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Abstract

A�ne Toda theories based on simple Lie algebras G are known to possess soliton
solutions. Toda solitons has been found by Olive, Turok and Underwood within the
group{theoretical approach to the integrable �eld equations. Single solitons are
created by exponentials of special elements of the underlying a�ne Lie algebra
which diagonalize the adjoint action of the principal Heisenberg subalgebra. When
G is simply laced and level one representations are considered, the generators of
the a�ne Lie algebra are expressed in terms of the principal Heisenberg oscillators.
This representation is known as vertex operator construction. It plays a crucial role
in the string theory as wel as in the conformal �eld theory. Alternatively, solitons
can be generated from the vacuum by dressing transformations. The problem to
relate dressing symmetry to the vertex operator representation of the tau functions
for the sine{Gordon model was previously considered by Babelon and Bernard. In

the present paper, we extend this relation for arbitrary A
(1)
n Toda �eld theory.
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1 Introduction

Exact localizable solutions of a relativistic �eld theory with �nite energy are known
in the literature as (depending on the dimension of the space{time) solitons (kinks)
or monopoles [1]. Such solutions play an important role, since they are interpreted
as new particles, which appear in the spectrum of the theory. As argued in [1, 2], the
particles corresponding to solitons (or monopoles) are of nonperturbative nature.
Usually, the solitons (monopoles) are also characterized by nontrivial topological
charges. This provides a deep connection between �eld theory and geometry [3].
There exists [4] a remarkable duality which exchanges the sine{Gordon model with
the massive Thirring model. Under this duality transformation perturbative parti-
cles are mapped into solitons and vice versa. The duality also exchanges Noether
currents with topological ones. Recently [5], Seiberg and Witten has shown that
there exist supersymmetric �eld theories in four dimensions which exhibit exact
duality.

Within the Inverse Scattering Method (ISM) [6], soliton equations are required
to admit Lax or zero curvature representation. This representation guarantees that
the spectrum of the Lax operator is constant in time. The leading idea of the
ISM is to consider the time evolution as an evolution of the scattering data of
the corresponding Lax operator. Due to the zero curvature condition, the time
evolution of the associated scattering data can be found explicitly. In the framework
of the ISM, solitons correspond to vanishing re
ection coe�cients. Imposing this
condition, the inverse spectral transformation reduces to a linear algebraic system.
The integrability (in the sense of Liouville) also ensures that the interaction between
the single is elastic. This intriguing property survives the quatization and was used
to get exact quantum S matrices in various integrable models [7].

The propagation of waves in one{dimensional lattices with exponential nearest{
neighbour interaction was studied by Toda [8]. In this pioneering paper, exact
soliton solutions were also studied. The Toda lattice equations admit a �eld the-
oretical analogue in 1 + 1 dimensions [9] which exhibit both the integrability and
the relation to the Lie algebras. Due to the last sequence of papers, it became clear
that (generalized) Cartan matrices can be used to construct integrable exponential
interactions in two dimensions. It was also shown that the �eld equations admit
zero curvature representation of a Lax connection whose components belong to a
certain Lie algebra. A deep relation between integrable hierarchies and the Kac{
Mood (or a�ne) Lie algebras [10] has been clari�ed by Drinfeld and Sokolov [11].
In the last paper it was also explained the crucial role of Heisenberg subalgebras
and the related to them gradations in constructing integrable evolution equations
[12, 13].

Soliton solutions of the sine-Gordon model are known since the early days of the

ISM [6]. N soliton solutions in the A
(1)
n Toda models are found by the use of the Hi-

rota method in [14]. It also became clear that physical observables, when evalueted
on solitons, take �nite quantities for imaginary values of the coupling constant only.
These results has been extended by using group theoretical methods [15, 16], which
also provide a bridge between the integrable models and the Kac{Moody algebras.
To be more precise, the soliton tau functions corresponding to a fundamental highest
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weight state j� > of the a�ne Lie algebra admit the representation

��(�)

��(�0)
=< �j

NY
i=1

(1 +XiF
ri(�i))j� > (1.1)

where �0 is the vacuum solution, Xi are numerical factors depending exponentially
on the light cone coordinates and F ri are elements of the a�ne Lie algebra which
diagonalize the adjoint action of the principal Heisenberg subalgebra (for details see
[10, 15] ) and N is the number of the solitons. The above expression is analogous
to the representation obtained by the Kyoto group [17] for the tau function of the
KP hierarchy. Integrable models possess a dressing symmetry [18]. The dressing
group acts by gauge transformations on the Lax connection and preserves its form.
An important property of the dressing symmetry is that it is a Lie{Poisson group.
Applications of this symmetry to the Toda �eld theories has been done in [19].
Using the dressing symmetry, an alternative expression for the soliton tau functions
arises

��(�)

��(�0)
=< �jg�1� (x+; x�):g+(x

+; x�)j� > (1.2)

where g�1� and g+ are triangular elements of the a�ne group which generate solitons
from the vacuum. Babelon and Bernard demonstrated that the expressions (1.1)
and (1.2) are equivalent, at least for a�ne sine{Gordon solitons. In a previous paper
[21] we obtained explicit expressions for the elements g� (1.2). In the present work,
by using the results of [21], we show that the vertex operator representation of the
tau functions (1.1) corresponding to fundamental representations of the a�ne Lie

algebra is a consequence of the dressing group expression (1.2) for arbitrary A
(1)
n

Toda solitons.
The paper is organized as follows: In Sec. 2 we introduce the A

(1)
n Toda models,

the soliton solutions and brie
y comment the results of [21]. Sec. 3 is also com-

plementary: the vertex operator representation of the A
(1)
n algebras in the principal

gradation is derived. In Sec. 4 we obtain the vertex operator representation of the
monosoliton tau functions starting from the dressing symmetry. Sec.5 generalizes
this result to generic soliton solutions.

2 A
(1)
n Toda Solitons and the Related Dress-

ing Transformations

Solitons in the A
(1)
n Toda models has been found by Hollowood [14] who used the

Hirota equations. Physically relevant solutions appear only for imaginary values of
the coupling constant, nevertheless the components of the Toda �eld, are in general
complex. Further, a�ne Toda solitons were studied from the point of view of the
ISM [22]. Due to the last paper, it became clear that the Jost solutions [6] and
the elements of the transition matrix loose, in general, their nice analyticity prop-
erties. Similar phenomenon occurs when one considers the scattering data related
to a linear di�erential operator of an arbitrary order [23] . In [21] we developed an

elegant method to get A
(1)
n Toda solitons. It strongly exploits the fact that the Lax
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connection belongs to the A
(1)
n Lie algebra in the principal gradation (for a sum-

mary of the Lie algebraic background, see the Appendix). The dynamical variables
which we use to describe the soliton dynamics, appeared previously in the study
of the periodic solution of the KdV equation and of the periodic Toda chain [24].
Similar representation for the sine{Gordon solitons was recently used to compute
form factors in the quantum theory [25].

To get the A
(1)
n Toda equations, we impose the zero curvature condition

@+A� � @�A+ + [A+; A�] = 0 (2.1a)

on the Lax connection

A� = �@��+me�ad�E� (2.1b)

0 (2.1c)

@� =
@

@x�
(2.1d)

which belongs to the loop Lie algebra eG = fSL(n+ 1); x� = x� t are the light cone
coordinates in the two dimensional Minkowski space. The elements E� = E�1 are
generators of grade �1 of the principal Heisenberg subalgebra (cf.(A.7)).

Ek = �k
X

p2Zn+1

jp >< p+ kj (2.1e)

and � is a diagonal matrix

� =
1

2

X
i2Zn+1

'iE
ii (2.1f)

The A
(1)
n Toda models has a conformally invariant extension [26] known as the An

Conformal A�ne Toda (CAT) model. It also admits a zero curvature representation
(2.1a) for a connection of the form (2.1d) in the a�ne Lie algebra Ĝ = ŝl(n+ 1) =

A
(1)
n [26]. The a�ne algebra analogue of (2.1f) is

�! �+ �d̂+
ĉ

2(n+ 1)
� (2.2)

where (see the Appendix) d̂ and ĉ are the derivation and the central element respec-
tively. The An CAT equations of motion are

@+@�'i = m2e2�(e'i�'i+1 � e'i�1�'i)

@+@�� = 0

@+@�� = m2e2�
X

k2Zn+1

e'i�'i+1

(2.3)

The �rst of the above equations coincides with the A(1)
n Toda equations provided

that � = 0. As noted in [20], a�ne Toda solitons arise after imposing the last



{ 4 { CBPF-NF-061/97

restriction. In this case [14], (2.3) admit a Hirota bilinear representation

@+�k@��k � �k@+@��k = m2(�k+1�k�1 � �
2
k ) (2.4a)

e�'k =
�k

�k�1
; k 2Zn+1 (2.4b)

e�0�� =
Y

k2Zn+1

�k (2.4c)

where

�0 = (n+ 1)m2x+x� (2.4d)

