreement

with our intuition as to the classical correspondence of the traces of unitary operators.

We can now consider the possibility of expressing any operator Â as a linear superpo-

sition of elementary translation operators:

Â =
∫

dξ

(2π�)L
A(ξ)T̂ξ . (5.4)

The confirmation results from

Tr(T̂−ξÂ) = Tr
∫

dξ′

(2π�)L
A(ξ′)T̂−ξT̂ξ′ =

∫
dξ′

(2π�)L
A(ξ′) exp

[
i

2�
ξ′ ∧ ξ

]
TrT̂ξ′−ξ = A(ξ) ,

(5.5)

which furnishes explicitly the expansion coefficient. Comparison with (1.38) reveals that,

when Â is an unitary operator, equation (5.5) represents the unitary map, in close analogy
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to the way that the chord generating function represents a canonical transformation. In

the latter case, we are given the chord ξ and determine the missing centre, x, by finding

the fixed point of the transformation combined with T̂−ξ. In quantum mechanics we

now take the trace of the combined operators to dermine the chord representation A(ξ)

that uniquely specifies Â according to (5.4). Of course, we cannot determine the centre

x simultaneously with ξ because of the uncertainty principle. However, we can equally

represent any operator Â as a superpositoon of reflections:

Â =
∫ dx

(2π�)L
A(x)ÎRx =

∫ dx

(π�)L
A(x)R̂x . (5.6)

Again we obtain the expansion coefficient by calculating

Tr(ÎRxÂ) = Tr
∫

dx′

(2π�)L
A(x′)ÎRxÎRx′ =

∫
dx′

(2π�)L
A(x′)22L exp

[
i2

�
x′ ∧ x

]
TrT̂2(x−x′)

=
∫

dx′

(2π�)L
A(x′)22L exp

[
i2

�
x′ ∧ x

]
(2π�)L

δ(x− x′)
22L

= A(x) . (5.7)

Notice that comparison of (5.4) and (5.6) with (4.25) and (4.26) yields

Rx(ξ) = 2−L exp
[
i

�
x ∧ ξ

]
and Tξ(x) = exp

[
− i

�
x ∧ ξ

]
.

In analogy with our previous result, we may refer to A(x) as the centre representation

of the operator Â, but the historic term is the Weyl representation. If Â is an unitary

operator, we are now specifying the centre x, rather than the chord (now unknown),

and we determine the Weyl transform (5.7) in close analogy to (1.37). Evidently, the

origin of the analogy between (1.37) and (1.38) with (5.7) and (5.5) is the achievement

of defining the fundamental group of translations and reflections in both classical and

quantum mechanics.

By defining different orderings for the operator T̂p and T̂q in (4.22) we arrive at alter-

native representations that are discussed in the review by Balazs and Jennings [30], on

which this section is largely based. It is also important to note that we are not able to

express an arbitrary operator as a superpositon of |z >< z|, so as to invert the Husimi

representation in the manner of T̂ξ or ÎRx, since Tr(|z >< z|z′ >< z′|) is not a δ-function.
Our ability to exchange chord and centre generating functions by means of Legendre

transforms in classical mechanics is exactly matched by the Fourier transform between
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the chord and the centre representations: Inserting (4.25) into (5.6),

Â = (4π�)−L
∫

dx

(π�)L
dξA(x) exp

[
i

�
x ∧ ξ

]
T̂ξ

=
∫

dξ

(2π�)L

{
(2π�)−L

∫
dxA(x) exp

[
i

�
x ∧ ξ

]}
T̂ξ , (5.8)

so that comparison with (5.4) reveals that

A(ξ) = (2π�)−L
∫
dxA(x) exp

[
i

�
x ∧ ξ

]
. (5.9)

An analogous treatment of (4.26) and (5.4) compared to (5.6) reveals that

A(x) = (2π�)−L
∫
dξA(ξ) exp

[
− i

�
x ∧ ξ

]
. (5.10)

Consider now the coordinate representation of the operator Â. Using (5.4), we have

< q+|Â|q− > =
∫

dξ

(2π�)L
A(ξ) < q+|T̂ξ|q− >

=
∫

dξ

(2π�)L
A(ξ)δ(q+ − q− − ξq) exp

[
i

�
ξp.

(
q− +

ξq
2

)]

=
∫ dξp

(2π�)L
A(ξp, q+ − q−) exp

[
i

�
ξp · q− + q+

2

]
, (5.11)

which is just a (symmetrized) Fourier transform, whose inverse is

A(ξ) =
∫
dq̄ < q̄ +

ξq
2

|Â|q̄ − ξq
2
> exp

[
− i

�
ξp · q̄

]
. (5.12)

If we now take the full Fourier transform of A(ξ), we also obtain the Weyl representation

of Â as a Fourier transform of < q+|Â|q− >, that is

A(x) =
∫
dξq < q +

ξq
2

|Â|q − ξq
2
> exp

[
− i

�
p · ξq

]
, (5.13)

with its inverse

< q+|Â|q− >=
∫

dp

(2π�)L
A(p ,

q+ + q−
2

) exp
[
i

�
p · (q+ − q−)

]
. (5.14)

Comparison of these last equations with (1.49) through (1.55) reveals that the Legendre

transforms of classical mechanics between generating functions are isomorphic to the

corresponding Fourier transforms in quantum mechanics.
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The reciprocity of the relations (5.4) with (5.5) and of (5.6) with (5.7) would have

allowed for an arbitrary real factor in the definition of the centre and the chord represen-

tations. As well as agreeing with various previous definitions of the Weyl transformation,

the choice adopted guarantees that

TrÂ = A(ξ = 0) =
∫

dx

(2π�)L
A(x) . (5.15)

Also, we obtain a pleasing simplicity in the representation of the identity operator 1̂:

1(ξ) = (2π�)Lδ(ξ) and 1(x) = 1 , (5.16)

within a phase factor. Substitution of these expressions in the previous formulae furnishes

a good check for stray constants.

The advantage of the centre representation lies in its ability to deal with motion

for short intervals of time, just as we found in classical mechanics. The corresponding

operator will be very close to the identity, hence it will be smooth and close to unity in the

centre representation, whereas its chord representation will be a sharply peaked function

at the origin. This short time motion is generated by Hermitian operators (4.4). Since

the respective representations of the adjoint operator, Â†, are

A†(ξ) = [A(−ξ)]∗ and A†(x) = [A(x)]∗ , (5.17)

we see that the centre representation of a Hermitian operator is always a real function,

while the restriction on its chord representation is not so satisfying.

We find immediately from (5.13) that any function f(q̂) has f(q) as its Weyl transform,

whereas the Fourier transform of (5.13),

A(x) =
∫
dξp < p+

ξq
2
|Â|p− ξp

2
> exp

[
i

�
q · ξq

]
, (5.18)

shows that the centre representation of f(p̂) is f(p). The linearity of the Weyl transform

then implies that the Weyl representation of the important class of Hamiltonians

Ĥ ≡ 1

2m
p̂2 + V (q̂) −→

Weyl
H(x) =

1

2m
p2 + V (q) , (5.19)

that is, the Weyl representation equals the classical Hamiltonian Hc(x). This is not true

for general Hamiltonians or Hermitian operators, but the Weyl representation will be a

smooth real function close the classical Hamiltonian and tending to it in the limit � → 0.
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The chord representation of these Hermitian operators, will therefore be close to the

Fourier transform of the corresponding classical functions.

The advantage of the centre representation for Hermitian operators has obscured its

basic reciprocity with the chord basis. It seems mysterious to find a representation of

quantum mechanics where observables are represented by real functions that are at least

close to the corresponding classical variables. The situation becomes clearer if we focus

on unitary operators which transform states. These correspond classically to transforma-

tions in double phase space, as presented in section 1. The generating functions of these

canonical transformations are defined in terms of only half the variables of double phase

space, but the other half can be obtained explicitly as derivatives. The corresponding

representations of the unitary transformations in quantum mechanics are also determined

by half the variables in double phase phase, but we cannot obtain the other half explicitly

because of the uncertainty principle. If we now consider the observables as generators

of unitary transformations, we find that, though the centre representation is just one of

many options related by Fourier transforms, it is remarkably appropriate.

Even though we can migrate among the several representations of operators via Fourier

transforms, there is an important distinction concerning the centre and the chord repre-

sentations, namely that they are not directly concerned with the states. We may consider

that the position, the momentum and even the coherent state representations represent

operators as a consequence of the way they represent the states. Indeed, we may choose

the Schrödinger picture with static operators and moving states, or the Heisenberg picture

that reverses the attribute of mobility. The centre and the chord representations concern

only the operators and are therefore bound to the Heisenberg picture.

Only the density operators, ρ̂, will represent states in this view, be they pure or

statistical mixtures. Historically, the centre representation of the density operator

W (x) ≡ (2π�)−Lρ(x) (5.20)

is named the Wigner function. In the case of a pure state, ρ̂ = |ψ >< ψ|, we see from

(5.13) that the Wigner function can be considered as the Fourier transform of the spatial

correlation of the wave function [1]:

W (x) =
(

1

2π�

)L ∫
dq′ < q +

q′

2
|ψ >< ψ|q − q′

2
> exp

[
− i

�
p · q′

]
. (5.21)
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Projecting this back onto the q-plane, we find that

∫
dpW (p, q) = | < q|ψ > |2 , (5.22)

whereas a similar treatment of the momentum representation reveals that

∫
dqW (p, q) = | < p|ψ > |2 . (5.23)

Integrating again either (5.22) or (5.23), we find that the Wigner function of a normalized

states satisfies

∫
dpdqW (p, q) = 1 = Trρ̂ . (5.24)

We therefore find that the Wigner function represents the state |ψ > as a real func-

tion in phase space; even though W (x) may be somewhere negative, its projectors onto

the position and the mometum planes correspond respectively to the correct probability

densities.

Unlike the Weyl transforms of observables that are smooth functions in phase space,

we expect a function that projects into correct probability densitites to be sharply peaked

in the regions of classical motion, as we found with the Husimi function. Let us consider

some examples. The first is a travelling wave in the interval (−=/2, =/2), with periodic

boundary conditions. The wave function is

< q|ψ >= (=)−1/2 exp
[
i

�
pnq
]

, pn =
2πn�

=
. (5.25)

Inserting the corresponding density matrix into (5.13), we obtain

W (p, q) =
1

π=

sin[=�−1(p− pn)]
p− pn

−→
!→0

1

=
δ(p− pn) . (5.26)

The Wigner function is independent of position and it is sharply peaked around the

classical motion as was found for the Husimi function.

