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Abstract

We present an elementary introduction to Quantum Groups. The example of

Universal Enveloping Algebra of deformed SU(2) is analysed in detail. We also

discuss systems made up o� bosonic q-oscillators at �nite temperature within the

formalism of Thermo-Field Dynamics.

Key-words: Quantum algebras; Deformed systems.



{ 1 { CBPF-NF-061/93

Introduction

Interesting examples of Quantum Groups [1{4], or Quasi-Triangular Hopf Algebras, are
deformations of Lie groups or Lie Algebras through a parameter q, real or imaginary,
such that one recovers the non-deformed structures in the limit q ! 1. In the past few
years they have attracted considerable interest and have found applications in several
areas of physics [4{10] such as: inverse scattering method, vertex models, anisotropic spin
chain Hamiltonians, knot theory, conformal �eld theory, quantum �eld theory, heuristic
phenomenology of deformed molecules and nuclei, non-commutative approach to quantum
gravity and anyon physics.

In this talk we shall concentrate on some introductory aspects of Quantum Groups. In
section I we introduce the mathematical elements in order to give a consistent de�nition
of Quantum Groups. In section II we discuss the elements introduced in the previous
section for the simple case of SUq(2). In section III we discuss two di�erent realizations of
SUq(2). In the �rst part we consider the realization �a la Schwinger with q-oscillators and
in the second part of this section the anyonic realization recently developed. In section IV
we give a brief introduction of deformed systems at �nite temperature using the formalism
of Thermo-Field Dynamics (TFD) [11{13].

1 De�nition of Quantum Group

Let us consider an associative algebra A with a unit element 1. One can de�ne two maps
over this algebra; the coproduct � : A! A
 A, and the counit map " : A ! k, with k
the �eld.

The coproduct is required to be coassociative which means:

(�
 id) �� = (id
�) �� ; (1.1)

and the counit must satisfy ("
 id) ��(a) = a = (id
 ") ��(a); 8a 2 A. By de�nition
the algebra A with the mappings � and " is called a coalgebra C.

If the mapping above de�ned has the compatibility properties

�(ab) = �(a)�(b) ; �(1) = 1
 1 ; "(ab) = "(a)"(b) ; "(1) = 1 ; (1.2)

the coalgebra C is called a bialgebra B.
A Hopf algebra H over k is bialgera over k equipped with an antipode map S : H ! H

obeying
m(s
 id) ��(h) = m(id
 s) ��(h) = 1"(h) ; (1.3)

8h 2 H, with m the product m : (H
H)! H.
The coproduct can always be written in the form:

�(h) =
X
i

h
(1)
i 
 h

(2)
i (1.4)

where the right-hand side is a formal sum denoting an element of H
H.
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The twist map � : H1 
 H2 ! H2 
 H1 is de�ned by � (h2 
 h1) = h1 
 h2 with
h1; h2 2 H, and a Hopf algebra it is called cocommutative if, � �� = �.

Finally a Quantum Group (or a Quasi-Triangular Hopf Algebra) is Hopf algebra with
an invertible matrix R 2 H 
H satisfying

(�
 id)R = R13R23 ; (id
�)R = R13R12 (5.a)

� ��h = R(�h)R�1 ; 8h 2 H (5.b)

with R =
X
i

ai
 bi; R13 =
X
i

ai
1
 bi; R23 =
X
i

1
 ai
 b1 and R12 =
X
i

ai
 bi
 1,

where a; b 2 H.
The axioms (1.4.a,b) imply the Quantum Yang-Baxter equations

R12R13R23 = R23R13R12 : (6)

This can be easily proven by using the operation (� ��
id)R in two ways, in one way one
uses the axiom (1.5.a) and the de�nition of � and in the other way by using the axioms
(1.5.b) followed by (1.5.a), and comparing the two ways.

It is interesting to notice that the meaning of the axiom (1.5.b) is that though the
quasi-triagular Hopf algebra is not usually cocommutative, the lack of cocommutativity
is under control, being controlled by R.