The above value of the �eld � together with 'k = 0; k 2Zn+1 corresponds to the

vacuum solution of the CAT model. The corresponding A
(1)
n Toda vacuum is ob-

tained by ignoring the additional �eld �. In [21] we used an alternative procedure

to get A
(1)
n Toda solitons. The approach used by us strongly relies on the work [27]

where several soliton equations, including the sine{Gordon equation, has been stud-

ied. The dynamics of the A
(1)
n Toda solitons is governed by the following algebraic

equations

NY
l=1

�kl + !rj�j

�kl + �j
= cj!

rj(1�k)
e(!rj�j)

e(�j)

e(�) = expfm(�x+ +
x�

�
)g (2.5a)

e�'k = (�)N
NY
j=1

�kj

�j
; k 2Zn+1 (2.5b)

The integer N stands for the number of solitons; �j ; j = 1; : : : ; N are (complex)
parameters related to the soliton rapidities and rj are discrete parameters which
take nonvanishing values in the cyclic group Zn+1. The last are also known in the
literature [14, 15, 16] as soliton species. The relation between solitons and N{body
integrable relativistic systems was studied in details [28, 29]. In order to simplify our
analysis, only solitons with j�ij 6= j�j j (i 6= j) will be considered. Certain particular
solutions which violate this restriction are also known [30]. Let us also note that in
contrast to [14, 15, 16], we are working with a real value of the coupling constant.
This wants to say that the solutions (2.5a), (2.5b) are solitons in algebraic sence.

Transformation groups for soliton equations were introduced in [17]. They has
been also studied in relation to the underlying Riemann problem [31] and are known
as groups of dressing transformations. In the present paper we will not comment the
Poisson{Lie properties [18, 19] of the dressing group. For dressing group elements
which create monosoliton solutions from the vacuum in the sine{Gordon model this
problem has been discussed in [32]. One believes that [20] in the limit N ! 1,
the N{soliton solutions are dense in the dressing group orbit of the vacuum, and
therefore, the soliton parameters are expected to provide a convenient coordinate
system on the dressing group.

To introduce the group of dressing transformations we �rst recall that the zero
curvature condition (2.1a) can be equivalently written as the compatibility condition
of the linear system

(@� +A�)T = 0 (2.6)
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We shall also impose the normalization condition T (0) = 1. An element of the
dressing group is represented by a pair of triangular elements (g+(x); g�(x)) of the
corresponding loop (or a�ne) Lie group. This want to say that g�(x) = eHeN�

where H is the Cartan subalgebra and N� contain all the elements of positive
(negative) grade. The gradation is introduced by the derivation d̂ of the loop (a�ne)
Lie algebra (A.18), (A.19). The dressing group acts on the components of the Lax
connection by gauge transformations

A� ! Ag� = �@�g�g
�1
� + g�A�g

�1
� (2.7a)

or equivalently

T (x)! T (x)g = g�(x)T (x)g
�1
� (0) (2.7b)

The last factor in the above expression is added to ensure the normalization con-
dition T g(0) = 1. The gauge transformations are also required to preserve the form
of the Lax connection (2.1d). Therefore, the dressing transformations form a sym-
metry group of the corresponding �eld equations (2.3). Since the group elements
g+ and g� produce the same result (2.7a), it turns out that they are solution of the
factorization problem.

g�1� (x)g+(x) = T (x)g�1� (0)g+(0)T
�1(x) (2.8)

Comparing (2.1d) with (2.7a), one observs that g+ and g� have oposite components
on the Cartan torus eH. Therefore, the solution of (2.8) is unique. The multipli-
cation in the dressing group is the same as in the dual group. Therefore the map
(g+; g�)! g�1� g+ is not a group isomorphism of Lie groups.

In the CAT models based on an arbitrary simple Lie algebras, one associates a
tau function to each highest weight vector j� >

��(�) =< �je�2�j� > (2.9)

Suppose that a solution � (2.2), (2.3) with � = 0 is related to the vacuum �0 =
m2

2 x
+x� by dressing transformation (g+; g�). The following relation [19, 20]

��(�)

��(�0)
=< �jg�1� (x)g+(x)j� > (2.10)

between the tau functions of the two solutions is valid. In [20] it was observed that,
after factorizing out the contribution which belongs to the center of the a�ne group,
one can perform the calculation of the element g� in the corresponding loop group:

g�(x) = e
�

�0��
2(n+1) ĉeg�(x) (2.11)

where eg�, considered as elements of the loop group, generate the A
(1)
n Toda solution

� = 1
2

P
i2Zn+1

'iji >< ij from the vacuum � = 0. We recall that the relation

(2.11) has been established in [20] for the a�ne Lie algebra A
(1)
1 = ŝl(2). However,

it is easy to check that the proof can be easily generalized for an arbitrary a�ne
Lie algebra.

The representation (2.5a), (2.5b) of the N{soliton solutions was used [21] to
calculate the elements eg� which by (2.7a) generate these solutions from the vacuum.
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It turns out that the dressing group elements eg� can be factorized into a product
of monossoliton factors

eg� = eg�(N)eg�(N � 1) : : :eg�(1) (2.12)

where

eg�(i) = eK(Fi)+PieW�(i) (2.13a)

In the above expression, Fi; K(Fi) and Pi are diagonal traceless matrices

Fi =
1

2

X
k2Zn+1

fkijk >< kj Pi =
1

2

X
k2Zn+1

pkijk >< kj

K(Fi) =
X

k2Zn+1

Kk(Fi)jk >< kj

X
k2Zn+1

fki =
X

k2Zn+1

pki =
X

k2Zn+1

Kk(Fi) = 0 (2.13b)

The entries of matrix Kk(Fi) obey the recursion relations

Kk(Fi)�Kk+1(Fi) =
fki + fki+1

2
(2.13c)

which agree with the periodicity propertyKk(Fi) = Kk+n+1(Fi) since Fi is traceless.
The loop algebra elements W�(i) are given by:

W�(i) = �K(Fi) +
nX
k=1

fkiS
k
�(�i)

Sk�(�i) = Bk�(�i)� Bn+1� (�i)

Bk�(�i) = �(
1

2
+

( �
�i
)�(n+1)

1� ( �
�i
)�(n+1)

)Ekk �
X
l?k

( �
�i
)l�k�(n+1)

1� ( �
�i
)�(n+1)

Ekl

�
X
l?k

( �
�i
)l�k

1� ( �
�i
)�(n+1)

Ekl (2.13d)

In the above expressions � stands for the loop (or spectral) parameter (see the
Appendix). We also note that the elements Bk�(�i), in contrast to Sk�(�i), are not

in the loop algebra esl(n+1). Due to the diagonal (�{depending) contributions with
nonvanishing trace, Bk�(�i) are in the loop algebra egl(n + 1). Taking into account
the loop algebra analogue of (A.13) together (A.23) one gets

Sk�(�i) = �
X

r2Zn+1

!r(!�rk � 1)

0@F r0
2

+
X
p?0

F rp

�
p
i

1A (2.14)

The elements of the Cartan subalgebra K(Fi) (2.13b), (2.13c) can also be written
in alternative basis (A.13). Therefore, from (2.13d) and the above expansions, we
obtain

W�(i) =
X

k2Zn+1

fkiW
k
�(�i) (2.15a)
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where

W k
+(�i) = �

nX
r=1

0@1� !�rk

1� !�r
F r0 + !r(1�k)

X
p>0

F rp

�
p
i

1A (2.15b)

W k
�(�i) =

nX
r=1

0@�1� !r(1�k)

1� !�r
F r0 + !r(1�k)

X
p6�1

F rp

�
p
i

1A (2.15c)

Note that neither W k
+(�i) nor W k

�(�i) contain contributions belonging to the
principal Heisenberg subalgebra. From the above expressions one also derives the
identities

W k
+(�i)�W

k
�(�i) = �

nX
r=1

!r(1�k)
X
p2Z

F rp

�
p
i

(2.16)

The above expression together with (2.15a){(2.15c) provides a hint of how to relate
the dressing group approach with the group theoretical methods, developed in [15,
16]. This relation has been conjectured for general integrable hierarchies which
admit a vacuum solution [13].