Replacing the boundary condition by hard walls at ±=/2 leads to the wave function

< q|ψ >=
(
2

=

) 1
2

cos
[
1

�
pnq
]
. (5.27)

Care must now be taken to cancel (5.27) whenever one of the two wave functions lies
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outside the walls, i.e. if q > 0, then the limit of integration is =/2− q. Therefore

W (p, q) =
1

π�=

∫ �
2
−q

− �
2
+q
dq cos

[
pn
�

(
q +

q′

2

)]
cos

[
pn
�

(
q − q′

2

)]
exp

[
−ip

�
q′
]

=
1

2π=



sin[�−12

(
�
2
− q
)
(p− pn)

(p− pn)
+

sin[�−12
(
�
2
− q
)
(p+ pn)]

p + pn

+
2 cos(�−1pnq) sin[�

−12
(
�
2
− q
)
p]

p


 (5.28)

In the limit � → 0, the first two terms condense onto the classical manifold p = ±pn,
in the same way as for the travelling wave. But now there is also a nonclassical term.

This interference term oscillates along the q axis itself and it is essential for the correct

projection of | < q|ψ > |2 onto the q axis:

∫
dpW (p, q) = =−1[1 + cos(2�−1pnq)] = 2=−1 cos2(�−1pnq) . (5.29)

In the classical limit, the oscillations of | < q|ψ > |2 become infinitely rapid, so we can

measure only its average | < q|ψ > |2 = 1/=. By the same token, the interference term of

the Wigner function can be considered to vanish as a consequence of its infinitely rapid

positive and negative oscillations. The smoothed Wigner function corresponds to the

classical probability density. It is interesting to note that the Wigner function broaddens

nonclassically, close to the wall. This feature is not present in the case of two periodic

waves travelling in opposite directions, treated in previous presentations of this example

[19, 31].

As another important example, we now derive the Wigner function for a coherent state

|z > with mean values < p >= P and < q >= Q:

Wz(x) =
(

1

2π�

)L (
w

π�

)L
2
∫
dq′ exp


− w

2�

[
q −Q+

q′

2

]2

− w

2�

[
q −Q− q′

2

]2

+

+
i

�
(P − p)q′

}
= (�π)−L exp

{
−w

�
(q −Q)2 − 1

w�
(p− P )2

}
. (5.30)

This minimum uncertainty state is thus a non-osicllating Gaussian centred on (P,Q).

In the case where (P,Q) = 0, we obtain the Wigner function for the ground state of

the harmonic oscillator. We have used a multidimensional version of (4.43) in deriving

the above formula, with the same frequency for each freedom, but this restriction is not

necessary in (5.30).
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We can now use (5.30) to derive the relation between the Weyl and the Husimi repre-

sentation. Developing

AH(P,Q) =< z|Â|z >=
∫
dq′dq′′ < z|q′′ >< q′′|Â|q′ >< q′|z > (5.31)

and taking q = (q′ + q′′)/2 and q′′′ = q′′ − q′, we obtain:

< z|Â|z > =
∫
dq dq′′′ < q − q′′′

2
|z >< z|q + q′′′

2
>
∫

dp

(2π�)L
A(p, q) exp

[
i

�
p · q′′′

]

=
∫

dx

(2π�)L
Wz(x)A(x) . (5.32)

In the case where Â = ρ̂ψ, the density operator for the state |ψ >, we obtain

ρH(P,Q) =
∫
dxWz(x)Wψ(x) = | < z|ψ > |2 . (5.33)

So we find that the Husimi representation can be viewed as a Gaussian smoothing of

the Weyl representation. Because of the analyticity of the coherent states, it is possible

though nontrivial to retrieve the information masked by the smoothing. Conversely, we

see from (5.33) that a Gaussian smoothing of the Wigner function necessarily produces a

positive definite distribution. Indeed, we may consider the projections (5.22) and (5.23)

as particular instances of (5.33), when we choose w → ∞ or w → 0, for which wz(x) →
δ(q−Q) or δ(p−P ) respectively. Since the Husimi function must be positive (or zero) for

any w, we deduce that the Wigner function can only be negative in the context of narrow

oscillations.

Returning to the example of a particle in a box with hard walls, we see immediately

that a convenient choice of w will produce a smoothing that effectively cancels oscillations

along p = 0. We thus obtain a representation which underlines the classical structure.

However, we cannot recover the wave intensity by a mere projection, once the Husimi

smoothing has been performed. (See reference [31] for further discussion of smoothings

of the Wigner function).

A similar situation arises with the eigenstates of the harmonic oscillator. According

to Groenewold [32] the Wigner funcions in the case of w = 1 are

Wn(x) =
(−1)n

π�
exp

(−x2

�2

)
Ln

(
2x2

�2

)
, (5.34)

were Ln(z) is the n’th Laguerre polynomial normalized to unity at the origin. We recognize

here the same oscillatory structure that is familiar in the position representation. This
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must be so, if we are to obtain the correct projections. These oscillations are wiped out by

the Gaussian smoothing which leaves the single maximum along the classical manifold that

we found for the Husimi function (4.58). Berry [7] showed that generally the semiclassical

approximation of the Wigner function for a pure state has a maximum along the energy

shell in the case that L = 1. This is the border of Airy function fringes inside the shell

(se also [19]) that are wiped out by the Husimi smoothing. Therefore the zeroes of the

Husimi function will be forced away from the classical region.

6 Products of operators and path integrals

It may be surprizing that the derivation of the composition rule for successive unitary

transformations is actually simpler than the classical counterpart studied in section 2. We

shall see that the corresponding geometrical structures arise as a mere consequence of the

algebraic rules that we have defined in the two previous sections.

Starting with the chord representation, we have, for the product ÂnÂn−1 · · · Â1,

An.An−1 · · ·A1(ξ) = Tr
(

1

2π�

)nL ∫
dξn · · · dξ1An(ξn) · · ·A1(ξ1)T̂−ξT̂ξn T̂ξn−1 · · · Âξ1

=
(

1

2π�

)n−1 ∫
dξn · · ·dξ1An(ξn) · · ·A1(ξ1)Tr

[
T̂ξ1+···+ξn−ξ

]

exp
[
− i

�
Dn+2(ξ1 · · · , ξn,−ξ)

]

=
(

1

2π�

)L(n−1) ∫
dξn · · ·dξ1An(ξn) · · ·

A1(ξ1)δ(ξ1 + · · · ξn − ξ)exp
[
− i

�
Dn+1(ξ1, · · · , ξn)

]
, (6.1)

where we note that the Dirac δ-function has reduced the (n + 2)-sided polygon with

symplectic area Dn+2 to an (n + 1)-sided polygon, with n free sides. Evidently, we can

now use the δ-function to remove one of the variables in the integral, but (6.1) is in its

most symmetric form.

To obtain the composition rule of operators in the centre representation, we can pro-

ceed in several ways. The simplest is just to take the Fourier transform of (6.1):

An.An−1 · · ·A1(x) =
(

1

2π�

)Ln ∫
dξn · · ·dξ1dξAn(ξn) · · ·A1(ξ1)δ(ξ1 + · · · ξn − ξ)

exp
{
− i

�
[Dn+1(ξ1, · · · , ξn)− x ∧ ξ]

}
. (6.2)
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Recalling that ξ = ξ1 + · · ·+ ξn, we now define the multivariable function

′An · · ·A′
1(x1, · · · , xn) =

(
1

2π�

)Ln ∫
dξ1 · · ·dξn exp

[
− i

�
Dn+1(ξ1, · · · , ξn)

]
n∏

j=1

Aj(ξj)exp
[
− i

�
xj ∧ ξj

]
, (6.3)

which takes on the special value

′An · · ·A′
1(x, x, · · · , x) = An · · ·A1(x). (6.4)

This multivariable function is now evaluated by expanding the exponential with the polyg-

onal area Dn+1, so as to yield a series of integrals. For the zeroth order, the integrals

decouple, so that

′An · · ·A′
1(x1, · · · , xn)0 = A1(x1) · · ·An(xn). (6.5)

The next term is given by

(2π�)Ln ′An · · ·A′
1(x1 · · · , xn)1 = − i

!
∫
dξ1 · · · dξnDn+1(ξ1, · · · , ξn)∏n

j=1Aj(ξj)exp
[
− i
!xj ∧ ξj

]
, (6.6)

so, if we notice that Dn+1(ξ1, · · · , ξn) is a bilinear function of its arguments and that

[
∂

∂xj
∧ ∂

∂xk

]
exp

{
− i

�
[xj ∧ ξj + xk ∧ ξk] = 1

�2
[ξj ∧ ξk]

exp
{
− i

�
[xj ∧ ξj + xk ∧ ξk]

}}
, (6.7)

we obtain

′An · · ·A′
1(x1, · · · , xn)1 = −i�Dn+1

(
∂

∂x1
, · · · , ∂

∂xn

)
A1(x1) · · ·An(xn). (6.8)

But we can easily generalize (6.8) to higher order derivatives, allowing us to ressum the

exponential expansion in the symbolic form

′An · · ·A′
1(x1, · · · , xn) = exp

{
−i�Dn+1

(
∂

∂x1

, · · · , ∂

∂xn

)}
A1(x1) · · ·An(xn). (6.9)

For the product of only two operators, (6.9) reduces to the of Groenewold rule [32]:

A2.A1(x) = exp

{
−i�

2

∂

∂x1
∧ ∂

∂x2

}
A1(x1)|x1=xA2(x2)|x2=x. (6.10)
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Since the Weyl representation of Hermitian operators is of zero order in Planck’s

constant, (6.10) and its generalization (6.9) are useful starting points for semiclassical

expansions. In particular, we see that

A2.A1(x) = A1(x)A2(x)− i�

2

∂A1

∂x
∧ ∂A2

∂x
+ 0(�2), (6.11)

where we recognize the Poisson bracket {A1, A2} in the term that is of first order in �.

Hence the commutator has the Weyl transform

[A1, A2](x) = i�{A1(x), A2(x)}+ 0(�2), (6.12)

neatly reflecting the correspondence between commutators and Poisson brackets which

was the starting point of quantum mechanics. For the symmetrized product,

A1.A2 + A2.A1

2
(x) = A1(x)A2(x) + 0(�). (6.13)

If Â1 and Â2 are Hermitian, so is their symmetrized product, implying that the first term

holds to second order in �, because the Weyl transform must be real. Using (6.9) we also

find that the power of an Hermitian operator Ĥ is represented by

Hn(x) = [H(x)]n + 0(�2). (6.14)

In particular, we may expand the square of an observable as

H2(x) = [H(x)]2 +
�

2

8
Tr(JH)2 + 0(�4). (6.15)

where H is the Hessian of H(x) and J is defined by (1.3).