2 SUq(2) as an Example

Let us recall the SU(2) algebra in the Cartan basis

[j0; j�] = �j� and [j+; j�] = 2j0 (1)

and one considers the universal enveloping algebra (UEA) of SU(2) as the algebra gen-
erated by 1 and the elments of SU(2). It is possible to verify that the UEA of SU(2) is
endowed with a Hopf structure if one de�nes

�(1) = 1
 1 ; �J� = J� 
 1+ 1 
 J� ; "(1) = 1 ; (2)

S(1) = 1 ; S(J�) = �J� :

Notice that as � �� = �, the UE Hopf algebra of SU(2) is not quasi-triangular and
the coproduct in this case can be interpreted as the sum of momentum angular operators.

Now, one can deform the above structure in order to get a quasi-triangular structure.
To this end one introduces a non-cocommutative coproduct � as

�qJ0 = qJ0 
 qJ0 ; �J� = J� 
 qJ0 + q�J0 
 J� (3)

where the second one in (2.3) is di�erent from (2.2) showing the
non-cocommutativity, and q is a general complex number.
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It in easy to show that using the compatibility properties (1.2) and the coproducts
(2.3) we have

�([Jo; J�]) = [J0; J�]
 qJ0 + q�J0 
 [J0; J�] (4.a)

�([J+; J�]) = [J+; J�]
 q2J0 + q�2J0 
 [J+; J�] (4.b)

thus from (2.4.a,b) we see that the algebra has to be modi�ed in order to be consistent
with the modi�ed coproduct (2.3), it is easy to see that

[J0; J�] = �J� ; [J+; J�] = [2J0] (5)

with [x] = (qx � q�x)=(q � q�1), is consistent with the coproduct (2.3), using equations
(2.4.a,b). The denominator in the de�nition of [2J0] is chosen in ordor to obtain in the
limit q! 1 the non-deformed case, 2J0.

One can show that the mappings which endow the UEA of deformed SU(2), or SUq(2)
(2.5), with a Hopf algebra are given by

"(J�) = 0 ; S(J�) = �q�1J� and S(q�J0) = q�J0 (6)

The matrix R given by

R = q2J0
J
1X
n=0

(1 � q�2)n

[n]!

�
qnJ0(J+)

n 
 q�nJ0(J�)
n
�

(7)

with [n]! = [n] � � � [1] satis�es the quantum Yang-Baxter equations (1.6) and endow SUq(2)
with a Quantum Group structure.

3 Two Di�erent Realizations of SUq(2)

One calls bosonic q-oscillators (or deformed Heisenberg algebra) [14{19] the associative
algebra generated by the elements �;�+ and N satisfying the relations

[N;�+] = �+ ; [N;�] = �� (1)

[�;�+]� = f�(N) :

We are going to consider here the following forms of the above algebra (3.1):

[a; a+]a � aa+ � qa+a = q�N (2.a)

[A;A+]A � AA+ � q2A+A = 1 (2.b)

which are related to each other via

A = qN=2a ; A+ = a+qN=2 (3)

in the case of q real.
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It is possible to construct the representation of relation (3.2) in the Fock space F
generated by the normalized eigenstates jn > of the number operator N as

�j0i = 0 ; N jni = n n = 0; 1; 2; � � � (4)

jni =
1q
[n]�!

(�+)nj0i

where [n]�! � [n]� � � � [1]�; [n]a = (qn � q�n)=(q � q�1) and [n]A = (q2n � 1)=(q2 � 1).
In F it is possible to express the deformed oscillators in terms of the standard bosonic

ones b; b+ as

� =

 
[n+ 1]�
N + 1

!1=2

b ; �+ = b+
 
[n+ 1]�
N + 1

!1=2

(5)

and it can easily be shown in F that

��+ = [N + 1]� ; �+� = [N ]� : (6)

If we now consider two independent q-oscillators, for instance a1; a2, one can realize
the SUq(2) algebra �a la Schwinger as

J+ = a+1 a2 ; J� = a+2 a1 (7)

J0 =
1

2
(N1 �N2) 6=

1

2
(a+1 a1 � a+2 a2) :

Further with
n1 = j +m n2 = j �m (8)

one can de�ne the related realizations of the jjmi basis of SUq(2) by means of

jjmi = jn1ijn2i =
(a+1 )

j+mq
[j +m]a!

(a+2 )
j�mq

[j �m]!
j0i : (9)

Analogously to the above construction for SUq(2), all the deformed algebras of type
A;B;C e D [17], the quantum superalgebras [16] and the deformed exceptional algebras
[18] can be realized �a la Schwinger.