Up to now we discussed the properties of the factors eg�(k) (2.12) which pro-
duce single solitons without specifying the relation to the N{soliton solution (2.5a),
(2.5b). This relation has been discussed in details in [21]. Here we only list the
results. First of all, it has been shown that the diagonal matrices Fl; l = 1; : : : ; N
(2.13b) satisfy the identitiesX

k2Zn+1

!r(1�k)
�
�kl(!

r�l+1)

�kl(�l+1)
� !�r

�k+1l(!
r�l+1)

�k+1l(�l+1)

�
�k(Fl+1) = �r;rl+1(1� !r)�

�
Y
a6=l+1

!r�l+1 � �a
�l+1 � �a

NY
a=1

�l+1 + �1a

!r�l+1 + �1a
�

�
X

k2Zn+1

�
1 + �l+1

d

d�
ln

�kl

�k+1l
(�l+1)

�
�k(Fl+1) (2.17a)

In the above system r is discrete parameter which belongs to Zn+1; ri = 1; : : : ; n
stands for the soliton species (2.5a), (2.5b) related to the soliton with the rapiditylike
parameter �i for i = 1; : : : N . It was noted in [21] that (2.17a) is a system of
algebraic equations which determines the variables

�k(Fl) = eKk(Fl)�
fkl
2 (2.17b)

The quantities Kk(Fl) and fkl which appear in the above de�nition are introduced
by (2.13a) and (2.13c). The functions on � �al(�) (2.17a), a 2 Zn+1; l = 1; : : : ; N
can be considered as components of n + 1{dimensional column vectors �l(�). The
following relations are valid

�l(�) = D(l l�1)(�)�l�1(�)

�l�1(�) = D(l�1 l)(�)�l(�) (2.17c)
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where D(l l�1)(�) and D(l�1 l)(�) are (n+1)�(n+1) matrices (D(l l�1)(�)D(l�1 l)(�) =
1). Their matrix elements are given by

D
(l l�1)
ab

(�) =

l�b(Fl)

(n+ 1)�bl�1(�l)

X
q2Zn+1

!q(a�b)
�� !qefbl�l

�� !q�l

D
(l�1 l)
ab

(�) =
�al�1(�l)

(n+ 1)
l�b(Fl)

X
q2Zn+1

!q(a�b)
�� !qe�fbl�l
�� !q�l


l =

0@ Y
p2Zn+1

�pl�1(�l))

1A 1
n+1

(2.17d)

The �rst relation (2.17c) together with

�j0(�) =
1

n+ 1
(2.17e)

determines uniquely the vectors �l(�). The entries of the diagonal matrices Pl are
given by [21]

eKa(Fl�1)+
pal�1

2 =
�al�1(�l)


l
(2.17f)

Therefore, the equations (2.17a){(2.17f) provide a recursive method to obtain the
factorized expression (2.12) for a dressing group element in the loop group which
generate the N{soliton solution (2.5a), (2.5b) from the vacuum. In view of the
close relation (2.11) between the dressing group elements in the a�ne group and in
the loop group, the factorization property (2.12) together the recurrence relations
(2.17a){ (2.17f), will play a crucial role in obtaining the vertex operator represen-
tation for the soliton tau function. Note also that in view of (2.13c), the quantities
�k(Fi) (2.17b) satisfy the relation

e�fkl =
�k(Fl)

�k�1(Fi)
(2.18)

which resembles (2.4b). However �k, as it can be seen from (2.17a) and (2.17c),
(2.17d), do not satisfy the Hirota bilinear equations (2.4a) in general. This wants

to say that the �elds Fl (2.13b) do not satisfy the A
(1)
n Toda equations for arbitrary

value of l.
The components �al(�) of the vectors �l(�) (2.17a), (2.17c), (2.17d) satisfy al-

gebraic and di�erential equations which will be important in what follows. First of
all, combining (2.17c) with (2.17d), we getX

a;r2Zn+1

!r(a
0�a)

�� !r�l

�
�� !re�fal�l
�� !r�l

�al(�)


l�a(Fl)
�
�al�1(�)

�al�1(�l)

�
= 0 (2.19)

for any a0 2 Zn+1. From the above identity and the second equation (2.17d) we
deduce the relationsX

a2Zn+1

dD
(l�1 l)
a0a

d�
(�)�al(�) =

�a0l�1(�l)

n+ 1

X
a;r2Zn+1

!r(a
0�a)

�� !r�l

�
�al(�)


l�a(Fl)
�
�al�1(�)

�al�1(�l)

�
(2.20)
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In view of (2.17c), the following representation

�j(�) = D(j j�1) : : :D(10)�0(�) (2.21a)

takes place. Di�erentiating the above expression with respect to � and taking into
account that �0(�) (2.17e) does not depend on the spectral parameter, one obtains

d �j

d�
(�) =

jX
l=1

D(j l)(�)
dD(l l�1)

d�
(�)�l�1(�) (2.21b)

where the matrices D(j l)(�) for j � l are given by

D(j l)(�) = D(j j�1)(�) : : :D(l+1 l)(�)

�j(�) = D(j j�1)(�)�l(�)

D(j j)(�) = 1 (2.21c)

Since D(l�1 l) is the inverse of D(l l�1), we can rewrite (2.21b) as follows

d �j

d�
(�) = �

jX
l=1

D(j l�1)(�)
dD(l�1 l)

d�
(�)�l(�) (2.21d)

Inserting (2.20) into the above identity we obtain

d �kj

d�
(�) = �

1

n + 1

jX
l=1

X
a;a0;r2Zn+1

!r(a
0�a)

�� !r�l
D
(j l�1)
ka0

(�)

�
�al(�)


l�a(Fl)
�
�al�1(�)

�al�1(�l)

�
(2.22)

This result will be used in Sec. 5 to demonstrate the equivalence between the
expressions (1.1) and (1.2) for the N{soliton tau functions.

3 Free �eld realization of the A
(1)
n Lie alge-

bras in the Principal Gradation.

Realizations of in�nite dimensional Lie algebras in terms of harmonic oscillators
play a crucial role in the representation theory. They are also important in the
applications to the string theory and the two dimensional conformal models (for a

review, see [33]). In the simplest case of A(1)
1 = ŝl(2), the free �eld (or vertex oper-

ator) construction was obtained in [34]. This result has been generalized for a�ne
Lie algebras ĝ in the principal gradation [35]. This occurs when the underlying
classical Lie algebras g is simply laced and the level of the corresponding represen-
tation is one. The generalization of the vertex operator realisation of ĝ with g being
non{simply laced as well as for twisted a�ne Lie algebras, is also known [15, 16]. In

the present Section we limit our attention on the A
(1)
n Lie algebras in the principal

gradation only. A rather involved exposition on the subject is given in [10].
The construction of solutions of CAT models (2.1a), (2.1d), (2.2), (2.3) can

be done by using irreducible highest weight representations of the corresponding
a�ne algebra. The representation spaces are generated by the action of arbitrary
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products of negative grade elements (A.19) on the highest{weght state j� >. The
last is annihilated by the elements of positive grade

F rk j� >= 0 ;

k > 1 ; r 2Zn+1 (3.1a)

where we have used the notation (A.15). We also recall that F 0
p(n+1) � 0 ; p 2 Z

since these elements are not in the a�ne algebra. The highest{weight state is also
an eigenvector of the subalgebra ĝ0 of the elements of Zgrade zero (A.18), (A.19)

F r0 j� >= �(F r0 )j� > ; d̂j� >= �(d̂) ; ĉj� >= �(ĉ)j� >

(3.1b)

In view of (A.23), the generators Ek = (n + 1)F 0
k (k 6= 0mod(n + 1)) form a

Heisenberg subalgebra. It is also known as the principal Heisenberg subalgebra.
Since Ek are bosonic oscillators, there is a Fock representation, built up on the Fock
vacuum

Ekj0 >= 0; k 6 1

< 0jEk = 0; k > �1 (3.2)

It is known that when the value of the central charge ĉ is 1, all the irreducible highest

representations of the Lie algebras A
(1)
n are expressed in terms of the elements of

the (principal) Heisenberg subalgebra only [10, 34, 35]. To proceed we shall need
the following notations

E(�) =
X
k2Z

k 6=0 (mod(n+1))

Ek
�k

(3.3a)

�r(�) = i
X
k2Z

k 6=0 (mod(n+1))

!�rk � 1

l

Ek
�k

�r(�) = �r+n+1(�) ; �0(�) = 0 (3.3b)

where i is the imaginary unit i2 = �1. The above expressions are related by the
identity

E(�) =
i

n+ 1
�
d

d�

X
r2Zn+1

�r(�) (3.3c)

We also de�ne the bosonic normal product : : in the standard way: Ek with k > 1
are moved to the right, while Ek with 6 �1 are moved to the left in each normal
ordered monomial containing generators of the Heisenberg subalgebra only. Since
the Heisenberg subalgebra does not contain elements of grade zero, it turns out
that each normal ordered monomial of positive (negative) grade annihilates the
Fock vacuum j0 > (< 0j) (3.2). Taking into account (3.2) and the Heisenberg
commutation relations (A.23) we get the contraction identities

�r(�1)�s(�2) =< �r(�1)�s(�2) > + : �r(�1)�s(�2) :

E(�1)�s(�2) =< E(�1)�s(�2) > + : E(�1)�s(�2) : (3.4a)
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where :: is the bosonic normal ordering. The vacuum expectation values are given
by

< �r(�1)�s(�2) >= ln
(�1 � !�r�2)(�1 � !s�2)

(�1 � �2)(�1 � !s�r�2)

< E(�1)�r(�2) >= i
(1� !r�2)�1�2

(�1 � �2)(�1 � !r�2)
(3.4b)

To obtain a realization of the a�ne Lie algebras A
(1)
n we introduce the vertex

operators

V r(�) = : ei�r(�) := e

P
k6�1

1�!�kr

k

Ek
�k e

P
k>1

1�!�kr

k

Ek
�k

r = 1; :::; n (3.5)