We shall also need integral formulae for the product of operators. The result depends

crucially on the parity of the number of operators so we will start with the simplest case

where n = 2. Proceeding from the definition (5.6), we obtain

A2.A1(x) = Tr
(

1

2π�

)2L ∫
dx2dx1A2(x2)A1(x1) ÎRx ÎRx2 ÎRx1

=
(

1

π�

)2L

2L
∫
dx2dx1A2(x2)A1(x1)exp

[
i

�
x1 ∧ x2

]
Tr
[
R̂xT̂2(x2−x1)

]

=
(

1

π�

)2L

2L
∫
dx2dx1A2(x2)A1(x1)exp

[
i2

�
x1 ∧ x2 − i

�
x ∧ 2(x2 − x1)

]
TrR̂x−(x2−x1)

=
(

1

π�

)2L ∫
dx2dx1A2(x2)A1(x1)exp

[
i

�
∆3(x, x1, x2)

]
. (6.16)
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The extension to (2n) operators can be derived by dividing the polygon of (2n+ 1) sides

ηj into a set of n triangles that result from pairing the sides (as shown Figs. 2.3 and 2.4)

and an internal polygon ∆′
n+1. Its symplectic area is

∆′
n+1 =

1

2
α1 ∧ (η1 + η2) + · · ·+ 1

2
αn ∧ (η2n−1 + η2n), (6.17)

where αj is the vector joining x to the centre of the j′th side of ∆′
n+1. Thus, we can insert

(5.6) for each operator into (5.7), to obtain

A2n · · ·A1(x) = Tr
(

1

2π�

)2nL ∫
dx2n · · · dx1A2n(x2n) · · ·A1(x1) ÎR x ÎR x2n · · · ÎR 1

=
(

1

π�

)2nL ∫
dx2n · · · dx1A2n(x2n) · · ·A1(x1)

exp
[
i2

�
(x1 ∧ x2 + · · ·+ x2n−1 ∧ x2n)

]
Tr
[
R̂xT̂2(x2n−x2n−1)

· · · T̂2(x2−x1)

]

=
(

1

π�

)2nL

2L
∫
dx2n · · · dx1A2n(x2n) · · ·A1(x1)exp

[
i2

�
(x1 ∧ x2 + · · ·+ x2n−1 ∧ x2n)−

i

�
∆′

n+1 −
i

�
x ∧ ξ

]
TrR̂x−ξ/2

=
(

1

π�

)2nL ∫
dx2n · · · dx1A2n(x2n) · · ·A1(x1)

exp
{
i

�
[∆3(x+ α1, x1, x2) + · · ·+∆3(x+ α2n−1, x2n−1, x2n) + ∆′

n+1]
}

=
(

1

π�

)2nL ∫
dx2n · · · dx1A2n(x2n) · · ·A1(x1)exp

{
i

�
∆2n+1(x, x1, · · · , x2n)

}
. (6.18)

Here the symplectic area ∆2n+1 corresponds to the (2n+ 1)-sided polygon circumscribed

around the centres (x, x1, · · · , x2n). In reference [11] this result was derived by induction.

The simplest way to derive the composition law for an odd number of operators is

merely to particularize Â2n = 1̂. In this case we immediately obtain

A2n−1 · · ·A1(x) =
(

1
π!

)2nL ∫
dx2n−1 · · ·dx1A2n−1(x2n−1) · · ·A1(x1)∫

dx2n exp
{

i
!∆2n+1(x, x1, · · · , x2n)

}
. (6.19)

But, according to (2.11), we have

∫
dx exp

{
i

�
∆2n+1(x, x1, · · · , x2n)

}
= (2π�)2Lδ(ξ) = (2π�)2Lδ(2

2n∑
k=1

(−1)kxk),(6.20)

where ξ is the side centred on x. Since this becomes zero, the polygon looses one side and

A2n−1 · · ·A1(x) =
(

1

π�

)(2n−1)L ∫
dx2n−1 · · · dx1A2n−1(x2n−1) · · ·A1(x1)

δ[x2n−1 − · · ·+ x1 − x]exp
{
i

�
∆2n(x, x1, · · · , x2n−1)

}
. (6.21)
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Taking one of the sides of ∆2n+1 as zero has created an even sided polygon ∆2n. This

will only be properly defined by its midpoints if the argument of the δ-function cancels.

In the important case of three operators, we obtain

A3.A2.A1(x) =
(

1
π!

)3L ∫
dx3dx2dx1A3(x3)A2(x2)A1(x)δ[x3 − x2 + x1 − x]
exp{ i

!∆4(x, x1, x2, x3)} (6.22)

The δ-function here forces the inscribed quadrilateral to be a parallelogram, which is

necessary for the existence of the circumscribed quadrilateral, as we saw in section 2 (Fig.

2.10). Evidently, we can use the δ-function to eliminate one of the variables, say x2 as

shown in Fig. 2.11, so that

A3.A2.A1(x) =
(

1
π!

)3L ∫
dx3dx1A3(x3)A2(x3 + x1 − x)A1(x1)

exp
{

i
!∆3(x1, x1, x3)

}
, (6.23)

where we use the fact that all the quadrangles circumscribed on a parallelogram have the

same area, as proved in Appendix A. The triangle adopted here is just a particular case

where the side ξ2 = 0.

We will now discuss a few important results concerning the phase space representation

of products of operators. Even though the chord and the centre representations of the

product of two operators are not equal to the product of the functions that represent

them, this interchange does hold for the trace:

TrÂ2Â1 =
∫

dξ

(2π�)L
A2(ξ)A1(ξ) =

∫
dx

(2π�)L
A2(x)A1(x). (6.24)

These results are easily obtained by applying (5.15) to (6.1) and (6.16). Clearly they

reflect the fact that the trace of the product of two operators commutes. Since the trace

of the product of more than two operators does not necessarily commute, we cannot

expect to obtain such a remarkable simplification of the trace in general. In section 7 we

shall discuss the trace of the product of an arbitrary even number of unitary operators.

A direct consequence of (6.24) is that, for any observable Â,

< Â >=
∫
dx A(x)W (x). (6.25)

This remarkable formula has been for a long time one of the main attractions of the Weyl

representation; indeed it is the motivation for Wigner’s original paper [1]. We see that even
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though the Wigner function need not be positive definite, it allows us to calculate mean

values of the observables in the same manner as with the classical Liouville probability

distribution. This is specially appealing in the cases where the Weyl representation of the

observable coincides exactly with the classical variable. This feat cannot be emmulated

by the positive definite Husimi function.

The product rules can be used to study unitary operators. First, let us establish that

we can define a group of unitary operators by their Weyl representation of the form

U(x) = c exp[i�−1xBx] (6.26)

for any symmetric matrix B. To do this we use (6.16) to show that the corresponding

operator satisfies Û Û † = 1̂, for an appropriate choice of the constant c. Thus we define

I(B) =
1

(π�)2L

∫
dx1dx2U(x1)[U(x2)]

∗ exp
[
i

�
∆3(x, x1, x2)

]

=
|c|2

(π�)2L

∫
dx1dx2 exp

{
i

�
[x1Bx1 − x2Bx2 − 2(x1 − x)J(x2 − x)]

}

=
|c|2

(π�)2L

∫
dx1dx2 exp

{
i

�
[x1Bx1 − x2Bx2 − 2x1Jx2]

}
, (6.27)

where in the last equation we have taken the origin to the stationary point of the quadratic

phase; since x1 = x2 there, the x dependence cancels. We easily ascertain that I(B) is

real and that I(B) = I(−B).

To calculate the resulting multiple Gaussian integral, it is convenient to define the

double vector X = (x1, x2) and the (4L× 4L) symmetric matrices

IB =


 B 0

0 −B


 and JJ =


 0 J

J 0


 (6.28)

so that

I(B) =
|c|2

(π�)2L

∫
dX exp

{
i

�
X[IB − JJ ]X

}
=

|c|2
(π�)2L

[
(π�)4L

|det[IB − JJ ]|
]1/2

. (6.29)

Therefore we need to define

c = |det[IB − JJ ]|1/4eiθ (6.30)

for (6.26) to represent an unitary operator. To simplify this (4L × 4L) determinant, we

first note that

|det[IB − JJ ]| = |det[1− JJIB]| = | det

 1 JB

JB 1


 | , (6.31)
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since JJ2 = 1. Now we use the fact that I(B) = I(−B) to write

|det[IB − JJ ]| = |det[1 + JJIB][1− JJIB]|1/2

=

∣∣∣∣∣∣∣det

 1− (JB)2 0

0 1− (JB)2



∣∣∣∣∣∣∣
1/2

= |det[1− (JB)2|, (6.32)

which has reduced to a (2L×2L) determinant. This can be further simplified by recalling

the relation (1.20) between the symmetric matrix B and the sympletic matrix M, such

that detM = 1. The result is that

|det[1− JB]|1/2 = |det[1 + JB]|1/2 = |det[1− (JB)2]|1/4. (6.33)

Thus we obtain alternative forms for the unitary operators related to the symmetric

matrix B as

U(x) = |det[1± JB]|1/2exp[i�−1xBx+ iθ] = 2L|det(1 +M)|−1/2exp[i�−1xBx+ iθ].

(6.34)

The phase θ is unimportant for the action of the unitary operator on another operator,

since it cancels in (4.6). However, we have seen that the definition of the Weyl repre-

sentation relies on the linear superposition of unitary operators, for which it is essential

to take account of the phase. Moreover, we can also obtain the position representation

< q′|U |q >, through a symmetrized Fourier transform and hence transform wave funtions

< q|ψ >. Though these are only defined within a phase factor, the latter must be ac-

counted for in the phenomena of interference between waves. The determination of these

phases in the context of the semiclassical aproximations will be the subject of future work.

How do these unitary operators act on other operators? Using (6.23) to obtain the

Weyl representation of Â′ = Û †ÂÛ , we have

A′(x) =
∫ dx1dx2

(π�)2L
[U(x1)]

∗A(x2 + x1 − x)U(x2)exp
[
i

�
∆3(x, x1, x2)

]

= |det[1− JB]|
∫
dx1dx2

(π�)2L
exp

{
i

�
[−x1Bx1 + x2Bx2 − 2(x1 − x)J(x2 − x)]

}

A(x2 + x1 − x). (6.35)

with the change of variables x2 + x1 − x = X, x2 − x1 = Y (which has Jacobian 22L), the
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integral becomes

A′(x) = |det[1− JB]|
∫
dXA(X)

(2π�)2L

∫
dY exp

{
i

�
[YB(X + x) + Y J(X − x)]

}

= |det[1− JB]|
∫
dX A(X)δ(B(X + x) + J(X − x)). (6.36)

Thus, recalling again (1.20), we obtain

A′(x) = A(Mx), (6.37)

where M is the symplectic matrix corresponding to the centre function S(x) = xBx+ θ.

Actually, we can add a linear term, to obtain S(x) = α ∧ x+ xBx. This is the centre

function for a non-homogeneous (linear) symplectic transformation in classical mechanics.

The only effect will be to change the origin of the preceeding Gaussian integrals. Thus we

find that there is a one-to-one correspondence between this restricted group of classical

canonical transformations generated by the centre functions S(x) with the subgroup of

quantum unitary operators, given in the Weyl representation by

U(x) = 2L|det(1 +M)|− 1
2 exp[−i�−1(α ∧ x+ xBx) + iθ]

= |det[1± J∂2S/∂x2]| 12 exp[i�−1S(x)]. (6.38)

Taking the Fourier transform of this expression, we find that the corresponding chord

representation is

U(ξ) = 2L|det(1−M)|− 1
2 exp

[
i

�
(a ∧ ξ + 1

4
ξBξ) + iθ′

]
, (6.39)

where now the symmetric matrix B is given by M in (1.35). The corresponding position

representation of the evolution operator, resulting from the symmetrized Fourier transform

(5.14), is

< q′|U |q >= (2π�)−
1
2 |det ∂

2S

∂q∂q′
| 12 exp

[
i

�
S(q′, q)

]
, (6.40)

where S(q′, q), the symmetrized Legendre transform (1.54) of S(x), will again be quadratic.