Anyons [10{22] are two-dimensional objects with arbitrary statistics interpolating be-
tween bosons and fermions. We are going now to describe a di�erent construction of the
deformed algebra SUq(2) by means of anyonic oscillators [8-9,20-25] which are non-local
operators de�ned only on a two-dimensional manifold.

We start by considering a two-dimensional lattice with spacing a = 1. On a Lattice it
is possible to de�ne an angle function analogously to the continuum case. To each point
~x of the lattice 
, one de�nes a cut made of bonds on the dual lattices 
� from �1 to
~x� = ~x + ~0�, with ~0� = (1=2; 1=2), parallel to the x-axis. The point ~x and its associated
cut we call ~x
.

One can de�ne a function �
x(~x; ~y) as the lattice analogue of the angle under which
the point ~x is seen from ~y. By neglecting lattice features it is possible to show

�
x(~x; ~y)� �
y(~y; ~x) =

(
�sgn(x2 � y2) for x2 6= y2
�sgn(x1 � y1) for x2 = y2 :

(10)
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which is similar to the continuum case.
Equation (3.10) can be used to de�ne an ordering relation among the points of the

lattice which will be important to de�ne later on anyonic operators. Given two distinct
points of the lattice with their associated cuts, ~x
 and ~y
, one can postulate

~x
 > ~y
 , �
x(~x; ~y)� �
y(~y; ~x) = � ; (11)

which is equivalent to

~x
 > ~y
 ,

(
x2 > y2

x2 = y2 ; x1 > y1
: (12)

If one considers another cut � made with bonds of the dual lattice 
� from +1 to
�~x = ~x+�~0, with �~0 = (�1=2;�1=2) and de�nes ~x� as the point ~x with its associated
�-cut, it is possible to de�ne another lattice angle function for these points ~x� which has
the following property:

~��x(~x; ~y)� ~��y(~y; ~x) =

(
��sgn(x2 � y2) for x2 6= y2
��sgn(x1 � y2) for x2 = y2

: (13)

Type � and 
 lattice angles can be related, if ~x 6= ~y, as

~��x(~x; ~y)� �
x(~x; ~x) =

(
��sgn(x2� y2) for x2 6= y2
��sgn(x1� y1) for x2 = y2

(14.a)

~�x(~x; ~y)� �
y(~y; ~x) = 0 (3:14:b)

and
~��x(~x; ~x)� �
x(~x~x) = 0 : (15)

Type-
 anyons can be de�ned using the lattice angle function �
 as:

ai(~x
) = Ki(~x
)Ci(~x) (16)

with

Ki(~x
) = e

i�

X
~y2


~y 6=~x

�
x(~x; ~y)C
+
i (y)Ci(y)

(17)

disorder operators, Ci(~x) are fermionic oscillators de�ned on the lattice 
 obeying the
standard anticommutation relations

fCi(~x); C
+
j (~y)g = �ij�(~x; ~y) (18)

where

�(~x; ~y) =

(
0 if ~x 6= ~y
1 if ~x = ~y

; (19)

and � a real parameter which, as we shall see, represents the statistics.
Using (3.10), (3.16-18) one can show for ~x > ~y, which from now on will represent

~x
 > ~y
,

ai(~x
)ai(~y
) + q�1ai(~y
)ai(~x
) = 0 (20.a)

ai(~x
)a
+
i (~y
) + qa+i (~y
)ai(~x
) = 0 ; (20.b)
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and their hermitean conjugate, with q = ei��. For completeness we recall that

[ai(~x
)]
2 = [a+i (~x
)]

2 = 0 (21)

and
fai(~x
); aj(~y
)g = fai(~x
); a

+
j (~y
)g = 0 (22)

for i 6= j. At the same point one has

ai(~x
)a
+
i (~x
) + a+i (~x
)ai(~x
) = 1 (23)

without any phase factor, showing that anyonic operators obey the standard anticommu-
tation relations at the same point.

Type-� anyons can also be de�ned as

ai(~x
) = Ki(x�)Ci(~x) (24)

with

Ki(x�) = e

i�
X
~y2

~y�~x

~�x(~x; ~y)C
+
i (~y)Ci(~y)

: (25)

If one computes now the braiding relations among type-� anyons one obtains the same
braiding relations obeyed by type-
 anyons with q $ q�1. One can say that type-
 and
type-
 anyons are related by a parity transformation.