From the (bosonic) wick theorem one deduces the following operator products:

E(�1)V
r(�2) =

(!r � 1)�1�2
(�1 � �2)(�1 � !r�2)

V r(�2)+ : E(�1)V
r(�2) :

V r(�1)V
s(�2) =

(�1 � �2)(�1 � !s�r�2)

(�1 � !�r�2)(�1 � !s�2)
: ei(�r(�1)+�s(�2)) :

j�1j > j�2j (3.6)

In view of (A.23) and (3.2) we also get

E(�1)E(�2) =
�1�2

(�1 � �2)2
� (n+ 1)

�n+11 �n+12

(�n+11 � �n+12 )2
+ : E(�1)E(�2) :

j�1j > j�2j (3.7)

By using the notion of radial ordering [33] which is an analogue of the stan-
dard time ordering in the �eld theory, one can extend the operator products (3.6)
and (3.7) to the region j�1j < j�2j. Note also that the products A(�1)B(�2) =
A(�2)B(�1) (j�1j 6= j�2j) with A(�)B(�) being E(�) or V

r(�), become meromor-
phic operator valued functions on the complex variables �1 and �2. Therefore, one
can use the Laurent expansions

V r(�) =
X
l2Z

V r
l

�l
; V r

l =

I
S1

d�

2�i�
�lV (�) (3.8)

Note also that normal ordered terms which appear in the right{hand side of (3.6)
and (3.7) has �nite matrix elements when evaluated between normalizable states in
the bosonic Fock space.

To compute the algebra of commutators of the Laurent modes Ek; k 2Zn(n+ 1)Z
and F rk we shall use the contour deformation technique [33]. Let us brie
y recall it:
suppose that A(�) and B(�) are meromorphic operator valued functions on � which
locally commute A(�1)B(�2) = A(�2)B(�1) for (j�1j 6= j�2j). Then the commutator
between the Laurent coe�cients

Ak =

I
S1

�kd�

2�i�
A(�) ; Bl =

I
S1

�ld�

2�i�
B(�) (3.9a)
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is given by

[Ak; Bl] =

 I
j�1j>j�2j

�

I
j�1j<j�2j

!
�k1

d�1
2�i�1

�l2
d�2
2�i�2

A(�1)B(�2) (3.9b)

Using the above identity, the Cauchy theorem and taking into account (3.6) one
gets

[Ek; V
r
l ] =

 I
j�1j>j�2j

�

I
j�1j<j�2 j

!
�k1

d�1
2�i�1

�l2
d�2
2�i�2

Ek(�1)V
r(�2) =

=

I
�l+12

d�2
2�i�2

 I
C�2

�

I
C!r�2

!
�k+11

d�1
2�i�1

(!r � 1)
V r(�2)

(�1 � �2)(�1 � !r�2)
=

= (!kr � 1)V rk+l (3.10a)

where C� stands for a small anti{clockwise oriented contour which surrounds the
point �. Similarly from the second equation (3.6) we obtain the commutators

[V r
k ; V

s
l ] =

(!r � 1)(!s � 1)

(!r+s � 1)
(!sk � !rl)V r+s

k+l

r + s 6= 0 (mod n + 1) (3.10b)�
V rk ; V

�r
l

�
= �!r(1� !�r)2

�
(!�rk � !rl)Ek+l + k!�rk�k+l;0

�
(3.10c)

In deriving the above equations we have also used the identity

�r(!
p�) = �p+r(�)� �p(�)

which is a straightforward consequence from (3.3b). Using the contour deformation
technique one also concludes that (3.7) is equivalent to the Heisenberg commutators
(A.23). Therefore we conclude that Ek ; k 2 Zn(n+ 1)Ztogether with V r

k ; r =

1; :::; n; k 2 Zform a Lie algebra. The last is isomor�c to A
(1)
n . To see this it is

si�cient to set

F rk =
!rlV r

k

(n+ 1)(!r � 1)
(3.11)

l 2Zn+1; r = 1; :::; n

and to verify that (3.10a){(3.10c) together with (A.15) coincide with (A.21). In the
above equation, l 2Zn+1 is an additional parameter. Note that the map

Ek �! Ek

V rk �! !rV r
k ; r = 1; :::; n (3.12)

is an automorphism of order (n + 1) of the Lie algebra (3.10a){(3.10c), (A.23).

It is clear that this automor�sm is outer, and therefore the representation of A
(1)
n

corresponding to di�erent values of l (3.11) are inequivalent. Due to (3.2), (3.5) and
(3.11) we obtain highest{weight representations characterized by

F r0 j�l >=
!rl

(n+ 1)(!r � 1)
j�l >

bc = j�l >= j�l >; bdj�l >= 0 (3.13)



{ 13 { CBPF-NF-061/97

where the highest{weight state coincides with the Fock vacuum (3.2). Since bc =
1, we conclude that representations constructed by us are the n + 1 fundamental

representations [10] of the Lie algebra A
(1)
n .

We further proceed by calculating the tau functions (2.9) in terms of the compo-
nents of the �eld (2.1f), (2.2) with � = 0. Taking also into account the last identity
(A.13), one obtains

� =
1

2

X
1�r�n
k2Zn+1

!r(1�k)'kF
r
0 +

�

2(n+ 1)
bc (3.14)

Combining the above expression with (3.13) we derive

h�l j�j�li =
�

2(n+ 1)
+

1

2(n+ 1)

X
1�r�n

k2Zn+1

!r(l+1�k)

!r � 1
'k (3.15)

Therefore the group theoretical tau functions satisfy the identities

��k (�)

��k�1(�)
= e�'k (3.16a)Y

k2Zn+1

��k (�) = e�� (3.16b)

Comparing the above identities with the de�nition (2.4a){(2.4c) of the Hirota tau
funtions we get the relations

��k(�) = e�
�0
n+1 �k(�) (3.17)

where �0 was given by (2.14).

4 Derivation of the vertex operator repre-

sentation for one{soliton solutions.

In the present Section we focus our attention on the equivalence between the rep-
resentations (1.1) and (1.2) in the case of one{soliton solutions of the An CAT
equations. The existence of one{solitons, i. e. solitary waves which propagate with-
out changing their shape, is not a distinguishing property of the integrable evolution
equations. As a counter{exemple, one can quote the existence of kink solution of the
'4 model in 1+1 dimensions [1]. On the other hand, the presence of of multisoliton
con�gurations which describe the elastic collision of an arbitrary number of solitary
waves is an idication of the the integrability of the the corresponding system.

In accordance with (2.5a), (2.5b) the evolution of a single soliton is dictated by
the equations

e�'k =
1 +Xk

1 +Xk�1

Xk = �
!rk

c

e(�)

e(!r�)
(4.1)
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where � is the unique rapiditylike parameter, r = 1; : : : ; n is the soliton species and
c stands for the constant which appear in the right{hand side of (2.5a). From the
above identities it follows that the corresponding tau functions (2.4a), (2.4b) are
given by

�k = 1 +Xk (4.2)

In this section we shall demonstrate that the representations (1.1) and (1.2) for the
one{soliton tau functions associated to an arbitrary fundamental representation of

the Lie algebra A
(1)
n are equivalent. Let eg�(�) are the dressing group elements which

generate the one{soliton solution (4.1) of the A
(1)
n Toda model, from the vacuum.

Taking into account (2.12) and (2.13a) we get the expression

eg(�) = eg�1� (�)eg+(�) = e�W�(�):eW+(�)

� =
1

2

X
k2Zn+1

'kE
kk (4.3)

where 'k are the components of theA
(1)
n Toda �eld and (2.15a)W�(�) =

P
k2Zn+1

'kW
k
�(�).

The elements W�(�) has been introduced by (2.15b), (2.15c). In what follows we
shall use the representations

W�(�) =
nX
k=1

'kfW (k)
� (�)

fW (k)
� (�) = W

(k)
� (�)�Wn+1

� (�) (4.4a)

fW (k)
� (�) = �

nX
k=1

1� !�rk

1� !�r

I
�?j�j

d�

2�i�

!r� � �

�� �
F r(�) (4.4b)

where

F r(�) =
X
p

F rp

�p
; F rp =

I
�pd�

2�i�
F r(�) (4.4c)

To calculate the element (4.3) in the fundamental representation (3.11), (3.13) of

the a�ne Lie algebra A
(1)
n we �rst introduce the notation.

h(�) = e��W�(�):e�W+(�)

h(�) =
1X
l=0

�l

l!

dl

d�l
h(0) (4.5a)

dl

d�l
h(0) = �W�(�)

dl�1

d�l�1
h(0) +

dl�1

d�l�1
h(0):W+(0) =

=
lX

k=0

(�)k
�
l

k

�
W k
�(�)W

l�k
+ (�) (4.5b)

Using (4.4a), (4.4b) and since the matrix (2.1f) is traceless, one can also write

W�(�) =
nX
r=1

b'r
1� !�r

I
j�j?j�j

d�

2�i�

!r�� �

�� �
F r(�) (4.6)
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where we have introduced the discrete Fourier transform of 'k ('k = 'k+n+1)
according to the expressions

b'r = X
k2Zn+1

!�kr'k; 'k =
1

n+ 1

X
r2Zn+1

!kr'r (4.7a)

Let us also recall the identityX
k2Zn+1

!k(i�j) = (n+ 1)�
(n+1)
i;j (4.7b)

where the �
(n+1)
i;j is the Kronecker symbol on the cyclic group: it vanishes for

i� j 6= 0 (modn + 1) and �
(n+1)
i;j = 1 if i� j = 0 (modn+ 1).