In these representations, the undetermined phase θ, can be interpreted as the arbitrary

additive constant in the definition of the corresponding generating function. The unitary

operators that we have been discussing form the inhomogeneous metaplectic group [41,47].

The latter reference includes some discussion of the overall phase θ.
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We do not have simple closed forms for the general unitary transformations generated

by nonlinear Hamiltonians. Just as in classical mechanics, it is then important to develop

approximations that are valid for small intervals of time. By expanding the exponential

(4.3), we obtain the Weyl transform term by term:

Ut(x) = 1− i t
�
H(x)− 1

2

(
t

�

)2

H2(x) + · · ·+ 1

n!

(
−i t

�

)n

Hn(x) + · · · (6.41)

We have seen that H(x) will be within O(�) of the classical Hamiltonian Hc(x) and (6.14)

shows that the centre representation of Ĥn is O(�2) of [H(x)]n. Therefore, the above series

is uniformly convergent, which allows us to rearrange the terms in the form

Ut(x) = exp[−i t
�
H(x)] +O(

(
t

�

)2

). (6.42)

For sufficiently small times, we may thus use the exponential of H(x) as an approxi-

mation for the Weyl propagator. This is in close analogy to the theory in §1, where the

centre function was found to have −tHc(x) as a limit. However, the classical approxi-

mation holds to O(t3), whereas the range of validity of (6.42) is exceedingly small in the

semiclassical limit. Futhermore, contrary to the classical theory where −tHc(x) can al-

ways be used to generate a transformation that is guaranteed to be canonical, we cannot

be sure that (6.42) represents an unitary operator.

To improve our approximation, we can include the first correction (6.15):

Ut(x) = exp
[
−i t

�
H(x)

]
− 1

2

t2

�2

[
�

2

8
Tr(JH)2 +O(�4)

]
+O

(
(
t

�
)3
)

exp
[
−i t

�
H(x)

]{
1− t2

16
Tr(JH)2

}
+O(t2�2) +O

(
(
t

�
)3
)
, (6.43)

where H is the Hessian matrix evaluated at the point x. Even though this is still not as

good as the achivement in classical mechanics, the first correction becomes small specially

in the semiclassical limit, while the second correction is now of third order. The small

time propagator can now be rewritten as

Ut(x) = |det[1− (J
t

2
H)2]| 14exp

[
−it

�
H(x)

]
+O(t2�2) +O(

(
t

�
)3
)
. (6.44)

The advantage of this form is that comparison with (6.33) and (6.34) demonstrates it

to represent an unitary operator if H(x) is quadratic. Indeed −(t/2)H will then just be

the constant matrix B in accordance with the theory in §1. Since we can always expand
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Hn(x) to second order tems, we find that the simple rearrangement between (6.43) and

(6.44) really accounts for a ressumation of higher order terms in the expansion of Hn(x).

We can now extend the range of the Weyl propagator for the Hamiltonian flow by

composing the unitary operators corresponding to small periods:

Ut(x) =
∫
dx1 · · · dxn
(π�)NL

N∏
n=1

U t
N
(xn) exp{ i

�
[∆N+1(x, x1, · · · , xN)]}. (6.45)

This formula is exact, but we can only insert (6.44) for U t
N
(x) in the limit as N → ∞.

We can then ignore the amplitude, since

N∏
n=1

det[1− (J
t

2N
Hn)

2] −→
N→∞

1, (6.46)

if the Hessian Hn remains bounded for each centre xn. Thus we obtain the path integral

Ut(x) = lim
N→∞

∫
dx1 · · · dxN
(π�)NL

exp

{
i

�
[∆N+1(x, x1, · · · , xN))− t

N

N∑
n=1

H(xn)]

}
. (6.47)

We immediately recognize that the phase of this integral coincides with the action of the

variational principle (2.23) for the polygonal path with endpoints centred on x and whose

k′th side is centred on xk. Just as with the variational principle, we need not worry about

the definition of a “path space” since (6.47) is an ordinary multiple integral. The only cost

is that there will be some very jagged polygonal paths (see Fig. 2.7) as well as smooth

paths, such as the classical trajectory that solves the variational problem.

It is interesting to note that the geometry of Ut(x), represented in terms of the polygon

∆N+1, is reminiscent of that for the Wigner function Wn(x) obtained in [19]. This will

result in the next section from the Fourier transform of Ut(x). The original derivation

relied on the iteration of the pure state condition ρ̂2
n = ρ̂n, instead of the group property

for Ût.

The clearest way to derive the semiclassical approximation for the Weyl propagator

is to return to (6.45) with the individual small time propagators specified by (6.44).

The latter are already in their semiclassical form, in the limit of small intervals. The

semiclassical limit for the full propagator now involves evaluating the multiple integral

(6.45) by stationary phase. This depends only on the quadratic expansion of the phase

and, since ∆N+1 is already quadratic, we need only expand the Hamiltonian about each

stationary point xn:

H(xn +Xn) = H(xn) +
∂H

∂xn
.Xn +XnHnXn + · · · (6.48)
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But to this order, each of the propagators U t
N
(xn) has exactly the Gaussian form (6.38)

with the symmetric matrix B = − t
2N

Hn. We have seen that these propagators correspond

to the group of classical (linear) symplectic transformations. Therefore the composition of

these metaplectic operators is isomorphic to the composition of the corresponding classical

transformations. In other words, the stationary phase evaluation of (6.18) at a given point

x must have the same value as (6.38), with M being the symplectic matrix for the full

linear transformation obtained by composing the linearized transformations about each

stationary centre xn.

The stationary points lie on the classical trajectory which solves the variational prob-

lem. Thus, with this choice of xn, we cancel the sum of linear terms in the phase of (6.45),

whereas the constant part of the phase about which we expand is just �
−1St(x) as given

by (2.23). It follows that the semiclassical approximation is just

Ut(x)SC = exp
[
i

�
St(x)

]
lim

N→∞

∫
dX1 · · ·dXN

(π�)NL

N∏
n=1

Un
t
N
(Xn)

exp
{
i

�
∆N+1(0, X1, · · · , XN)

}
, (6.49)

where Xn = xn − xn0 , xn0 being the stationary point on the classical orbit, so that

Un
t
N
(Xn) = 2L|(1 +Mn)|− 1

2 exp
[
−i t

�N
XnHnXn

]
(6.50)

is the metaplectic propagator for the linearized
(

t
N

)
-flow about xn0 . It is important

to note that, for small times (t/N) we can determine the phase θ in (6.36) to be zero,

since we use 1(x) = 1. The decomposition of the polygonal area in the above formula

results from (A.13) in Appendix A. The explicit result of this infinite composition of linear

transformations is finally obtained as

Ut(x)SC = 2L|(1 +M)|− 1
2 exp[i/� St(x)], (6.51)

where M is the symplectic matrix for the linearized transformation between the neigh-

bourhood of the tips of the chord ξ(x) generated by St(x) as a centre function.

This result is only valid for sufficiently short times such that the variational problem

has an unique solution. Eventually there will be bifurcations producing more chords

whose number increases with time. So, generally we will have

Ut(x)SC ∼∑
j

2L|det(1 +Mj)|− 1
2 exp

{
i�−1Stj(x) + iγj

}
, (6.52)
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where the index runs over all the contributing classical orbits. In the case of a single orbit,

the corresponding Morse index γj = 0. The linearized motion around each orbit can also

be used to approximate the propagation of wave packets as develloped by Heller [52, 47].

Derived in this way, we understand that the semiclassical approximation has more

meaning than a mere expansion in powers of � to some arbitrary order. It is exact

in the case of linear transformations and it would be exact if we could approximate the

nonlinear evolution by a sequence of linear transformations. If we keep M constant, while

expanding the action St(x) to second order in x, we obtain the Weyl representation of an

operator that is exactly unitary. On the other hand, we easily verify that the semiclassical

Weyl propagator corresponding to a nonlinear transformation is self-consistently unitary

within the stationary phase approximation to the first integral in (6.27). Indeed, this is

completely determined by the quadratic approximation of the phase, so that I(B) reduces

to its metaplectic approximation in the case where there is only one chord. Should there

be more chords, we insert (6.50) into (6.27) to obtain an integral that decomposes into

terms of the form

Ijj′ = 22L|det(1 +Mj)det(1 +Mj′)|−1
∫
dx1dx2 exp

{
i

�
[Stj(x1)

−Stj′(x2)− 2(x1 − x)J(x2 − x)] + i(γj − γj′)} . (6.53)

The stationary phase condition is precisely that x1(x) and x2(x) be chosen so the canonical

transformation generated by Stj(x) be combined with that generated by −Stj′(x2) to

result in a new canonical transformation, as explained at the beginning of §2. In other

words, the endpoint x1+ for the first evolution must coincide with x2− for the second, as

shown in Fig. 6.1 (a). For the diagonal terms (j = j′), −Stj(x) generates the inverse

canonical transformation to Stj(x), so the return and the outgoing orbit coincide. There

may be many chords through the point x1 in Fig. 6.1 (b), but it is clearly the chord

for which x1− = x that determines the integral with the stationary point. In this case

the other centre x2 = x1, whereas the chord ξ and the triangle ∆3 collapse. There

can be no stationary points for the nondiagonal terms (j ± j′), because there is only

one orbit reaching the corner of ∆3 opposite to x in Fig. 6.1 (a): The only backwards

transformation maching onto that generated by Stj is −Stj with j′ = j. The principle

behind this simplification is that there may be many chords through each centre for long

times, but there is still an unique canonical transformation. Therefore, there is only one

orbit through each endpoint, x±, travelling forwards or backwards in time.
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The property that St(x) is always an odd function of t guarantees that U−t(x) =

[U t(x)]
∗ in (6.52). This is a necessary, but not a sufficient condition for Ut(x) to represent

an unitary operator. Still we find that there is a correspondence between classical canon-

ical transformations generated by the Hamiltonian and semiclassical Weyl propagators

(6.52) that are unitary within the stationary phase approximation. This equivalence is

not restricted to the Weyl representation, having been systematically discussed by Miller

[50]. It is remarkable that the approximate unitarity of the semiclassical propagator (6.52)

is not affected by the choice of phases γj, though these will have to be fully determined

for the construction of a theory for the semiclassical evolution of Wigner functions [52].

