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Abstract

Considering anyonic oscillators in a two-dimensional lattice, we realize the quan-
tum semi-group sl(q;s)(2) by means of a generalized Schwinger construction. We �nd
that the parameter q of the algebra is connected to the statistical parameter, whereas
the s parameter is related to a s-deformed oscillator introduced at each point of the
lattice.
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1 Introduction

Quasitriangular Hopf Algebras, also called Quantum Groups [1{3], have attracted a lot of
attention from physicists and mathematicians in the last years. They have found appli-
cations in several areas of physics, such as: the inverse scattering method, vertex models,
anisotropic spin chains Hamiltonians, knot theory, conformal �eld theory, heuristic phe-
nomenology of deformed molecules and nuclei, non-commutative approach to quantum
gravity and anyon physics [4] (references therein) and [5{9].

In the last case, an interesting connection between the quantum envelopping algebras
slq(2) and anyons [10{13] was found [6]. It was shown to be possible to realize slq(2) via a
generalized Schwinger construction [14], using non-local, intrinsically two-dimensional ob-
jects. These anyonic oscillators are de�ned on a square lattice 
 and interpolate between
bosonic and fermionic oscillators. The analysis of all deformed classical Lie algebra [15{
16] was also done, and the deformation parameter q is related to the statistical parameter
� as q = exp(i��) (q = exp(2i��) for Uq(Cn)).

These anyonic oscillators are hard core objects, and should not be confused with q-
oscillators, since these objects are local and can live in any dimension. The connection of
q-oscillators with quantum algebras was recently investigated [17{21] thus permitting the
discussion of the thermal properties of systems with quantum group symmetry [22{26]
and the analysis of the possible application to physical phenomena.

The aim of this letter is to construct the sl(q;s)(2) [27, 28] algebra with these anyonic
oscillators. In the next section we review the main results concerning anyonic oscillators,
in section 3 we follow ref.[16] to construct a non-local set of generators for sl(q;s)(2). Section
4 is devoted to constructing anyonic oscillators and to showing how they are connected
to the generators, introduced in section 3, by the Schwinger method. Then we shall also
see that in order to realize sl(q;s)(2) with anyonic oscillators we had to introduce a sort of
s-oscillator at each point of the lattice 
. We make some �nal remarks in the conclusion.

2 Lattice Angle Functions and Anyonic Oscillators

In this section we are going to review the construction of anyonic oscillators de�ned on a
two-dimensional square lattice 
 of spacing one as has been done in ref.[6].

Anyonic oscillators are intrinsically non-local two-dimensional objects [29{33] which
interpolate between fermionic and bosonic oscillators, that can be constructed on a square
lattice 
 by means of a Jordan-Wigner [34] construction which in our case transmutes
fermionic oscillators into anyonic ones.

To each point x = (x1; x2) of the lattice 
 we associate a cut x, made of bonds of the
dual lattice e
 from minus in�nity to x� = x+ o� along the x (horizontal) axis, o� = (1

2 ;
1
2)

being the origin of the dual lattice e
. We denote by x the point x and its associated cut
x.

The angle function between two different points x and y belonging to the lattice 
 is
denoted by �x(x;y) and is de�ned as the angle of the point x measured from the point
y� belonging to e
 with respect to a line parallel to the positive x-axis.
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One can show that

�x(x;y)��y(y;x) =

(
� sgn(x2; y2) for x2 6= y2
� sgn(x1; y1) for x2 = y2:

(1)

In fact, to arrive at this result it is necessary to neglect a term that depends on the
distance between x and y, vanishing when they are far apart. This typical lattice feature
can be eliminated by embedding 
 into a lattice � whose lattice spacing � is much smaller
than 1, then all quantities de�ned on 
 can be seen as restrictions to 
 of quantities
de�ned on �. The above result is obtained when we let � go to zero, since in this limit all
the points x and y of 
 are far apart, from the point of view of the lattice �:

Eq.(1) can be used to endow 
 with an ordering, which will be very useful when
dealing with anyonic oscillators. One chooses the positive sign in eq.(1) and then one
de�nes

x > y =

(
x2 > y2

x2 = y2; x1 > y1;
(2)

and eq(1) becomes
�x(x;y)��y(y;x) = � for x > y: (3)

Even if unambiguous, this theta angle function introduced is not unique, as it depends
on the particular choice of the cuts . Another fundamental choice can be obtained if we
consider the cut � made with bonds on e
 from plus in�nity to �x = y � o� parallel to
the x-axis [6]. With this cut � one can de�ne another lattice angle e��x(x;y) which is the
angle of x as seen from �y = y � o�. With the ordering given by eq.(2) it can be shown
that

��x(x;y)���y(y;x) = �� for x > y: (4)