We proceed by calculating explicitly the taylor serie (4.5a). First of all, we note
that

dh

d�
(0) = W+(�)�W�(�) =

= �
nX
r=1

b'r
1� !�r

I
C�

d�

2�i�

!r�� �

�� �
F r(�) =

= �
nX
r=1

b'r!rF r(�) (4.8)

Note that these identities are in accordance with (2.15a), (2.16). To calculate the
higher derivatives of h(�) (4.5a) we �rst observe that due to (3.6) one gets

W�(�)V
r(�)� V r(�)W+(�) =

=
1

n + 1

nX
s=1

!s(k+1) b's
(!s � 1)2

 I
j�j>j�j

�

I
j�j<j�j

!
d�

2�i�

!s�� �

�� �
V s(�)V r(�) =

=
1

n + 1

nX
s=1

!s(k+2) b's
(!s � 1)2

 I
j�j>j�j

�

I
j�j<j�j

!
d�

2�i�

�� !r�s�

�� !r�
: ei(�s(�)+�r(�)) :=

=
1

n + 1

nX
s=1

!s(k+1)

!s � 1
b'sV r+s(�) (4.9)

k 2Zn+1

in the irreducible representation of A
(1)
n with a highest{weight j�k > (3.11){(3.13).

Using the above identity together with (4.5b), it is easy to prove inductively that

dlh

d�l
(0) = (�)l

nX
s1;:::;sl=1

lY
j=1

	sj (�):V
s1+:::+sl(�) (4.10a)

	s(�) =
1

n+ 1

!s(k+1) b's
!s � 1

(4.10b)

where we have omited the dependence on the parameter k 2Zn+1 which label the
di�erent fundamental representations of the a�ne Lie algebra. Substituiting the
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last result into the Taylor expansion (4.5a), it turns out that (4.3) is given by the
following intermediate expression

eg(�) = h(1) =
1X
l=0

(�1)l

l!

nX
s1;:::;sl=1

lY
j=1

	sj (�):V
s1+:::+sl(�) (4.11)

In order to write the right{hand side of the above identity in a more convenient
form, we recall that in view of (3.3b) and (3.5), the vertex operators are periodic
functions on the upper case index V s(�) = V s+n+1(�) with V 0(�) = 1. This obser-
vation suggests us to introduce the commutative associative algebra F of (complex)
dimension n+ 1. It is generated by the elements V s; s 2Zn+1. The multiplication
? in F is de�ned

V r ? V s = V r+s (4.12)

Due to the periodicity condition, the element V 0 = V s+n+1 is the unity of F . It
is worthwhile to note that (4.12) describe the "fusion rules" of a class of Rational
Conformal Field Theoies [36]. They correspond to a theory of a free massless scalar
�eld in two dimensions which is compact�ed on circle with a rational value of the
square of the radius. The algebra F can be endowed with a symmetric bilinear
invariant form

< a; b >F = < b; a >F

< a; b ? c >F = < a ? b; c >F

a; b; c 2 F (4.13a)

which is uniquely �xed by

< V r; V s >F= �n+1r+s (4.13b)

The algebra F together with the above bilinear form is an example of a Fr�obenius
algebra. Fr�obenius algebras and their deformations are powerful tool in the study
of the Topological Field Theory [37]. We go back to the problem to simplify the
expression (4.11). Using the multiplication rules (4.12) we can rewrite (4.11) in the
following form

eg = F expf�
nX
s=1

	s(�)V
sg (4.14)

where the symbol F means that the exponential is taken in the Fr�obenius algebra
(4.12), (4.13a), (4.13b). In the above expression the dependence on � of the ele-
ments V s; s = 1; : : : ; n was skipped. Note that the Fourier transformation (4.7a)
diagonalizes the "fusion rules" (4.7a)

V r ? V̂ s = !prV̂ p

V̂ p ? V̂ q = (n+ 1)�n+1p;q V̂
p (4.15)

Substituing the above expression into (4.14) we obtain

eg =
1

n+ 1

X
p2Zn+1

e�
Pn

s=1
!ps	s(�)V̂ p =



{ 17 { CBPF-NF-061/97

=
1

n+ 1

X
p;r2Zn+1

!�pr :e�p(�)V r (4.16a)

�p(�) = �
nX
s=1

!ps	s(�)

p 2Zn+1 (4.16b)

Due to the identity (4.7b), the above quantities satisfy the restrictionX
p2Zn+1

�p(�) = 0 (4.17a)

Moreover, taking into account (4.10b), we get the recurrence relations

�p(�)� �p+1 = 'p+k+1 (4.17b)

where k 2 Zn+1 is the parameter which labels the n + 1 unequivalent fundamen-

tal representation of A
(1)
n (3.11), (3.13). Comparing (4.17a) and (4.17b) with the

de�nition (2.4a){(2.4c) of the Hirota tau functions, we get

e�p(�) =
�p+k(�)

(
Q
l2Zn+1

�l(�))
1

n+1

; p 2Zn+1 (4.18)

Substituting back the above expression into (4.16a) and taking into account (4.1)

as well as the vertex operator realization of the a�ne Lie algebra A
(1)
n (3.11), (3.8),

we conclude that

eg(�) = 1

n + 1

X
p;r02Zn+1

!�pr
0
e�p(�)V r

0
(�) =

=
1

(n + 1)
Q
l2Z(n+1)

�
1

n+1

l
(�)

X
p;r02Zn+1

�
!�pr

0
+ !p(r�r

0)+rkX0F
r(�)

�
=

=
1Q

l2Z(n+1)
�

1
n+1

l
(�)

(1 + (n+ 1)(!r � 1)X0F
r(�)) (4.19a)

From the above identity, (2.10), (2.11) and (2.4c) one derives the relation

��k (�)

��k(�0)
= e

�0��
n+1 h�k jeg�(�)eg+(�)j�ki =

e
�0��
n+1Q

l2Z(n+1)
�

1
n+1

l
(�)

h�k j(1 + (n+ 1)(!r � 1)X0F
r(�))j�ki =

= h�k j(1 + (n+ 1)(!r � 1)X0F
r(�))j�ki (4.19b)

Therefore, the representations (1.1) and (1.2) are equivalent in the one{soliton case.

5 N{soliton tau fuctions and vertex opera-

tors.

The existence of N -soliton solutions is a peculiar property of the integrable systems.
From another point of view [29], generic soliton solutions provide a relation of classes
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of solutions of integrable nonlinear partial di�erential equations with the �nite di-
mensional mechanical systems. The last are known as N -body integrable systems
(for a review, see [28]). The N -soliton solutions, in the in{ and out{ limit, become
asymptotically a superposition of monosolitons separated in the space. Moreover,
the transformation from the in-variables to the out-variables is canonical. The un-
derlying generating function of this transformation is known as the classical S-matrix
[6]. An intriguing property of the classical S-matrix is that it is represented as a
sum of terms, each of them representing a two-particle scattering. It is well known
that the last property admits a generalization valid within the quatum theory: the
quatum S-matrix which describes collision of solitons in a given quantum integrable
model is a product of factors describing two particle interactions [7]. We recall

that the algebraic N -soliton solutions (2.5a), (2.5b) in the A
(1)
n Toda Models are

generated from the vacuum by the dressing group elements (2.12), (2.13a)- (2.13d),
(2.14), (2.15a), (2.15c). Due to the factorized expression (2.12), we can also write

eg = eg�1� eg+ = eg�1� (1) : : :eg�1� (N):eg+(N) : : :eg+(1) =
= eg(1) : Ad eg�1+ (1)(eg(2)) : : :Ad(eg�1+ (1)) : : :eg�1+ (N � 1)):(eg(N))eg(i) = eg�1� (i)eg+(i) (5.1)

In the above expression and in what follows we shall assume that the rapidity like
parameters �i ; i = 1; : : : ; N corresponding to the factors (2.13a)-(2.13d) are
radially ordered j�1j > j�2j > : : : > j�N j. In view of (4.16a), (4.16b) and the vertex

operator construction of the a�ne Lie algebra A
(1)
n (3.5), (3.8), (3.11), to calculate

(5.1) in the fundamental representations, one �rst has to obtain an expression for
the adjoint action of eg+(i) on the alternative basis (A.15). To do that we �rst note
that diagonal traceless (n + 1) � (n + 1) matrices D =

P
k2Zn+1

dkjk >< kj are
written in the alternative basis (A.13), (A.15) as follows

D =
X

s2Zn+1

!sd̂sF
s
0 (5.2)

where d̂s; s 2 Zn+1 is the discrete Fourier transformation (4.7a) of the diagonal
entries of D. Note that F 0

0 is not an element of the Lie algebra An. However,
since D is traceless, it is clear that d̂0 =

P
k dk = 0. The above expression can

be considered as an element either of the classical Lie algebra An or of the a�ne

algebra A
(1)
n . Taking into account the commutation relations (A.21) together with

(A.23), it is easy to get

[F r(�); D] =
1

n+ 1

X
k2Zn+1

!s(!sk � 1)d̂s
�k

F r+s
k

(5.3a)

from where it is easy to get:

e�DF r(�)eD =
1X
l=0

(�1)l

l!
adlD:F r(�) =

=
X
k2Z

1

�k

1X
l=0

1

l!