A much simpler task is to derive the semiclassical evolution of observables in the Weyl

representation. This is obtained by inserting (6.52) into (6.35) and evaluating the re-

sulting integrals by stationary phase. The fact that the function A(x) representing the

observable is smooth, rather than highly oscillatory, reduces the condition of stationary

phase to that of the integrals Ijj′ in (6.53). Therefore, there is only one stationary point

for each of the diagonal terms. The full evaluation now proceeds exactly as in (6.35) and

(6.36), hence the result is that

A′(x)SC = A(x′(x)), (6.54)

where x′(x) is the point to which x evolves in the Hamiltonian flow.

Thus we find that observables evolve classically in the semiclassical limit of the Weyl

representation. Again, this result is invariant with respect to the choice of phases in the

semiclassical propagator. There will be no problems with crossing caustics in this simple

limit of the Heisenberg picture.

Our discussion of the variational principle for fixed time in section 2 revealed that

there will be an unique solution for a sufficiently short interval. This is in sharp contrast

to the full quantum path integral which includes all polygonal paths joining the tips of

all possible chords centred on x. We obtain a somewhat intermediary situation for the

Husimi propagator. Combining (5.32) with (6.47), we obtain

UH(P,Q) = lim
N→∞

∫
dxN · · · dx1

(π�)NL
exp

{
−i t

�N

N∑
n=1

H(xn)

}

1

(�π)L

∫
dx exp

{
−w

�
(q −Q)2 − 1

w�
(p− P )2 + i

�
∆N+1(x, x1, · · · , xN)

}
(6.55)

If we now recall the linear relation (2.11) of ∆N+1 with x, (6.55) can be integrated to
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yield

UH(P,Q) = lim
N→∞

∫ dxn · · · dx1

(π�)NL
exp

{
i

�
∆N+1(X, x1, · · ·xN )− it

�N

N∑
n=1

H(xn)

}

exp
{
− w

4�
ξ2
q −

1

4w�
ξ2
p

}
, (6.56)

where the chord ξ passing through X = (P,Q) depends only on the other centres

x1, · · · , xN , according to (2.10). This expression again highlights the complementarity

between chords and centres. We derive the Husimi propagator by taking a local average

over centres; the consequence is a Gaussian cutoff on the length of the chords. The full

semiclassical limit of the Husimi propagator is the subject of ongoing work.

We have discussed the fact that the centre and the chord representations of any op-

erator transform classically as the result of a metaplectic transformation. This property

is also explicitly verified for a general Weyl propagator since the Hamiltonian and the

symplectic areas determining the phase of the path integral are invariant under a canoni-

cal transformation, while the chord construction is preserved by its linearity. However, a

general symplectic transformation will alter the Gaussian amplitude in the path integral

for the Husimi propagator (6.56) so that this representation will not usually transform

classically.

We can now derive the more familiar path integrals by taking the symmetrized Fourier

transform (5.14) of (6.47). This matches the Legendre transform between variational

principles that we discussed in section 2:

< q+|Ût|q− >= (2π�)−L
∫
dp Ut(p,

1

2
(q+ + q−))exp

[
i

�
p.(q+ − q−)

]
=

= (2π�)−L lim
N→∞

∫
dp
dxN · · · dx1

(π�)NL
exp

{
i

�

[
p.(q+ − q−)− t

N

N∑
n=1

H(xn)+

+∆N+1(((p,
1

2
(q+ + q−)), x1, · · · , xn)

]}

= lim
N→∞

∫
dxN · · · dx1

(π�)NL
δ(q+ − q− − ξq) exp

[
i

�
S ′
N (x1, · · · , xN)

]
. (6.57)

S ′ is now the symplectic area between the polygonal line (with centres at x1, · · · , xN)
and the p = 0 plane. The δ-function ensures that the tips of this polygonal line project

precisely onto q+ and q−. To eliminate the δ-function we redefine the coordinates of the

integration variables as q1 = 1
2
(Q1 + q−), · · · , qn = 1

2
(Qn+Qn−1), · · · qN = 1

2
(QN +QN−1).

Since the area under the polygonal line is the same as the that of the succession of strips
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pn.(Qn −Qn−1), as shown in Fig. 6.2, we can rewrite

S ′
N =

∑
n

pn.(Qn −Qn−1)− t

N

{
H(p1,

q− +Q1

2
) + · · ·

+H(pn,
Qn +Qn−1

2
) + · · ·+H(pn,

QN−1 +QN

2
)
}

(6.58)

The argument of the δ-function then reduces to QN −Q+, so that the phase for each path

of steps at Q1, Q2 · · · is just

S ′
N = SN (q+, q−) =

∑
n

pn(Qn −Qn−1)− t

N

{
H
(
p1,

q− +Q1

2
+ · · ·+

+H
(
pn,

Qn +Qn−1

2

))
+ · · ·+H

(
pn +

QN−1 +Q+

2

)}
, (6.59)

i.e. the generating function (2.25). Since the Jacobian of the coordinate transformation

is 2NL, we have

< q+|Û |q− >= lim
N→∞

∫
dp1 · · · dpNdQ1 · · · dQN−1

(2π�)NL
exp

{
i

�
SN(q+, q−)

}
, (6.60)

the usual definition of the path integral in phase space [8].

The advantage of the present derivation of path integrals is that there is no reliance on

special properties of the Hamiltonian. This is explicitly realized as the Weyl representation

of the quantum operator, which will equal the classical Hamiltonian only in simple cases.

However, we generalize the usual path integrals to arbitrary Hamiltonians by writing

the actions in terms of the Weyl transforms rather than the classical Hamiltonians. On

the other hand, the equivalence between the centre path integral and the one defined

by (q−, q+) allows us to incorporate in the former the difficult discussions about the

convergence of the latter. Of course, it will be difficult to verify convergence for the

complete generality of path integrals that can be defined in the Weyl representation,

though this question is now seen in a clearer light than in the original presentation [11].

7 Stationary states

One of the outstanding problems of quantum mechanics is the development of a full the-

ory for the semiclassical limit of stationary states. We have presented a simple derivation

of such a limit for the evolution operator for an arbitrary quantum Hamiltonian, but

the traditional theory for energy eigenstates is restricted to classically integrable systems.
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These have L independent constants of the motion commuting with the Hamiltonian.

Classically this restricts the motion to invariant L-dimensional tori in phase space. Arbi-

trary small perturbations will destroy this perfect foliation of phase space even if many

tori are preserved. For stronger perturbations most of phase space becomes chaotic and

we must completely abandon our reliance on invariant surfaces. Arnold’s book [15] is the

standard reference on the perturbation of classical integrable systems. For the problems

concerning their semiclassical limit see [19, 33, 34, 35].

The best course is to rely on the semiclassical theory that we have obtained for the

evolution operator, based on its spectral decomposition,

Ût = exp
{
−it

�
Ĥ
}
=
∑
n

|n >< n|exp
{
− i

�
Ent

}
, (7.1)

where |n > are now taken to be the eigenstates of the Hamiltonian. Taking appropriate

transforms of this formula we can extract information about the eigenstates and the energy

spectrum. In particular we have the spectral operator

−1

π
Im(E + iε− Ĥ)−1 =

1

π�
Re
∫ ∞

0
dt exp

{
i

�
(E − Ĥ)t− εt

�

}

=
1

π

ε

(E − Ĥ)2 + ε2
≡ δε(E − Ĥ) =

∑
n

|n > δε(E −En) < n|, (7.2)

where δε(x) is a normalized function whose width ε can be taken to be arbitrarily small,

so that δε tends to the Dirac δ-function as ε → 0. Notice though that in this limit we

require knowledge of the evolution operator for all time.

By taking the trace of (7.2), we obtain the smoothed density of states:

∑
n

δε(E − En) = −1

π
ImTr(E + iε− Ĥ)−1. (7.3)

We can also sum the wave intensities over a narrow energy range:

−1

π
< q+|Im(E + iε− Ĥ)−1|q− >=

∑
n

δε(E − En) < q+|n >< n|q− > . (7.4)

Finally, by taking the Weyl transform of (7.2), we define, as Berry [14], the spectral Wigner

function,

W (x;E, ε) = (2π�)L
∑
n

δε(E − En)Wn(x)

=
1

π�
Re
∫ ∞

0
dt exp

{
i

�
t(E + iε)

}
Ut(x). (7.5)
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Let us first consider the energy spectrum. Since the trace is merely the integral of the

Weyl representation (5.15),

∑
n

δε(E − En) =
1

π�
Re
∫ ∞

0
dt exp

{
i

�
t(E + iε)

} ∫
dxUt

(2π�)L
(x). (7.6)

Inserting the path integral (6.47) into (7.6) and recalling that the x dependence of Ut(x)

is just a phase equal to ξ ∧ x, where ξ is the side of the polygon ∆N+1 centred on x, we

obtain, using (6.20),

TrÛt =
∫

dxUt

(2π�)L
(x) = 2L

(
1

π�

)(N−1)L

lim
N→∞

∫
dxN · · · dx1dxδ(ξ)

exp

{
i

�
∆N(x1, · · · , xN)− t

N

N∑
n=1

H(xn)

}
. (7.7)

The arbitrary side of the polygon has thus collapsed. In the semiclassical limit, all the

other remaining sides will be small and parallel to a classical trajectory, which must

therefore be periodic. If we now perform the time integration in (7.6), we find that the

density of states will depend on all the periodic orbits with periods below that allowed

by the cutoff factor.

Before deriving the semiclassical amplitudes of the contributions of the periodic orbits

to the density of states, let us view the general features of the spectral Wigner function.

Inserting (6.47) into (7.5), we obtain

(2π�)L
∑
n

δε(E −En)Wn(x) = 2Re lim
N→∞

∫
dxN · · · dx1

(π�)NL

exp
{
i

�
∆N+1(x, x1, · · · , xN )

}
δε

(
E − 1

N

N∑
n=1

H(xn)

)
. (7.8)

If we neglected the width of the δ-function in this expression, it would seem that all the

centres of the polygon, except x itself, would be forced onto the energy shell S of energy

E. Among all these possible polygons, we would obtain a stationary action ∆N+1 for the

one that coincides with the classical trajectory that solves the energy variational problem

studied in section 3. We recall that these trajectory solutions arise in continuous families

as the centre x is varied and that, as x approaches the shell, the trajectory either becomes

very short, or it approaches a periodic orbit. It is important to note that, contrary to the

formula for the density of states, these semiclassical scars of periodic orbits, that affect

the spectral Wigner function close to S, involve only the reduced subset of periodic orbits

that intersect the small centre section studied in Section 3.
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However, the δ-function in (7.8) does not really require that all the centres lie on

the same energy shell. Indeed, it is only the energy average that is restricted. In the

semiclassical limit this is sufficient, since the stationary trajectory must lie entirely within

a single shell if the Hamiltonian is autonomous. Even so, there is a real need to relax the

constraint on the allowed paths. Though there is not yet a full theory of tunneling in the

Weyl representation, we cannot hope to deal with the Wigner function in a double well

potential without allowing chords to join the separate energy shells in phase space.