One can also get from their de�nitions, a relation between these two angle functions

��x(x;y)��x(x;y) =

(
�� for x > y

� for x < y;
(5)

and for any x and y (even if x = y) one has

��y(y;x)��x(x;y) = 0: (6)

One can use the theta function introduced above to de�ne anyonic oscillators, which
are related by a parity transformation. One de�nes them as follows:

ai(x�) = Ki(x�)ci(x); (7)

with �x = x or �x, i = 1; :::; N ; the disorder operator given by

Ki(x�) = exp(i�
X
y2


y 6=x

��x(x;y)c
y
i(y)ci(y)); (8)

and ci(x) are fermionic oscillators obeying

fci(x); ci(y)g = 0n
ci(x)y; ci(y)

o
= �ij �(x;y);

(9)
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and their hermitean conjugate counterparts (which are going to be omitted always in this
letter). In the above formula �(x;y) is the delta function on 
, i.e.

�(x;y) =

(
0 if x 6= y

1 if x = y:
(10)

The anyonic oscillators of type  obey the following generalized commutation relations
for x > y

ai(x)ai(y) + q�1ai(y)ai(x) = 0

ai(x)ai
y(y) + qai

y(y)ai(x) = 0; (11)

where q = exp(i��). For x = y one has

(ai(x))2 = 0;

ai(x)aiy(x) + ai
y(y)ai(x) = 1: (12)

Thus, as one can see from the above discussion, anyonic oscillators are hard core
objects which obey q-commutation relations at di�erent points of the lattice but standard
anticommutation relations at the same point.

The commutation relation among the anyonic oscillators of type � can be obtained
from eqs.(11-12) by replacing q by q�1 and of course the cuts  by �. This is due to the fact
that type �-oscillators can be obtained from type -oscillators by a parity transformation
which, as is well known, changes the braiding parameter q to q�1 [13].

Commutaion relatins among di�erent types of oscillators can also be computed, and
they read

fai(x); ai(y�)g = 0n
ai
y(y�); ai(x)

o
= 0; (13)

and n
ai(x�); ai

y(y)
o
= q

�P
y<x

�
P
y>x

�
ci
y(y)ci(y)

: (14)

Finally, we should mention that di�erent anyonic oscillators (those made up of di�erent
types of fermions) anticommute. With the above de�ned anyonic oscillators one can
realize all the classical deformed algebras (with an introduction of a background term in
the disorder operator Ki(x�) for the B and D series) [15, 16].

3 The sl(q;s)(2) Quantum Semi-Group and its Non-

Local Realization

The commutation relations among the generators of the two-parametric quantum algebra
sl(q;s)(2) [27]

[j0; j�] = �j�;

[j+; j�]s � s�1j+j� � sj�j+ = s�2j0[2j0]; (15)
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where [x] = qx�q�x

q�q�1
, can be derived from the R matrix [35]

R =

0BBB@
q 0 0 0
0 s 0 0
0 q � q�1 s�1 0
0 0 0 q

1CCCA (16)

which is a solution of the constant Yang-Baxter equation

R12R13R23 = R23R13R12: (17)

The comultiplication structure of the algebra [27]

�(qs)�j0 = (qs)�j0 
 (qs)�j0;

�(j�) = (qs)�j0 
 j� + j� 
 (qs�1)
j0; (18)

together with the compatibility equations convert sl(q;s)(2) into a bialgebra. It is not
possible to �nd an antipode function for this algebra, and thus sl(q;s)(2) is more properly
called a quantum semi-group. In the limit s! 1, sl(q;s)(2) goes to sl(q)(2).

An important fact about sl(q;s)(2) is that Pauli matrices are its two-dimensional rep-
resentation, thus the fundamental representation is the same as for the sl(2) algebra,
and all its representations can be obtained from the fundamental one by the use of the
comultiplication rules given by eq.(18).

Let us now go back to the lattice 
 introduced in the last section and assign to each
point x 2 
 a fundamental representaion of sl(q;s)(2) , its generators satisfying the local
algebra

[j0(x); j�(x)] = �j�(x)

[j+(x); j�(x)]s = s�2j0(x)[2j0(x)]: (19)

As the fundamental representation of sl(q;s)(2) is the same as sl(2), the q-deformed struc-
ture of this equation is only formal, thus we just write them in this way for future use.