X
s1;:::;sl2Zn+1

lY
j=1

!sj
!sjk � 1

n+ 1
d̂sj F

r+s1+:::+sl
k

(5.3b)
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The above expression is of the same form as (4.11). This suggests to use the
approach developed in Sec.4 to write (5.3b) explicitly as a linear combination of
the a�ne algebra elements. In order to do that we �rst introduce the following
(reducible) representation of the algebra F (4.12)

V s(F rk ) = F r+s
k

r; s 2 Zn+1 ; k 2Z (5.4)

Therefore, in complete analogy with the derivation of the compact expression (4.14),
we conclude that

e�DF r(�)eD =
X

k2Zn+1

1

�k
Fexp(

X
s2Zn+1

!s(!sk � 1)

n+ 1
d̂sV

s)(F rk ) (5.5)

As in Sec. 4, we diagonalize the operators V s (5.4)

V s(F̂ pk ) = !psF̂
p
k

F̂
p

k
=
X
r

!�prF̂ rk F rk =
1

n+ 1

X
p

!prF̂
p

k
(5.6)

Combining (5.5) with (5.6) we obtain

e�DF r(�)eD =
1

n + 1

X
k2Z

p2Zn+1

!pr

�k
edk+p+1�dp+1 F̂

p

k =

=
1

n+ 1

X
k2Z

p;s2Zn+1

!p(r�s)

�k
edk+p+1�dp+1 :F sk =

1

n+ 1

X
l;p;s

!p(r�s)
edl+p+1

edp+1

X
l2Z

F s
k(n+1)+l

�k(n+1)+l
=

=
1

(n+ 1)2

X
l;p;q;s

!p(r�s)+lq
edl+p+1

edp+1
F s(!q�) (5.7)

As a consequence of the above identity and (2.17f), one obtains

e�ad(K(Fi)+Pi)F r(!a�) =
X

s;q2Zn+1

U rasq (i)F
s(!q�) (5.8a)

where K(Fi) and Pi are diagonal traceless matrices (2.13b) and

U rasq (i) = M r+a
s+q (i)N

a
q (i)

M r
s (i) =

!s�r

n + 1

X
p2Zn+1

!p(r�s)

�pi(�i+1)

Na
q (i) =

!a�q

n + 1

X
p2Zn+1

!p(q�a)�pi(�i+1) (5.8b)

In what follows we shall also need the commutators
�
W k

+(�i); F
s(�)

�
where the

a�ne algebra elements W k
+(�i) and F

s(�) are given by (2.15b) and (4.4c) respec-
tively. Using (A.21) with ĉ = 1 we geth
W k

+(�i); F
s(�)

i
= �

1

n + 1

nX
r=1

(1� !�rk)�i � !s(1� !r(1�k))�

(1� !�r)(�i � !s�)
F r+s(�) +
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+
1

n + 1

nX
r=1

(1� !�rk)�i � !�r(1� !r(1�k))�

(1� !�r)(�i � !�r�)
F r+s(!�r�)�

�
1

(n+ 1)2

nX
r=1

!�rk��i

(�i � !�r�)2
�
(n+1)
r+s;0 ; j�ij > j�j (5.9a)

From the above expression, (2.13b) and (2.15a) we also derive the commutator

[W+(i); F
s(�)] =

X
k2Zn+1

fki

h
W k

+(�i); F
s(�)

i
=

=
1

n+ 1

nX
r=1

f̂ri

1� !�r

�
�i � !r+s�

�i � !s�
F r+s(�)�

�i � �

�i � !�r�
F r+s(!�r�)

�
�

�
f̂�si

(n+ 1)2
��i

(�i � !�s�)2
; j�ij > j�j ; s 2Zn+1 (5.9b)

where f̂ri stands for the discrete Fourier transformation (4.7a) of fki ; k 2 Zn+1.
Using (5.9b) one proves inductively

adlW+(i)F
s(�) =

�i � �

�i � !s�

lX
k=0

(�)l�k
�
l

k

�
�

�
nX

r1;:::;rl=1

�i � !
r1+:::+rk+s�

�i � !�rk+1�:::�rl�

lY
p=1

 rpi F r1+:::+rl+s(!�rk+1�:::�rl�) +

+
�i(�i � �)

(n+ 1)2(�i � !s�)

l�1X
k=0

(�)l�k
�
l � 1
k

�
�

nX
r1;:::;rl�1=1

�!�rk+1�:::�rl�1

(�i � !�rk+1�:::�rl�1�)(�i � !r1+:::+rk+s�)
: f̂�r1:::�rl�1�si

�
lY

p=1

 rpi ; l > 1

 ri =
f̂ri

(n+ 1)(1� !�r)
; r = 1; : : : ; n (5.10)

Note that after the change f̂r;i ! '̂i, the quantities  ri coincide up to phase with
(4.10b). To write the right-hand side of the above identity in a compact form, we
consider the commutative associative algebra A = F � T . We recall that F is
the Frobenius algebra (4.12), (4.13a), (4.13b) while T is spanned on the elements
T
r ; r 2Zn+1. The multiplication in A is introduced by

V r � V s = V r+s ; T
r �Ts = Tr+s

V r �Ts = T
s � V r (5.11a)

we shall also need a speci�c representation of A. It is de�ned by the relations

V r(g(�)F s(�)) = g(�)V r(F s(�)) = g(�)F r+s(�)

T
r(g(�)F s(�)) = g(!�r�)Tr(F s(�)) = g(!�r�)F s(!�r�) (5.11b)
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for any function g on the complex parameter �. It is also assumed that the algebra
A acts trivially on �i (5.10). Using the notations (5.11a) and (5.11b), it is easy to
check that (5.10) can be written as follows

(�)ladlW+(i)F
s(�) =

=
�i � �

�i � !s�

 
(
nX
r=1

 riV
r(Tr� 1))l�

�iF
s(�)

�i � �
� !s(

nX
r=1

!r riV
r(Tr� 1))l�

�F s(�)

�i � �

!
+

+
�i(�i � �)

(n + 1)2(�i � !s�)

* X
p2Zn+1

f̂piV
p; (

nX
r=1

 r;iV
r(1
T T

r�Tr
T 1))l�1� V s

+
F

�

�
1

�i � !s�



�

�i � �
(5.12)

where h ; iF is the invariant bilinear form (4.13a), (4.13b) in the Fr�obenius algebra
F (4.12){(4.13b). We have also used the notation

(P)l� = P � ::: � P| {z }
l

(5.13a)

to indicate that the l�th power of P 2 T is taken with respect to the multiplication
(5.11a). In what follows we shall use the operators

T exp (P) =
1X
l=0

(P)l�
l!

T
exp (P)� 1

P
=

1X
l=1

(P)l�1�

l!
(5.13b)

Note that the second operator has eigenvalue one when applied on the zero modes
of P . Taking into account (5.12) together with (5.13a), (5.13b) we obtain

e�adW+(i):F s(�) =

=
�i � �

�i � !s�

 
T e(

nX
r=1

 riV
r(Tr� 1))

�iF
s(�)

�i � �
� !sT e(

Pn

r=1
!r riV

r(Tr�1))�F
s(�)

�i � �

!
+

�i(�i � �)

(n+ 1)2(�i � !s�)

* X
p2Zn+1

f̂piV
p; T

exp (
Pn

r=1 riV
r(1
TTr�T�r 
T 1))� 1Pn

r=1  riV
r(1
T Tr�T�r 
T 1)

V s

+
F

�

�
1

�i � !s�



�

�i � �
(5.14)

In view of the above equation, we shall need the (reducible) representations (5.11b)
of T (5.11a) which are spanned on the vectors g(!r�)F s(!r�); r; s 2 Zn+1 and g
being an arbitrary meromorphic function on �. It is easy to check that

Gpq(�) =
X

r;s2Zn+1

!�ps+rqg(!r�)F s(!r�) (5.15a)

are eigenvectors of T

V kGpq(�) = !pkGpq(�); TkGpq(�) = !kqGpq(�): (5.15b)
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Due to the identity (4.7b), the inverse of (5.15a) is given by

g(!r�)F s(!r�) =
1

(n+ 1)2

X
p;q2Zn+1

!ps�rqGpq(�) (5.15c)