Let us now evaluate the semiclassical approximation of the spectral Wigner function,

that is, we insert the semiclassical approximation of the Weyl propagator (6.52) into (7.5):

W (x;E, ε) =
2L

π�

∑
j

Re
∫ ∞

0
dt

e−εt/!

|det [1 +Mj(x)]|
1
2

exp
{
i

�
[Stj(x) + Et] + iλj

}
. (7.9)

This integral will be dominated by its points of stationary phase, such that

d

dt
[Stj(x) + Et] = 0. (7.10)

This determines the tj(E) for which

Stj(x) + Etj(E) = SEj(x) (7.11)

is the energy dependent action defined in section 3, where we found that, if x lies inside the

energy shell S, there will be at least one chord in the centre section uniquely determined

by the point x.

If all the chords centred on x and having tips on the energy shell S are sufficiently

separated, we may evaluate (7.9) by the method of stationary phase, which substitutes

the neighbourhood of each stationary point by a Gaussian integral. Taking

d2Stj

dt2
=
dEj

dt
=

(
dtj
dE

)−1

, (7.12)

we obtain the semiclassical Wigner functions as

W (x;E, ε) =
2(L+1)

(2π�)
1
2

∑
j

{
dtj
dE

|det[1 +Mj]|−1

} 1
2

e−
εtj
! cos[�−1SEj

(x) + λ′j ].

(7.13)

Before discussing this formula, let us simplify the amplitude of each of the classical contri-

butions. Recall that we can choose coordinates near the orbit γj, such that one coordinate

is the energy E and the conjugate coordinate is the time along the orbit, t. In section
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3, these were respectively called X2L and X2L−1 close to the shell. In the transformation

δx+ = Mjδx−, we evidently obtain δE+ = δE− and δt+ = δt−. So, using the coordinates

x = (x′, δt, δE) we have

Mj =



mj 0

0 10

01


 (7.14)

and so

det[1 +Mj ] = 4 det[1 +mj ] , (7.15)

where mj is now the (2L−1)× (2L−1) symplectic matrix for the centre map determined

by the j’th orbit or chord. Hence, we finally obtain

W (x;E, ξ) =
2(L)

(2π�)
1
2

∑
j

{
dtj
dE

det[1 +mj ]
−1

} 1
2

e
−εtj
! cos[�−1SEj(x) + λ

′
j] . (7.16)

To understand this semiclassical expression for the spectral Wigner function, we must

return to the discussion of the chord solutions of the centre map. If the energy shell is

closed and convex, there are no chords when x lies outside of S. Once x is inside S there

will be solutions, but with small chords if x is close to S. For one freedom there will be

a single chord, though there will be many possible windings around the periodic orbit,

which in this case we must identify with the shell. Berry [7] showed that in this case we

can infer the correct quantization condition from the identification of the Wigner function

for all the different windings. His work dealt directly with a single Wigner function, rather

than the spectral Wigner function; this can be sampled in (7.16) by taking ε→ 0.

When L ≥ 2, we can no longer identify the energy shell with a single periodic orbit.

If x lies close to the shell, we will always find a small chord connecting the tips of a short

orbit for the centre section. We will also have short chords connecting the tips of orbits

that wind very closely around periodic orbits. In the limit ε → 0, there will always be

periodic orbits traversing the section, no matter how small. However, for any finite ε, the

period of most of these orbits will be too long for them to contribute to (7.16). Overall,

the majority of periodic orbits never enter a small section.

The simple semiclassical approximation to the spectral Wigner function breaks down

when x is taken very close to the shell, for then the time t0 of the short orbit approaches
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the limit of integration. Instead of dealing directly with this problem, it is preferable to

double the range of integration and to use a smooth cutoff function at the origin. Thus

we substitute (7.9) by

W (x;E, ε) � 2L

2π�

∫ ∞

−∞
dt

e−ε2t2/!2

| det[1 +M(x)]| 12 exp
{
i

�
[St(x) + Et]

}
, (7.17)

so that, instead of interacting with the origin, the stationary point t0, interacts with its

time-reversal pair at −t0. This is typical of the way that the stationary points of the Airy

integral

∫ ∞

−∞
exp

{
i

[
α
t3

3
− βt

]}
dt = |α|− 1

32πAi
[
−(α)−

1
3β
]

(7.18)

interact as the free parameters α and β are changed. Hence we can map the integral (7.17)

onto (7.18) using the method of uniform approximation [36, 37], choosing the parameters

in (7.18) so that the stationary phases of both integrals concide, i.e.,

β = − 3

2�t0
SE(x) and α = β/t20 , (7.19)

where t0 is the (positive) stationary point for the short orbit and SE(x) is the correspond-

ing action (7.11). The result is the uniform expression for the spectral Wigner function

W (x;E, ε) =
2L−1

�

e
−ε2t20
!2

| det[1 +m0]| 12

(
2�

3SE(x)

) 1
3

t0Ai


−

(
3SE(x)

2�

) 2
3


 . (7.20)

Strictly this last formula only holds if the cutoff parameter ε is large enough to cancel

all orbits except the shortest. Otherwise, we must add the contributions of the other

orbits already obtained in (7.16). If the evaluation point x is brought away from the

shell, we may expand the Airy function asymptotically as a cosine and thus retrieve the

previous semiclassical approximation. More interesting is the limit where x approaches

S. This is just the situation analysed at the end of section 3, where we derived that the

action SE(x) → Sin(x) for the orbit of the in-map within the small centre section, where

Sin(x) � t30
12

ẋHẋ =
4

3
2

1
2
(E −H(x))

3
2

[ẋHẋ] 12 . (7.21)

Also m0 becomes the identity map, so det[1 +m0] = 2(2L−2).

We thus resolve the indeterminacy in (7.20), where both SE(x) and t0 tend to zero, as

W (x;E, ε) −→
x→S

2(�2ẋHẋ)− 1
3Ai

[
−2
E −H(x)

(�2ẋHẋ) 1
3

]
. (7.22)
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We therefore find that the spectral Wigner function oscillates inside the energy shell,

arrives at a peak just inside the shell and decays exponentially outside. This behaviour

was deduced by Berry [56], having derived it for the Wigner function itself [7] when L = 1.

The caustic structure and the structure of the Wigner function close to a quantized torus

of an integrable system are discussed in references [38, 39]. If we convolute (7.22) with

a Gaussian window, we find that the spectral Husimi function is appreciable only very

close to the energy shell. This semiclassical result generalizes our previous deduction for

the harmonic oscillator to any convex energy shell for an arbitrary number degrees of

freedom.

If instead of integrating (7.22) with a Gaussian window, we integrate it straight, we

will obtain the trace of the spectral operator (7.3). Semiclassically the integral will be

dominated by the region close to the shell. Therefore, if we keep (ẋHẋ) constant and

recall that the integral of the Airy function is unity, we obtain

∑
n

δε(E − En) � (2π�)−L dV

dE
, (7.23)

where V is the phase space volume of the energy shell S. Integrating over the energy, we

obtain the approximate number of eigenstates below the energy E as

N(E) =
V (E)

(2π�)L
. (7.24)

This is the well known Weyl-rule for the density of states, that the number of states

below the energy E is the phase space volume of the shell divided by the minimum

uncertainty volume. Evidently, this is a smoothed approximation, not only because (7.24)

should represent a sequence of unit steps, but also we recall that it is only valid in the limit

where the smoothing ε is large enough to cancel the contribution of all other orbits. This

is only the first term in an asymptotic series in powers of � for the smooth approximation

of the density of states. (See [40] for a derivation based on the Weyl representation).

If we reduce the smooothing, there will be new contributions to the spectral Wigner

function. If x is inside the shell and very close to it, we must take into account pairs

of chords for orbits that wind very close to the periodic orbits that intersect the centre

section. These pairs of chords subtend actions very close to that of the periodic orbit SSE

as was derived in equations (3.10) and (3.11). The periods of this pair of contributions

also approximate the periods of the periodic orbit itself. In the limit as x touches the
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periodic orbit in the shell, or in the limit when the contributing chords enter the centre

section at the border of the equatorial plane, both the chords will determine orbits with

the same period. We therefore have to deal with Airy-like contributions to the spectral

Wigner function, very similar to those already deduced for the short orbit.

Close to the energy shell we can assume that both chords ξlong and ξout project onto

the same end points (x±X ′
+) in the equatorial surface, defined in § 3. Furthermore, we

can identify the corresponding mappings mj . Therefore, the contribution of this pair of

chords near the j’th periodic orbit is

Wj(x,E, ε) =
2L−1

2π�

e−ετj/!

det[1 +mj ]| 12
cos

[
S̄j

�
+ λj

]
∫ ∞

−∞
dt exp

[
i

�
(δSt + Et)

]
, (7.25)

where S̄j =
1
2
(Sout + Slong) and δSt + Et = 1

2
(Slong − Sout) for this pair of orbits at the

stationary time. Thus, the time origin has been brought over to the average time τj .

Integrating, we obtain

Wj(x;E, ε) =
2L−1

�

e−ετj/!

| det[1 +mj ]| 12
cos

{
S̄j

�
+ λj

}

tin

(
2�

3δSj

) 1
3

Ai


−

(
3δSj

2�

) 2
3


 , (7.26)

corresponding to (7.20). Here tin is the time for one of the tips of the out-orbit to complete

another in-traversal of the centre section.

It is worth noting that, so far, we have not invoked the periodic orbit, that is, the

structure of (7.26) arises merely from the need to deal with a pair of nearly degenerate

actions. However, we can now insert the approximations (3.19) and (3.20) for Sout and

Slong into (7.26), obtaining

Wj(x;E, ε) =
2L

| det[1 +mj ]| 12
e−ετj/! cos


SSj +X

′
pBjX

′
p −

4

3
2

1
2
[E −H(x′p)]

3
2

[Ẋ ′
pHẊ ′

p]
1
2




(�2Ẋ ′
+HẊ ′

+)
− 1

3Ai

{
−2

E −H(x′+)

[�2Ẋ ′
+HẊ ′

+]
1
3

}
. (7.27)

Now the time τj refers to the periodic orbit crossing the centre section, SSj is its ac-

tion (with the multiplicity appropriate to the map considered) and x′p = x + X ′
p is the

point where it crosses the approximately plane equatorial surface. Thus the cosine term
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exhibits a small correction with respect to the Berry theory [14]. Even so the general

agreement with that result is emphasised by recalling that Bj is the symmetric matrix

that parametrizes the symplectic matrix mj according to (1.20) and that ẊHẊ = Ẍ∧Ẋ.

The essential improvement of the present theory involves the subtle exchange of

x→ x′+ = x+ JBpX
′
p (7.28)

in the argument of the Hamiltonian in the Airy function. Because of this difference,

the movement of x away from the periodic orbit will lead it through a caustic even if it

remains within the energy shell. Beyond the caustic the contribution of this pair of chords

becomes evanescent.