The relation between type 
 and � anyons can be obtained, one �nds

fai(~x�); ai(~y
)g = 0 8~x; ~y (26.a)

fai(~x�); a
+
i (~y
)g = 0 8~x 6= ~y ; (26.b)

and at the same lattice point one has

fai(x�); a
+
i (x
)g = q

�

2
4X
~y<~x

�
X
~y>~x

3
5C+

i
(~y)Ci(~y)

: (27)

We are now going to realize, in a Schwinger like construction, the SUq(2) algebra with
the anyonic operators we have just de�ned. If one considers the density of quantum group
generators, it is well-known, for instance, for SUq(2) that [29]

J�q (~x) = [J+
q�1(~x)]

+ (28)

where J�q =
X
x2


J�q (x) and J�q being the generator of the quantum group SUq(2), in the

case of q� = q�1. As we know that type 
 and � anyonic operators are related by q$ q�1

we are led to assume

J+(~x) = a+1 (~x
)a2(~x
) (29.a)

J�(~x) = a+2 (~x�)a1(~x�) (29.b)

J0(~x) =
1

2

�
a+1 (~x
)a1(~x
)� a+2 (~x
)a2(~x
)

�
= (29.c)

=
1

2

�
a+1 (~x
)a1(~x
)� a+2 (~x�)a2(~x�)

�
;



{ 7 { CBPF-NF-061/93

for the density of quantum group generators inspired by the Schwinger construction. The
last equality in (3.29c) comes from the cancellation of the disorder operators.

With a straightforward application of (3.20-23), (3.26-27) one gets

[J0(~x); J�(~y)] = �J�(~x)�(~x; ~y) (30)

[J+(~x); J�(~y)] = �(~x; ~y)
Y
~z<~x

q�2J0(~z)2J0(~x)
Y
~!>~x

q2J0(~!) :

De�ning the generators as

J� =
X
~x2


J�(~x) (31)

J0 =
X
~x2


J0(~x)

one obtains

[J0; J�] = �J� (32.a)

[J+J�] =
X
~x2


0
@Y
~y<~x

q�2J0(~y)2J0(~x)
Y
~z>~x

q2J0(~z)

1
A (32.b)

Recalling that
�[2J0] = [2J0]
 q2J0 + q�2J0 
 [2J0] (33)

and as J0(~x) is in the spin 0 or spin 1=2 representation for any ~x, (3.32.b) can be rewritten
as

[J+; J�] = [2J0] (34)

the usual formula found in the quantum group literature.
All the deformed algebras of the type A;B;C;D [9] and the quantum semialgebra

SLq;s(2) [30] can be realized with anyonic operators.

4 Deformed Systems at Finite Temperature

In the formalism of TFD [11{13] one constructs a temperature dependent vacuum j0(�)i,
such that the statistical average of Ô coincides with the vacuum expectation value using
this new vacuum j0(�)i. For instance if one uses the canonical ensemble one has

hÔi � Z�1(�)Tr[e��HÔ] = h0(�)jÔj(�)i (1)

with � = (kBT )�1 and kB the Boltzmann constant.
Let fjn >g be the orthonormal basis of the state vector space H consisting of eigen-

states of the Hamiltonian H

Hjni = Enjni (2)

hmjni = �m;n
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In order to construct such a state j0(�)i one introduces a �ctitions system (tilde system)
characterized by the Hamiltonian ~H and the state vector space ~H spanned by fjnig
obeying

~H jni = Enjni (3)

hnjmi = �m;n

The thermal vacuum j0(�)i belongs to tensor product space H
 ~H and is given by

j0(�)i = Z�1=2(�)
X
n

e��En=2jni 
 jni � Z�1=2(�)
X
n

e��En=2jn; ~ni : (4)

If one uses (4.4) in (4.1) one has

h0(�)jÔj0(�)i = Z�1(�)
X
n:m

e��En=2e��Em=2h~n; njÔjm; ~ni (5)

= Z�1(�)
X
n

e��EnhnjÔjni = hÔi

which is the result claimed in (4.1). This doubling of degrees of freedom has a sensible
physical interpretation and is related to the algebraic formulation of Statistical Mechanics
developed by Haag, Hugenholtz and Winnink [31].