Note also that

nX
r=1

!rp ri =
fpi

2
�Kp(Fi) (5.16a)

where the diagonal traceless matrices Fi and K(Fi) has been de�ned by (2.13b).
To obtain the above identity we have also used the relations (2.13c). Taking into
account (2.17b) we can write

e�
Pn

r=1
!rp ri = �p(Fi) (5.16b)

substituing back (5.15a){(5.16b) into (5.14) one gets

e�adW+(i):F s(�) =
�i � �

(n+ 1)2(�i � !s�)
�

�
X

p;q;r0;s02Zn+1

!p(s�s
0)+r0q:

�i � !r
0+s0�

�i � !r
0
�

�p(Fi)

�p+q(Fi)
F s

0
(!r

0
�) +

+
��i(�i � �)

(n+ 1)4(�i � !s�)

X
a;q;q0p;p02Zn+1

fai
!as+pq+p

0(q0+1)

(�i � !p+s�)(�i � !p
0
�)
�

�
�a�q(Fi)� �a+q0(Fi)

�a+q0(Fi)(ln�a�q(Fi)� ln)�a+q0(Fi)
(5.17)

Therefore, the adgoint action of the a�ne group element e�W+(i) on the a�ne Lie
algebra, can be written as follows

e�adW+(i):F s(�) =
X

q;v2Zn+1

W sc
qv [Fi](i;�)F

q(!v�j) + Zsc[Fi](i; �) (5.18a)

Due to (2.15a),W+(i) are linear in the entries fki of the diagonal matrices Fi(2.13b).
This wants to say that the relationsX

q;v2Zn+1

W sc
qv [Fi](i;�)W

qv

kl
[�Fi](i;�) = �

(n+1)
sk

�
(n+1)
clX

q;v2Zn+1

W sc
qv [Fi](i;�)Z

qv[�Fi](i;�)+ Zsc[Fi](i;�) = 0 (5.18b)

are valid. Comparing (5.17) with (5.18a) we obtain

W sc
qv [Fi](i;�) = Ks+c

q+v[Fi](i;�)L
c
v[Fi](i;�)

Ks
q [Fi](i;�) =

1

n+ 1

�i � !q�

�i � !s�

X
p2Zn+1

!p(s�q)�p(Fi)

Lcv[Fi](i;�) =
1

n+ 1

�i � !c�

�i � !v�

X
p2Zn+1

!p(v�c)�p(�Fi) (5.18c)



{ 23 { CBPF-NF-061/97

and

Zsc[Fi](i; �) =
!c��i(�i � !

c�)

(n+ 1)4(�i � !s+c�)

X
a;b;p

v;v0

fpi
!sa+(p�a)v+(b+1�p)v

0+c(a�b�1)

(�i � !v�)(�i � !v
0
�)

�

�
�a(Fi)� �b(Fi)

�b(Fi)(ln�a(Fi)� ln�b(Fi))
(5.18d)

Taking into account that the matrices Fi (2.13b) are traceless and the identity

X
p2Zn+1
1�r�n

!(p�a)r

1� !r
fpi = �(n+ 1) ln�a(Fi)

we conclude that (5.18d) can be alternatively written in the form

Zsc[Fi](i; �) =
�(�i � !c�)

(n+ 1)3(�i � !s+c�)

X
a;b;v2Zn+1

!a(s+c+v)�b(v+c)

�� !v�i

�a(Fi)

�b(Fi)
+

+
�!c�

(n+1)
s0

(n+ 1)(�i � !s+c�)
(5.19a)

After certain trivial algebraic manipulations involving the �rst term of the above
expression and using (2.18), (2.17d) we arrive at the result

Zsc[�Fi](i; �) =
�


i(n+ 1)2(!s+c � �i)

X
a;b2Zn+1

!(s+c)a�bcD
(i i�1)
ab

(�)
�bi�1(�i)

�a(Fi)
+

+
�!c�

(n+1)
s0

(n+ 1)(�i � !s+c�)
(5.19b)

The equations (5.8a), (5.8b) and (5.18a) provide an expression for the adjoint
action of the element (2.13a) on the a�ne Lie algebra

eg�1+ (i)F s(!c�)eg+(i) =
X

r;v2Zn+1

(Rscrv(i;�)F
r(!v�) + U scrv(i)Z

rv[Fi](i;�)) =

=
X

r;v2Zn+1

Rscrv(i;�) (F
r(!v�)� Zrv [�Fi](i;�))

j�j j > j�ij (5.20a)

where Rscrv(i;�) are the elements of the matrix R(j;�i) = U(j)W (j;�i) which acts
on thensor product Cn+1 
 Cn+1

Rscrv(i;�) =
X

p;q2Zn+1

U scpq(i)W
pq
rv (i;�) = P cv (i;�)Q

s+c
r+v(i;�)

P cv (i;�) =
1

n + 1

X
p2Zn+1

!(p�1)(v�c)
�� !�ve�fpi�i
�� !�v�i

�pi(�i+1)

�p(Fi)

Qsr(i;�) =
�i � !r�

(n+ 1)2

X
a;b2Zn+1

!(a�1)s�br
�b(Fi)

�ai(�i+1)

X
p2Zn+1

!(b+1�a)p

�i � !p�
(5.20b)
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Note that the second identity (5.20a) is a consequence of (5.18b). Comparing the
above equations with (2.17d) and taking into account (2.18) we obtain the following
alternative expressions

P cv (i;�) =

i

n + 1

X
a;b2Zn+1

!(a�1)v�(b�1)c
1

�ai�1(�i)
D
(i�1 i)
ab

(�)�bi(�i+1)

Qsr(i;�) =
1

(n+ 1)
i

X
a;b2Zn+1

!(a�1)s�(b�1)r
1

�ai(�i+1)
D
(i i�1)
ab

(�)�bi�1(�i) (5.21)

which together with (4.7b) yield

(P (j;�) : : :P (k;�))cv =

j : : :
k

n+ 1

X
a;b2Zn+1

!(a�1)v�(b�1)c
1

�ak�1(�k)
D
(k�1 j)
ab (�)�bj(�j+1)

(Q(j;�) : : :Q(k;�))cv =
1

(n+ 1)
j : : :
k

X
a;b2Zn+1

!(a�1)s�(b�1)r
1

�aj(�j+1)
D
j k�1)
ab

(�)�bk�1(�k)

for k � j (5.22a)

Therefore, as a consequence of (5.20b), (2.21c), (5.18c) and the above identities we
get

(R(j;�j+1) : : :R(k;�j=1))
p0
rv
=

1

(n+ 1)2

X
a;a0;b02Zn+1

!(a�1)v+(a
0�1)p�(b0�1)(r+v) �

�
�ak�1(�j+1)

�ak�1(�k)
D
(j k�1)
a0b0

(�j+1)
�b0k�1(�k)

�a0j(�j+1)
(5.22b)

On the other hand, using (2.17d) and (2.21c), it is not di�cult to show that

D
(j k)
ab

(!r�) = !r(a�b)D(j k)ab(�)

Inserting this identity into (5.22b) and taking into account (2.17e) one obtains

(R(j;�j+1) : : :R(1;�j+1))
p0
rv
=
�
(n+1)
v0

n+ 1

X
a2Zn+1

!(a�1)(p�r)
�aj(!

r�j+1)

�aj(�j+1)

and thereforeX
p2Zn+1

!p(1�k) (R(j;�j+1) : : :R(1;�j+1))
p0
rv
= !r(1�k)�

(n+1)
v0

�kj(!r�j+1)

�kj(�j+1)
(5.23a)

Using similar arguments and (2.17b){(2.22) we also prove the identityX
1�l�j
p2Zn+1

!p(1�k) (R(j;�j+1) : : :R(l;�j+1)Z[�Fl](l;�j+1))
p0 = �

�j+1

n + 1

d ln�kj
d�

(�j+1)(5.23b)

where the functions Zsc[�Fi] has been de�ned by (5.18a), (5.18b).
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Now we are ready to calculate explicitly the product (5.1). Inserting back (5.18a)
and (5.18a) into (5.1) we get

Ad
�eg�1+ (1) : : :eg�1+ (i� 1)

�
F p(�i) =

X
r;v2Zn+1

(R(i� 1;�i) : : :R(1;�i))
p0
rv F

r(!v�i)�

�
i�1X
j=1

(R(i� 1;�i) : : :R(j;�i)Z[�Fj ](j;�i))
p0 (5.24)

On the other hand one can repeat the procedure developed in Sec. 4 and to obtain
a result analogous to (4.16a), (4.16b)

eg(i) = eg�1� (i)eg+(i) = �̂0(Fi)

n + 1
+

X
p2Zn+1

(!p � 1)�̂p(Fi)F
p(�i) (5.25)

where �̂k(Fi), k 2 Zn+1 is the discrete Fourier transformation (4.7a) of �k(Fi)
(2.17b). Inserting back the above expression into (5.24) and taking into account
(5.23a), (5.23b) and (2.17a) we conclude that

Ad
�eg�1+ (1) : : :eg�1+ (i� 1)

� eg(i) = Yi (1 +XiF
ri(�i))

Xi = (n+ 1)(1� !ri)
Y
a6=i

!ri�i � �a
�l+1 � �a

NY
a=1

�i + �1a

!ri�i + �1a

Yi =
1

n+ 1

X
k2Zn+1

�
1 + �i

d

d�
ln

�ki�1

�k+1i�1
(�i)

�
�k(Fi) (5.26a)

Note that due to the evolution equations (2.5a), the quantities Xi depend exponen-
tially on the light cone variables x+ and x�. Combining (5.26a), (2.10) and (2.11)
we deduce the relation

��(�)

��(�0)
= e

�0��
n+1

NY
i=1

Yi < �j(1 +X1F
r1(�1)) : : :(1 +XNF

rN (�N ))j� > (5.26b)

for any fundamental representation with highest weight vector j� > of the a�ne
Lie algebra A1

n+1. Therefore, the representations (1.1) and (1.2) coincide provided
that

e
���0
n+1 =

NY
i=1

Yi (5.27)

We hope to go back to the proof of the above equation elsewhere.