Thus, we find that there are both important similarities and differences between the

contributions of short orbits and pairs of orbits close to periodic orbits. In both cases,

a fold caustic separates oscillatory contributions to the Wigner function from evanescent

regions, obtaining maximum amplitude close to the caustic. However, the caustic for the

short orbits is identified with the energy shell and there are no phase oscillations along

the caustic. In contrast, the periodic orbit caustic only touches the shell along the orbit

itself, then it receeds into the shell, widening smoothly acording to (3.21). Moroever, the

cosine term in (7.27) leads to phase oscillations along the caustic.

Let us now consider the spectral Husimi function. Taking the view that this is just the

Gaussian smoothing of the spectral Wigner function, we see that the oscillations inside the

shell will be cancelled even along the caustic, but not the scars of the periodic orbits, very

near the shell. Indeed, we have seen that the Husimi propagator will be a path integral

only over small chords. In the semiclassical limit of the spectral Husimi function, these

small chords must connect the tips of trajectories on the same energy shell. No matter

how much we reduce the energy smoothing, we never obtain an appreciable amplitude far

from the energy shell. We can thus justify a weakened version of the hypothesis of Voros

and Berry [41, 42]. In its original form it amounted to the conjecture that the Wigner

function would be uniformly peaked along the energy shell. Now we understand that it is

the Husimi function which should be so peaked. However, the amplitude is not uniform

because of the contributions of the periodic orbits.

Returning to the density of states, we can now deduce the oscillatory corrections to

(7.23) by integrating over the contributions of the scars in the energy shell. Of course,

these scar amplitudes are only evaluated locally and we have seen that they become
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exponentially damped rather than oscillatory far from the periodic orbit. However, in

both cases we only obtain an appreciable contribution to the integral close to the periodic

orbit, so we shall extrapolate the validity of these amplitudes for all x.

By reverting to the special coordinates such that x = (x′, t, E) and taking X ′ as the

difference in coordinates with respect to the periodic orbit, we obtain the contribution of

each scar to the trace of the spectral operator as approximately

ρj =
∫

dx

(2π�)L
Wj(x;E, ε) =

=
2L

(π�)L
e−ετj/!τjρ

| det[1 +mj ]| 12
cos

(
1

�
SSEj

+ λ′j

) ∫
dX ′ exp

[
−1

�
X ′BjX

′
]
. (7.29)

Here we have used the fact that the Airy function integrates to unity and we neglected

the energy dependence of all the other terms. The integral over t is just τjp, the period

of the primitive periodic orbit, no matter how many windings we may attribute to the

j’th periodic orbit. This is because we are performing a spatial integral in which we have

merely used the time along the orbit as an useful coordinate; integrating over all the phase

space requires only a single winding around the orbit. To complete the evaluation of the

periodic orbit contribution, we have merely to evaluate the Gaussian integral. Recalling

from section 1 the Cayley parametrization of symplectic matrices, we obtain immediately

detBj =
det[mj − 1]

det[mj + 1]
, (7.30)

so that

ρj =
τjρe

−ετj/!

det[1−mj]
1
2

cos
{
1

�
SSj(E) + λ

′
j

}
. (7.31)

Adding the contributions of all the periodic orbits to the smooth Weyl term, we obtain

the celebrated Gutzwiller trace formula. [34, 43]

∑
n

δε(E −En) ≈
(

1

2π�

)L dV

dE
+
∑
j

ρj , (7.32)

where the sum over the periodic orbits includes all the repetitions of all the primitive

periodic orbits in the energy shell S of energy E. There is no problem in using (7.31) to

obtain accurate estimates of the smoothed density of states if the damping factor excludes

all but a few periodic orbits with short periods. In this limit the density will be a smooth

function which does not allow us to sample individual states.
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The problem with attempting to go beyond this is that we must then reduce the

smoothing to allow many periodic orbits. For chaotic systems the number of periodic

orbits increases exponentially with period, whereas the amplitudes of the contributions

decrease exponentially with period. Therefore (7.32) is divergent, or at best conditionally

convergent in the limit ε→ 0.

There are many ways that we can deal with this difficulty of obtaining individual

energy levels. The simplest is to use Gaussian smoothing as in (7.20), which will over-

ride any exponential divergence in (7.32) for arbitraly small ε. Berry and Keating [44]

have advanced more sophisticated resummation methods which allow us to obtain good

estimates of individual levels from finite sums of periodic orbits. The number of terms

increases in the semiclassical limit, because the average spacing of levels (the inverse of

(7.23)) decreases as � → 0. (The energy width, ε, for the cutoff needs to be of the

order of the average spacing). It is natural to interpret these results as meaning that the

periodic orbits up to the time �/ε contain the information that is necessary to determine

the individual energy level.

It is tempting to extrapolate these results so as to ressum the periodic orbit contri-

butions for the individual Wigner functions, Wn(x), in (7.4). This is more problematic,

because we do not know a priori the energy En. Indeeed, we should obtain a sharp peak

in W (x;E, ε) whenever E = En for all x! Evidently, it will be very difficult for our

semiclassical theory to achieve this result for points that are outside of the energy shell,

SEn , since the contributions of the Weyl term (short orbits) and the periodic orbits are all

exponentially damped. But even inside and close to the energy shell, the great majority

of the periodic orbits will also be exponentially damped. It is only the subset of periodic

orbits that penetrate the small centre section that will make undamped contributions.

If we allow the period of these orbits to be arbitrarily large, it is possible that they will

behave like a typical sample, providing an energy peak at exactly the same energy as the

full set of periodic orbits, but this places a new restriction on the relation between the

value of � and the minimum volume of the centre section that we can allow. Hence, it is

not possible to resum the orbits that are not part of the local subset within the present

theory as attempted by Agam and Fishman [45]. It would be necessary to restrict the

sum to those orbits that penetrate the centre section, though it is hard to verify that this

produces the same poles.
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We could try to avoid this problem by moving the evaluation point x well into the

energy shell. Certainly we will then have a much more representative subset of periodic

orbits intersecting the centre section. However, we then have to face a new probem since

the orbits that contribute with sizeable chords to (7.13) will no longer be periodic. It is

true that we obtain each of the contributions as continuous families that include periodic

orbits or short orbits as we bring x onto different points of the shell (as explained in section

3) but the actions of each contribution will differ by many multiples of � from that of

SSEj
. It would then be necessary to show that the sum (7.13), over contributions with

very different phases from those of the periodic orbit sum, have dominant contributions

when the energy shell has the correct eigenenergy. Though this is not impossible and

indeed it was shown to be true by Berry for the case of a single freedom [7], it is hard to

demonstrate when L ≥ 2.

It may seem that we cannot use the existing semiclassical theory as a basis for obtaining

local knowledge of individual eigenstates. We have seen that there is an exact path integral

for the trace of the propagator and that its semiclassical limit depends on all the periodic

orbits with the same period. Thus we could obtain the Gutzwiller trace formula by taking

the transform of this semiclassical trace, even if we could not define the semiclassical limit

of the propagator itself. Ozorio de Almeida and da Luz [46] have produced an example

where the operations of taking the trace and taking the semiclassical limit do not commute

for the baker’s map. The present analysis of the semiclassical limit of the spectral operator

and its trace suggests that commutativity could break down for features that depend on

a sufficiently long time of propagation.

Alternatively, it may turn out that the program of orbit resumation does indeed over-

come the challenge of providing the same poles for the Green’s function at all points inside

the energy shell. In so doing it should reveal a few of the secrets of its subtle nature.

Present work indicates that the Fredholm method [47] can be adapted so as to encompass,

the intricate geometrical constructions of the centre section, providing a ressumed theory

for the scars of individual Wigner functions.
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Appendix A: Polygons in phase space

A sequence of n translations in phase space Tξ1 , Tξ2 , · · · , Tξn define an (n + 1)-sided

polygon. Its symplectic area is obtained from Fig. A.1 as

Dn+1(ξ1, · · · , ξn) = 1

2
[(ξ1 ∧ ξ2) + (ξ1 + ξ2) ∧ ξ3 + · · · (ξ1 + · · ·+ ξn−1) ∧ ξn] , (A.1)

a bilinear quadratic form involving all the components of each of the chords ξj . As usual,

we can define this in terms of a symmetric matrix acting on the (2L)n-dimensional vectors

(ξ1, ξ2, · · · , ξn). To this end, we construct the matrix with n diagonal blocks of J :

JJ =




J 0 0 · · ·
0 J 0 · · ·
0 0 J
...

...
...




(A.2)

and another Ln × Ln matrix

IIn =




0 −1 −1 · · ·
1 0 −1 · · ·
1 1 0
...

...
...



, (A.3)

so that

Dn+1 =
1

4
(ξ1, · · · , ξn)JJ IIn(ξ1, · · · , ξn) . (A.4)

Since JJ and IIn are antisymmetric matrices,

JJ IIn = IInJJn =




0 −J −J · · ·
J 0 −J · · ·
J J 0
...

...



, (A.5)

is a symmetric matrix.

The matrix IIn is easily seen to specify the positions of the centres of a polygon,

xj = x+ xj , as a function of the sides.

(x1, · · · , xn) = 1

2
IIn(ξ1, · · · , ξn) , (A.6)
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as can be seen in Fig.A.1 (b). Hence according to the discussion at the end of §2, IIn
can only be inverted for even n, i.e. in the case of an odd-sided polygon. Using (2.10) for

each of the sides, while remembering that the special side ξ has the opposite orientation

to all the others, yields

II−1
n ==




0 1 −1 1 · · ·
−1 0 1 −1 · · ·
1 −1 0 1
...

...
...

...




(n even ) . (A.7)

Combining now (A.4) with (A.6), we have

Dn+1 =
1

2
(ξ1, · · · , ξn)JJn(X1, · · · , Xn) , (A.8)

which has the obvious interpretation as the sum of the triangles that each of the sides ξj

determines with x, as shown in Fig, A.1 (b). Finally, by eliminating the ξ′js in (A.7), we

obtain

Dn+1 = ∆n+1(0, X1, · · · , Xn) = (X1, · · · , Xn)JJnII
−1
n (X1, · · · , Xn) , (A.9)

where

JJnII
−1
n = II−1

n JJn =




0 J −J · · ·
−J 0 −J · · ·
1 −J 0
...

...
...



, (A.10)

Therefore, in the case of odd-sided polygons, their area is a bilinear quadratic form of the

centres of their sides, as of the vectors that make up the sides themselves. Though the

simplest formula is (A.8), it is redundant to determine both the ξj′S and Xj = xj − x.