This formalism can be extended [32] to the case of statistical averages of systems
made up of q-oscillators [33{37] considered in the previous section. Let us now consider
an ensemble of q-bosons, satisfying the algebras (3.1-2), with Hamiltonian given by

H = !N (6)

with eigenvalue !n(n = 0; 1 � � �) on F . We introduce the Hamiltonian of the tilde system
as

~H = ! ~N (7)

where the tilde q-oscillators we are considering satisfy the following relations

[ ~N; ~�+] = ~�+ ; [ ~N; ~�] = �~�

[~�; ~�+] = f~�( ~N) (8)

where, in the cases we are going to consider here, we have

[~a; ~a+]~a � a~a+ � q~a+~a = q�
~N (9)

[ ~A; ~A+]A � ~A ~A+ � q2 ~A+ ~A = 1

and [�; ~�] = [�; ~�+] = 0. The temperature dependent vacuum j0(�)i is thus given by

j0(�)i = Z�1=2(�)
1X
n=0

e��n!=2
1

[n]�!
(�+)n(~�+)nj0i = (10)

= (1 � e��!)1=2 expq�(e
��!=2�+ ~�+)j0i
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with expq� x =
1X
n=0

1

[n]�!
xn the q-exponential [38], and j0i = j0i 
 j0i. In the formula

(4.10) we used the information that the partition function of q-bosons [37] corresponding
to the Hamiltonian (4.6) coincides with the usual one for harmonic oscillators. We can
easily see that the non-deformed case is recovered in the q! limit.

The thermal vacuum, j0(�)i, can be related to the usual one, j0i, by means of a unitary
transformation which resembles a Bogoliubov transformation. This transformation can
be used to de�ne the temperature dependent operators ��(~��); �+

� (~�
+
� ); N�( ~N�), and

the \thermal" Fock space can be constructed by applying this transformation on (3.4)
leading to

jn; ~mi� =
1q
[n]�!

1q
[m]�!

(�+
� )

n(~�+
� )

mj0(�)i (11)

for n = 0; 1; � � �.
We are going now to sketch the computation of the average of �+� [32] which, as

we are going to see, depends on the deformation considered. In the TFD approach this
average is given by

h�+�i = h0(�)j�+�j0(�)i = h0(�)j[N�]j0(�)i : (12)

In order to perform this calculation we go to the basis of the non-deformed bosonic
operators. In this basis expressing the number operator in terms of the temperature
dependent operator we have

N = (u2� + v2�)j0 + u�v�(j+ + j�) +
1

2
C (13)

where

u� = (1 � e��!)�1=2 (14)

v� = (e�! � 1)�1=2

j�; j0 are the generators of hidden SU(1; 1) algebra

j+ = b+�
~b+� ; j� = ~b�b� ; j0 =

1

2
(N� + ~N� + 1) (15)

and
C = N� � ~N� � 1 : (16)

Notice that C commutes with the �rst two terms of the right-hand side of (4.13).
Using now (4.13) and taking qm = exp�, the relevant terms in the calculation of (4.12)

have the form

h0(�)je�Nj0(�)i = h0(�)je�[(u
2
�
+v2

�
)j0+u�v�(j++j�)+

1

2
C]j0(�)i : (17)

This last expression can be computed by means of the Backer-Campbell- Hausdorf (BCH)
formula, which can be derived for the SU(1; 1) algebra [39]. The BCH formula for this
case yields

e�[(u
2
�
+v2

�
)j0+u�v�(j+j�)] = e�j+e
j0e�j� (18)
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with

� = 2v� sinh(�=2)=[cosh(�=2) � (u2� + v2�) sinh(�=2)] (19)


 = �2 ln[cosh(�=2) � (u2� + v2�) sinh(�=2)] :

The above procedure amounts to normal ordering eq. (4.17). Using (4.18-19) in (4.17)
we have

h0(�)jqmN j0(�)i =
2qm=2

qm=2 + qm=2 � (u2� + v2�)(q
m=2 � q�m=2)

; (20)

and �nally using (4.12) and (4.20) we can easily see that

h0(�)ja+aj0(�)i =
e�! � 1

e2�! � (q + q�1)e�! + 1
(21)

h0(�)jA+Aj0(�)i =
1

e�! � q2

The entropy of deformed systems with more complicated Hamiltonians than the one
given by (4.6) can be computed in general only for q close to one [32], this is understood
in the formalism of TFD by observing that the transformation from the non-deformed
thermal vacuum to the defomed one is highly non-trivial [32], being simple only when the
deformed and non-deformed Hamiltonians have the same spectrum.
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