A Appendix

In this Appendix we review the necessary information concerning the Lie algebra

A
(
n1) in the principal gradation. More detailed exposition can be found in [10, 15,

16]. The Lie algebra sl(n + 1), n > 1 is the set of the traceless (n + 1)� (n + 1)
matrices. Within the Cartan classi�cation they are known as An Lie algebras. The
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Cartan subalgebra is spanned the (traceless) linear combinations of the diagonal
elementary matrices Eii = ji >< ij (i = 1 : : :n + 1). The root system can be
embedded into the (n+1)�dimensional Euclidean space. Fixing an orthonormalized
basis ei, the roots are �ij = ei � ej ; i 6= j (i; j = 1 : : :n + 1). To each root one
associates a step operator E�ij = Eij = ji >< jj (i 6= j) which is an eigenvector
of the adjoint action of the Cartan subalgebra H. As simple roots one chooses
the vectors �i = ei � ei+1; i = 1; :::; n. The related step operators satisfy the
commutation relations�

H�; E
��i
�
= ��i:�E

��i = �(�i � �i+1)E
��i�

E�i; E��j
�
= �ijH�i

H� =
X
i

�iji >< ij (A.1)

The generic step operators are obtained by successive commutators of E�i and
their transposed E��i .

In the theory of the Lie algebras it is important to study their �nite order inner
automorphisms. The general theory has been developed by Kac [10] and reviewed
in [12]. In this paper we shall only use a special inner automorphism of the simple
Lie algebra An � of order n + 1 (�n+1 = 1). Before introducing it, we recall that
the fundamental weights are

�i =
iX

k=1

ek �
i

n + 1

n+1X
k=1

ek

2
�i � �j
�i � �i

= �ij ; i; j = 1; : : : ; n (A.2)

We also set � =
Pn

i=1 �i and de�ne [10, 11]

�(X) = SXS�1

S = e2�i
H�

n+1 (A.3)

for an arbitrary element X in the Lie algebra An. Note that in the de�ning repre-
sentation, the element S which implements the automorphism � takes the following
form

S = !
n
2

n+1X
k=1

!1�kEkk

! = e
2�i
n+1 (A.4)

From the commutation relations (A.1) and the above identity, one concludes that
� acts trivially on the elements of H and as a multiplication by phase on the step
operators:

�(H�) = H�

�(E�kl) = !�kl��E�kl = !l�kE�kl

(A.5)
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The Lie algebra G = An together, with automorphism �, is a graded algebra

G = �k2Zn+1Gk

�(Gk) = !kGk

[Gk;Gl] � Gk+l (A.6)

It is well known that for a given simple Lie algebra G, its Cartan subalgebra is
�xed up to a conjugation by elements belonging to the corresponding Lie group.
In particular, instead of H, one can introduce an alternative Cartan subalgebra H

0
,

spanned on the mutually comutting generators:

Ei =
n+1�iX
k=1

Ekk+i +
iX

k=1

En+1+k�ik =

=
X

k2Zn+1

jk >< k + ij (A.7)

To show that the above elements actually generate certain Cartan subalgebra, it
su�ces to note that the matrix with entries


ij = !(i�1)(j�1)


�1ij =
!�(i�1)(j�1)

n + 1
(A.8)

diagonalizes Ei (A.7)


�1Ei
 =
n+1X
k=1

!i(k�1)Ekk (A.9)

It is worthwhile to note that the alternative Cartan subalgebra generators are eigen-
vectors of the inner automorphism �

�(Ei) = !iEi (A.10)

For general simple Lie algebras, it is known [10, 15] that the eigenvalues of the
corresponding automorphism �, when restricted to the alternative Cartan algebra,
are in correspondence to the Betti numbers. To complete the alternative basis of
the Lie algebra An, we introduce the generators

F i = 
Ei+1i
�1 ; i = 1; : : : ; n�
Ei; F

j
�
= (!ij � 1)F j (A.11)

Due to the grade decomposition (A.6) and the above commutation relations one
gets

F i =
X

k2Zn+1

F ik

�(F ik) = !kF ikh
Ei; F

j
k

i
= (!ij � 1)F jk+i (A.12)
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We thus end up with a graded basis which is formed by the alternative Cartan
generators Ei (A.7) and F ik; ; i = 1; : : :n; ; k 2 Zn+1. Due to (A.8) and (A.11) the
transformation which gives back the usual Cartan{Weyl basis is

Eil =
El�i
n+ 1

+
nX
r=1

!r(1�i)F rl�i; i < l

Eil =
En+1+l�i
n + 1

+
nX
r=1

!r(1�i)F rn+1+l�i ; i > l

Eii � En+1 n+1 =
nX
r=1

!r(!�ri � 1)F r0 (A.13)

The commutation relations in the alternative basis are completed by

[F ri ; F
s
l ] =

!sk � !rl

n + 1
F r+s
k+l (A.14)

Introducing notation

F rk =

8<:
F rk r = 1; : : : ; n; k 2Zn+1

1
n+1Ek r = 0 k = 1; : : : ; n

(A.15)

we see that the commutation relations in the alternative basis assume the umiform
expression (A.14).

The An Lie algebras are equiped with a nondegenerated invariant scalar prod-
uct (X; Y ) = tr(X:Y ). The trace is taken in the de�ning representation. In the
alternative basis (A.15) this scalar product is given by

(F rk ; F
s
l ) =

!sk

n + 1
�
(n+1)
k+l;0 (A.16)

where �(n+1)kl is the delta function in the cyclic group Zn+1. To treat integrable
evolution equations, one has to extend the classical Lie algebras by introducing a
spectral (or loop) parameter [11]. This wants to say that the Lax connection belongs
to the loop Lie algebra eG = C [�; ��1]
G. In other words, the loop algebra is the set
of the Laurent series with coe�cients in the corresponding (classical) Lie algebra G.
Therefore eG is spanned on the elements Xk = �kX; k 2Z; X 2 G. The Lie bracket
is

[Xk; Yl] = [X; Y ]k+l (A.17)

Loop algebras eG possess central extension [10], known as a�ne (or Kac{Moody)
algebras Ĝ = eG � C ĉ � C d̂

[Xk; Yl] = [X; Y ]k+l +
k

(n+ 1)
ĉ �k+l;0 (X; Y )h

d̂; Xk

i
= kXkh

ĉ; Ĝ
i
= 0 (A.18)
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The normalization factor which multiplies the central element ĉ is chosen for con-
venience. The derivation d̂ can be used to de�ne a Zgradation in Ĝ:

Ĝ = �k2ẐGkh
d̂; Ĝk

i
= k Ĝk (A.19)

Since � is an automor�sm of the underlying classical Lie algebra G = An = sl(n+1),
it is clear that the commutators (A.18) together with the restriction

X(!�) = �X(�)

X(�) =
X
l2Z

�lXl

�X(�) =
X
l

�(Xl) (A.20)

still de�ne a Lie algebra. In the literature [10, 12, 15] it is known as the a�ne

Lie algebra A
(1)
n in the principle gradation. It is known that this Lie algebra is

isomorphic to A
(1)
n . Taking into account (A.14), (A.16), (A.18), togheter with the

above restrictions, we obtain the commutation relations

[F rk ; F
s
l ] =

!sk � !rl

n + 1
F r+s
k+l +

k!rl

n + 1
ĉ �

(n+1)
r+s;0 �k+l;0

r; s 2Zn+1; k; l 2Z (A.21)

of the A
(1)
n Lie algebra in the principal gradation. Note that the elements F 0

k for
k 6= 0mod(n+1) decoupled since they commute with all the generators. Therefore,
one can set

F 0
p(n+1) � 0 ; p 2Z (A.22)

The generators F 0
k ; k 6= 0(mod) form a basis in the well studied Heisenberg sub-

algebra in the principal gradation [10, 11, 12, 15]. In analogy with (A.17), we will
also use the following generators

Ek = (n+ 1)F 0
k

[Ek; El] = (n+ 1) k �k+l;0 k 6= 0 ( mod n+ 1) (A.23)

The above commutation relations indicate that the Ek's are a collection of free
bosonic oscillators.
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