Adding arbitrary displacemnts to xj , we will alter the area of the polygon:

∆n+1(0, X1 + δX1, · · · , Xn + δXn) = ∆n+1(0, X1, · · · , Xn) +

+2(δX1, · · · , δXn)JJnII
−1
n (X1, · · · , Xn)

+(δX1, · · · , δXn)JJnII
−1
n (δX1, · · · , δXn) . (A.11)

By inspection of (A.10), we find that the coefficient of each term that is linear in δXj

does not dependent on Xj itself. This is also true of ξj, i.e. we found in (2.10) that, if we
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determine a polygon by its centres, the side with a given centre actually does not depend

on this particular centre. We can thus use (A.6) to reduce (A.11) to

∆n+1(0, X1 + δX1, · · · , Xn + δXn) = ∆n+1(0, X1, · · · , Xn) +

+ (δX1, · · · , δXn)JJn(ξ1, · · · , ξn) + ∆n+1(0, δX1, · · · δXn) . (A.12)

which generalizes (2.11) for arbitrary changes of all the sides. For a polygon where x �= 0,

we obtain

∆n+1(x1 + δx1, · · · , xn + δxn) = ∆n+1(x, x1, · · · , xn) +
+ (δx1, · · · , δxn)JJn(ξ1, · · · , ξn) + ∆n+1(0, δx1, · · · , δxn) . (A.13)

To prove that the area of a circunscribed even polygon depends only on the midpoints

of its sides, even though the overall shape is not unique, we first express this area as the

sum of the area of the inscribed polygon δ2n with that of the 2n triangles at the corners

of the circunscribed polygon

∆2n = δ2n +∆1 +∆2 + · · ·∆2n . (A.14)

This is the subdivision in Fig. A.2 (a). However we note that the two other adjoing

subdivisions are also possible. The sides of ∆′
n and ∆′′

n are obtained by doubling alternate

sides of δ2n, so that their area is independent of the arbitrary shape of the circunscribed

polygon. Adding the areas in the second and third figures determines

2∆2n = ∆′
n +∆′′

n + 4(∆1 +∆2 + · · ·+∆n) , (A.15)

which, combined with (A.14), yields

∆2n = 2δ2n − ∆′
n +∆′′

n

2
, (A.16)

which is invariant with respect to the arbitrary corner of the circumscribed polygon.

The reader is reminded that the plane figures used to illustrate each result may be

considered as projections of polygons in a phase space of arbitrary even dimension onto

one of the conjugate planes.
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Appendix B: Centre generating for short times

The approximation (1.30) for the centre function only holds for times that are short

engough for us to approximate the trajectory by a straight segment. To extend the

approximation, we must include the curvature which depends on the quadratic part of

the Hamiltonian, so that locally, near the arbitrary point 0,

H(x) = h · x+ 1

2
xH0x , (B.1)

to third order in x. A change of origin to γ = −H−1h (the “centre of curvature”) turns

the Hamiltonian into an homogeneous quadratic

H(x) =
1

2
(x− γ)H0(x− γ) + C , (B.2)

corresponding to the linear flow

(x+ − γ) = Mt(x− − γ) , (B.3)

where

Mt = etJH0 = 1 + tJH0 +
t2

2
(JH0)

2 +
t3

6
(JH0)

3 + · · · . (B.4)

To derive the function that generates (B.3) we merely determine the coefficients in the

expansion

JB+ = b1t+ b2t
2 + b3t

3 + · · · , (B.5)

from the Cayley parametrization

Mt = [1− JBt][1 + JBt)
−1 = 1− 2Bt + 2(JBt)

2 − 2(JBt)
3 + · · · . (B.6)

The result is

Bt = − t
2
H0 +

t3

24
HJH + 0(t5) , (B.7)

so that the quadratic approximation to the centre function becomes

St(x) = − t
2
(x− γ)H0(x− γ)+ =

t3

24
(x− γ)H0JH0JH0(x− γ) . (B.8)

If we now notice that

ẋ = J
∂H

∂x
� JH0(x− γ) , (B.9)
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we obtain the short time approximation to the centre function as

St(x) = −tH(x)− t3

24
ẋHxẋ+ 0(t5) , (B.10)

where Hx is the Hessian matrix for the Hamiltonian evaluated at the point x.

Evidently, we can continue this expansion for arbitrarily long times in the case of

quadratic Hamiltonians. This can be otained explicitly by expanding tan and tanh in the

simple examples of section § 1.

We can now express St in terms of the energy of the orbit by noting that, to lowest

order in time,

E = H(x±) � H(x± t

2
ẋ) = H(x)± 1

2

(
t

2

)2

ẋHẋ , (B.11)

so that

St(x) = −tE(t) + t3

12
ẋHxẋ . (B.12)

Thus, the energy action can be identified as

SE(x) =
t3

12
ẋHxẋ . (B.13)

This is generally a better approximation than (2.16), being the exact third order expansion

in the case of quadratic Hamiltonians.
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Figure Captions

1.1 A closed curve γ in phase space projects onto L closed curves γ� in the L conjugate

planes. In general the area within each of these curcuits evolves, leaving invariant

the full symplectic area (1.9).

1.2 The parallelogram formed by the vectors ξ and η in phase space projects into paral-

lelograms in each of the conjugate planes.

1.3 The chord ξ is always tangent to the surface S(x) = constant. If S(x) is quadratic,

the centre function equals at each point the symplectic area of the triangle that ξ(x)

subtends with the origin.

1.4 The level curves of the centre functions for the flow derived from the Hamiltonian (a)

H(x) = γpq and (b) H(x) = w
2
(p2 + q2). They are the same families of hyperbolae

and circles as for the Hamiltonian themselves.

1.5 The reflection Rx about a given point x in phase space defines a degenerate chord

construction where all chords pass through the same point.

1.6 The centre representation describes the canonical transformation C : x− → x+ as a

reflection Rx about the point x, so that x− is the fixed point of the composed map

Rx ◦ C. The chord function represents the same canonical transformation as the

translation Tξ by a given vector ξ, so that x− is the fixed point of the map T−ξ ◦C.

1.7 (a) The composition of the two reflections Rx2◦Rx1 is an uniform translation Tξ, where

ξ = 2(x2 − x1). (b) The composition of a reflection Rx with a translation Tξ is a

reflection about the point x± ξ/2 (depending on the order of the transformations).

1.8 Generic bifurcation diagram for a one-parameter family of symplectic maps.

2.1 The composition of two canonical transformations requires that the resulting chord

η close a triangle whose sides are centred on the three centres x1, x2 and x.

2.2 The interpretation of the quadratic centre function as the area of a triangle is fully

consistent with the composition of such canonical transformations.
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2.3 The compostion of four canonical transformation defines a pentagon with midpoints

at x1, x2, x3 and x. The triange ∆′
3 formed by η1 + η2, η3 + η4 and η depends on the

positions of x1 · · ·x4 but not on x.

2.4 The vectors αj joining x to the centre of the vectors η2j + η2j−1 are invariant with

respect to x. The area of the enneagon is decomposed into the pentagon ∆′
5 and

four triangles.

2.5 To evaluate the correction of the centre function for short times t, we compose two

flows for ε = t/2.

2.6 Two possible paths, whose actions are compared by the centre variational principle.

2.7 A typical polygonal line with self crossings for N = 6.

2.8 The symmetrized Legendre transform of the centre action in the variational principle

restricts the q component of ξ to equal (q+ − q−). The new action now includes all

the symplectic area between the polygonal line and the q-plane.

2.9 Neighbouring paths γ with the same fixed endpoints q+ and q− as the trajectory

Γ may also be considered as neighbouring paths with the same centre, by adding

a vertical segment δ. Stationarity of the action for the latter implies that of the

former.

2.10 The composition of three centre functions requires that two triangles with cen-

tres x1, x2, x
′ and x′, x3, x share a common side. This imposes the restriction that

x1, x2, x3, x, must form a parallelogram.

2.11 There are an infinite number of circumscribed quadrilaterals to the centres x, x1, x2

and x3 if they form a parallelogram, but they all have the same symplectic area. In

particular, one of the sides (ξ2 in this case) may shrink to zero to form a triangle.

3.1 The chord through x is determined by the intersections of the energy curve S with

its reflection through x: RxS. Moving x by δx translates RxS rigidly by 2δx.

3.2 The Wigner caustic is the small cusped curve within the energy shell. (a) Within the

caustic there are three chords. (b) On the caustic two chords coalesce. The tangents
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at the tips of the degenerate chord are parallel, so they are obtained as a reflection

through the centre. (c) Outside of the Wigner caustic there is only one chord.

3.3 The chord through x determines two alternative centre actions S(x) related to the

short and the long segments of the periodic orbit that constitutes the shell in the

case L = 1.

3.4 The centre section has the topology of a sphere. If x is sufficiently close to the shell,

the short orbits will be approximately straight. The (short) centre map injects

points from the lower into the upper hemisphere.

3.5 Reducing by one the dimension of the shell S, it would become a two-dimensional

spherical surface and the centre section (S ∩RxS) would be represented by a closed

curve. The orbits define the Poincaré map (1 → 3) as the composition of the in-map

(1 → 2) with the out-map (2 → 3).

3.6 The equatorial surface is the locus of midpoints of the chords joining the outgoing

and the incoming regions of the centre section.

3.7 The point x′ is constrained to the equatorial surface (ES). The variation δξ′ is the

projection of δξ onto the tangent plane (TP).

3.8 Generally the orbits in a narrow neighbourhood of a periodic orbit that intersects a

centre section are not themselves periodic.

3.9 The total symplectic area SS for a periodic orbit that crosses the centre section is

split by the chord through x′p into the components Sin and Sout.

3.10 The long orbit is obtained by adding in-segments to the tips of an out-orbit. In the

case of periodic orbits, the in-segments overlap.

3.11 The chords passing through the centre of the section do not generally belong to a

periodic orbit, but, again, we obtain the long orbit by adding two in-segments to an

out orbit.

3.12 The shaded area of the triangle determines the centre function for the canonical

transformation x− → x+, linearized around x′p. In fact, this is just the out-map, so

the symplectic area of the triangle is δSout. The chord for the long map projects
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onto the same vector between x′− and x′+. When these two points touch the outer

curve that limits the classical motion in the equatorial plane (i.e. the x′ plane), the

full chords ξout and ξlong coalesce in a Wigner caustic.

6.1 (a) The stationary points x1(x) and x2(x) for the composition of two unitary operators

in the semiclassical approximation must be such that x1+ = x2−. (b) In the case

that U2(x) = U∗
1 (x), the only solution collapses the triangle ∆3 into a single chord.

The corner opposite x becomes its image under the Hamiltonian flow.

6.2 The area between the polygonal line and the q axis is the same as that of the succession

of strips with width Qn −Qn−1 and height pn, i.e. the p-coordinate of xn.

A.1 A set of n vectors ξ1, · · · , ξn determines an unique (n + 1)-sided polygon. (a) Its

symplectic area is obtained by adding the successive triangles as each new vector is

added to the sequence. (b) An alternative tecelation of the polygon into triangles

with the common vertex x leads to the expression (A.8) for the symplectic area,

where the Xj are the positions of the centres xj , taking x as the origin.

A.2 Decompositions of a hexagon: (a) Subtracting the inscribed hexagon δ6, the re-

maining symplectic area is subdivided into six triangles, (b) and (c) represent both

alternative ways of subtracting an inner triangle. The three remaining triangles

have four times the symplectic area of those in (a).
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