With the local generators j0(x); j�(x) one can de�ne

J0(x) =
Q

y<x 1y 
 j0(x)


Q

z>x 1z

J�(x) =
Q

y<x (qs)

�j0(y) 
 j�(x)

Q

z>x (qs

�1)
j0(z); (20)

(hereafter we shall drop the symbol of the direct product) and the generators

J� =
X
x2


J�(x)

J0 =
X
x2


J0(x); (21)

obey the algebra of sl(q;s)(2) , eq.(15), as they are obtained by the iterated coproduct of
the envelopping algebra.
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The generators J0(x); J�(x) de�ned above obey the commutation relations

[J0(x); J�(y)] = ��(x;y) J�(x)

[J+(x); J�(y)] = 0 x 6= y

[J+(x); J�(y)]s =
Y
y<x

(qs)�2j0(y)[j+(x); j�(y)]s
Y
z>x

(qs�1)
2j0(z); (22)

and the densities J�(x) obey the braiding relations

J+(x)J+(y) = q2J+(y)J+(x)

J�(x)J�(y) = q�2J�(y)J�(x); (23)

which could be used to prove directly that J0; J� obey the sl(q;s)(2) algebra eq.(15).
Let us now use the angles �x(x;y) and ���x(x;y) introduced in the last section to

construct new non-local densities J0(x), J�(x)

J+(x) =
Y
y<x

q�
2

�
�x (x;y)j0(y) s�2j0(y) j+(x)

Y
z>x

q�
2

�
�x (x;z)j0(z) s�2j0(z)

J�(x) =
Y
y<x

q
2

�
���x (x;y)j0(y) s�2j0(y) j�(x)

Y
z>x

q
2

�
���x (x;z)j0(z) s�2j0(z)

J0(x) =
Y
y<x

1y j0(x)
Y
z>x

1z: (24)

Using the relations obeyed by the theta-angle functions and the local algebra eq.(19),
we can prove that these densities obey the commutation relations eq.(22) as well as the
braiding relations eq.(23) and then realize the algebra sl(q;s)(2), eq.(15).

4 Anyonic Realization of sl(q;s)(2)

In this section we are going to show that the anyonic oscillators de�ned in section 1, with
a suitable choice of the disorder operator Ki(x�), realize, via a Schwinger like construction
the algebra of densities eq.(22) and the braiding relations eq.(22), and consequently also
the sl(q;s)(2) algebra eq.(15).

We begin by recalling that all classical Lie algebras can be constructed �a la Schwinger
on a manifold 
 in terms of fermionic oscillators. In particular, for the sl(2) algebra one
can de�ne at each point x of 


j+(x) = c1
y(x)c1(x)

j0(x) =
1
2

�
c1
y(x)c1(x)� c2

y(x)c2(x)
�

j�(x) = c2
y(x)c2(x); (25)

where ci(x) are fermionic oscillators. These operators obey a local sl(2) algebra

[j0(x); j�(y)] = � �(x;y) j�(x)

[j+(x); j�(y)] = 2 j0(x) �(x;y): (26)
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Once more, global generators J�, J0 can be de�ned from the densities J�(x), J0(x),

J� =
X
x2


J�(x)

J0 =
X
x2


J0(x); (27)

where

J0(x) =
Y
y<x

1y j0(x)
Y
z>x

1z

J�(x) =
Y
y<x

1y j0(x)
Y
z>x

1z; (28)

and it is very easy to see that J�, J0 closes under sl(2). The spin-0 and spin-1=2 repre-
sentations of the local algebra can be combined to give all the unitary representations of
sl(2).

As was stated in the last section, the slq(2) algebra can also be generated by this
local sl(2) algebra, just by changing the comultiplication rules for the representations.
From the point of view of the Schwinger construction, this is equivalent to changing the
oscillators of eq.(26) into the anyonic oscillators introduced in section 2. In fact, with the
choices of densities

J+(x) = a1
y(x)a2(x)

J0(x) =
1
2

�
a1
y(x)a1(x)� a2

y(x)a2(x)
�

j�(x) = a2
y(x�)a1(x�); (29)

and with the help of eq.(14) it is possible to see that J�(x), J0(x), obey eq.(22-23) for
s = 1 [6]. Thus the global generators de�ned as the direct sum of the densities will obey
the slq(2) algebra. We notice here that the choice of the cut  in J0 is immaterial, since
the product aiy(x�)ai(x�) can be written in terms of fermionic oscillators without any
dependence on the disorder operator Ki(x�).

The Schwinger construction of sl(q;s)(2) algebra has, however, a subtlety due to the
presence of the s-commutator in the local algebra eq.(19). Let us now de�ne the local
generators

j+(x) = c1
y(x)s�

1

2
(c1

y(x)c1(x)�c2y(x)c2(x))c1(x)

j0(x) =
1
2

�
c1
y(x)c1(x)� c2

y(x)c2(x)
�

j�(x) = c2
y(x)s

1

2
(c1y(x)c1(x)�c2y(x)c2(x))c1(x): (30)

It is easy to see that these local generators close under the algebra eq.(19).
The anyonic oscillators can be de�ned as

Ai(x�) = Ki(x�)bi(x�); (31)
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with

Ki(x) = exp
X
y 6=x

�
i��x(x;y)c

y
i(y)ci(y) +

i

2
��cyi(y)ci(y)

�

Ki(x�) = exp
X
y 6=x

�
i����x(x;y)c

y
i(y)ci(y)�

i

2
��cyi(y)ci(y)

�
; (32)

and

bi(x) = exp (
i��

2
ci
y(x)ci(x))ci(x)

bi(x�) = exp (
�i��

2
ci
y(x)ci(x))ci(x): (33)

These operators obey, at each point x 2 
, the algebra

bi
2(x�) = 0

fbi(x�); bi
y(x�)g = 1

fbi(x�); bj
y(x�)g = 0 i 6= j; (34)

where � can be  or �, and also

bi(x)bi
y(x�) + s bj

y(x�)bi(x) = sNi(x); (35)

where Ni = ci
yci. So the b operators are hard-core objects that obey a s-deformed

Heisenberg algebra at each point of the lattice 
.
With this choice, the densities J�(x), J0(x) de�ned by

J+(x) = A1
y(x)A2(x)

J0(x) =
1
2

�
A1

y(x)A1(x)�A2
y(x)A2(x)

�
J�(x) = A2

y(x�)A1(x�); (36)

obey the commutation relations eq.(22), the braiding relations (23) and consequently,
J0; J� de�ned by

J� =
X
x2


J�(x)

J0 =
X
x2


J0(x); (37)

satisfy the algebra of sl(q;s)(2).
From their de�nition, it is easy to see that the disorder operators Ki(x�) commute

among themselves

Ki(x�) Kj(y�) = Kj(y�) Ki(x�); for all x,y (38)

for any value for i; j, where the cuts � and � can be either  or �,
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Eq.(38), together with eq.(34,35) give the following relations for the operators Ai(x�)

Ai(x)Ai(y) = �q�1Ai(y)Ai(x)

Ai(x)Ai
y(y) = �qAi(y)Ai(x); (39)

for all x > y. At the same point we haven
Ai(x); Ai

y(x)
o
= 1: (40)

The relations for the cut � can be obtained by changing q into q�1 in the relations
above. We can also �nd relations among oscillators de�ned with di�erent cuts, and they
read

Ai(x)Ai(y�) = �s�1Ai(y�)Ai(x); (41)

for all x,y and
Ai(x�)Ai

y(y) = �s�1Ai
y(y)Ai(x�); (42)

for x 6= y. If x = y we have

Ai(x)Ai
y(x�) = Ki(x)bi(x);Ki

y(x�)bi
y(x�)

= Ki
y(x�)bi(x)bi

y(x�)Ki(x)

= Ki
y(x�)

�
sNi(x) � sbi

y(x�)bi(x)
�
Ki(x)

= �sAi
y(x�)Ai(x) + sNi(x)Ki

y(x�)Ki(x);

(43)

implying the relation

Ai(x)Ai
y(x�) + sAi

y(x�)Ai(x) = q

 X
y<x

�

X
y>x

!
ci
y(y)ci(y)

s

X
y

N(y)

: (44)

The construction we have performed in this section for sl(q;s)(2) algebra uses any-
onic oscillators made with s-deformed oscillators. This is a special characteristic of the
two-parameter algebra, since all deformed one-parameter algebras were constructed with
anyonic oscillators built up of fermions [6, 15, 16].

5 Conclusions

In this letter we have realized the quantum semi-group sl(q;s)(2) on a two-dimensional
lattice 
. We have �rst showed that the generators can be written as a non-local expression
made of the lattice angle function on 
 and we have discussed its connection with a
Schwinger like construction using anyonic oscillators.

Di�erently from the cases previously considered [6, 15, 16], we had to consider a
di�erent kind of anyonic oscillators. These anyonic oscillators are made with s-deformed
fermionic oscillators de�ned on 
, instead of pure fermionic oscillators. The parameter q,
as in the previous cases, is connected to the statistical parameter � by q = exp(i��).
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We �nd that it would be interesting to generalize the analysis we have performed for
the case of multiparametric deformed algebras in order to see what would be the role of
the various parameters, as in the case of two-parameter algebra one being associated to
the statistical parameter and the other being related to the parameter of the deformed
Heisenberg algebra.

The connection of q-oscillators with quantum algebras permitted the investigation of
the possible applications of quantum groups to physical problems through the analysis of
the thermal properties of deformed systems [22{28]. We consider that the analysis of the
connection between quantum algebras and anyons could, as well, provide another area of
research on the possible applications of quantum groups to physical problems through the
anyonic interpretation of planar physics.

Acknowledgement: One of the authors (JLMV) wish to thank CNPq for �nancial
support.
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