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Abstract

Within Tsallis generalized thermostatistics, the grand canonical ensemble is derived
for quantum systems. The generalized partition function is also obtained. In addition,
the Fermi-Dirac, Bose-Einstein and Maxwell-Boltzmann statistics are de�ned and the dis-
tribution function is generalized as well.
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1 Introduction

Non-extensivity (or non-additivity) is an important concept in some areas of physics, by
way of reference to some interesting generalizations of traditional concepts. A genera-
lization of the Boltzmann-Gibbs statistics has been recently proposed by Tsallis [1, 2, 3]
for non-extensive systems. This generalization relies on a new form for the entropy, namely

Sq � �k
1 � Tr(�q)

1� q
;

where q 2 <; k is a positive constant. Its standard form introduced by Boltzmann and
Gibbs (which yields the correct results for the thermodynamic properties of standard
systems) is recovered in the limit q ! 1.

Various properties of the usual entropy have been proved to hold for the generalized
one [4]; its connection with thermodynamics is now established and suitably generalizes
the standard additivity (it is non-extensive if q 6= 1) as well as the Shannon theorem [5].
In general, the micro-canonical and canonical formulations have been quite well studied
up to now and this formalism has received important applications.

Some aspects of the generalized statistical mechanics in relation to the N-body clas-
sical [6, 7] and quantum [8] problems were discussed, in order to treat more general
situations than the collisionless one. Now, there exists an attempt to generalize the quan-
tum (Fermi-Dirac and Bose-Einstein) statistics [9], but it was not taken into account the
di�culty associated with the concomitant partition function owing to the factorization
process shown in [6]. Consequently, the quantum ideal gas has not yet been adequately
discussed within generalized statistics.

In the present paper, the formalism in the grand-canonical ensemble is generalized. In
Section 2, the generalized grand partition function is obtained; Hilhorst transformations
for the partition function and the q-expectation values of the energy and particle num-
ber are written. In Section 3, the Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein
statistics are de�ned; the distribution function is generalized in the Hilhorst manner.

2 Open Systems

An open system can exchange heat and matter with its surroundings; therefore, the
energy and the particle number will uctuate. However, for systems in equilibrium we
can require that both the average energy and the average particle number be �xed. To �nd
the probability distribution, we need to get an extremum of the entropy which satis�es
the above mentioned conditions. We proceed by the method of Lagrange multipliers with
three constraints.

2.1 Generalized Grand-Partition Function

We can require that the generalized density operator be normalized over some set of basis
states. Thus, the normalization condition takes the form

Tr� = 1 ; (1)
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the generalized average energy is de�ned

Tr(�qH) = Uq ; (2)

it is also called q-expectation value [3] of the energy and H refers to the Hamiltonian of
the system. The generalized average particle number is de�ned

Tr(�qN ) = Nq : (3)

or q-expectation value of N (particle number operator).
To obtain the equilibrium generalized probability distribution, we must �nd an ex-

tremum of the Tsallis entropy subject to the above constraints. The obtained density
operator for the grand-canonical ensemble is the following

� = [1 � �(1� q)(H� �N )]
1

1�q =�q(�; �); (4)

where � = 1=kT . The generalized grand partition function is obtained from Eq.(4) with
the aid of Eq.(1)

�q(�; �) = Tr [1 � �(1� q)(H� �N )]
1

1�q : (5)

On the other hand, we can also obtain the fundamental equation for open systems, this
takes the following form


q = �kT
�1�q
q � 1

1� q
; (6)

and it is similar to the fundamental equation for closed systems (canonical ensemble [5]).

2.2 Hilhorst Integral Transformations

The so called Hilhorst integral transformations [2] are important because they connect
a thermodynamic or statistical generalized quantity to its respective standard quantity.
Therefore, an extension for q < 1 of the Hilhorst integral in the Prato style [7] to the
grand-canonical ensemble is derived. We obtain

�q(�; �) = �(
2 � q

1 � q
)
i

2�

I
C
dz(�z)

�1

1�q
�1e�z�1(��(1� q)z; �); (7)

for q < 1. The contour C in the complex plane is depicted in Figure 1. By taking
F (z; �) = e�z�1(��(1� q)z; �) and � = 1=(1 � q); the integral in Eq.(7) can be written
as

I
C
dz(�z)���1F (z; �) =

�Z
ab
+
Z
bcd

+
Z
de

�
dz(�z)���1F (z; �); (8)

where ab, bcd and de are lines of C shown in Figure 1. If we use z = � for the integral
along the line ab, z = �ei� along the line bcd and z = �e2i� along the line de, we have

I
C
dz(�z)���1F (z; �) = �ei��

Z �

1

d�����1e���1(��(1� q)�; �) (9)
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����ei�
Z 2�

0
d(ei�)(ei�)���1e��e

i�

�1(��(1� q)�ei�; �)

�e�i��
Z
1

�
d�����1e���1(��(1� q)�; �):

Now, putting q > 1 and �! 0 we can see that the second integral vanishes. Thus,

I
C
dz(�z)���1F (z; �) = �2i sin(

�

q � 1
)
Z
1

0
d��

1

q�1
�1e���1(�(q � 1)�; �): (10)

On the other hand, we have the following property of the � function

�(p)�(1 � p) =
�

sin�p
: (11)

Using the Eqs.(10) and (11) into Eq.(7), may be written as

�q(�; �) =
1

�( 1
q�1 )

Z
1

0
d��

1

q�1
�1e���1(�(q� 1)�; �); (12)

the Hilhorst transformation for q > 1.
Now, we write similar transformations for the q-expectation value of the energy. It is

obtained

Uq =
�( 1

1�q )

[�q(�)]
q

i

2�

I
C
dz(�z)

�1

1�q e�z�1(��(1� q)z; �)U1(��(1� q)z) (13)

for q < 1; and

Uq =
X
l

1

[�q(�)]q�(
q

q�1
)

Z
1

0
d��

1

q�1 e���1(�(q� 1)�; �)U1(�(q � 1)�) (14)

for q > 1 (for the canonical ensemble it is shown in [10]).
Similar expressions are obtained for the q-expectation value of the particle number

Nq =
�( 1

1�q )

[�q(�)]
q

i

2�

I
C
dz(�z)

�1

1�q e�z�1(��(1� q)z; �)N1(��(1� q)z) (15)

for q < 1; and

Nq =
1

[�q(�)]q�(
q

q�1
)

Z
1

0
d��

1

q�1 e���1(�(q� 1)�; �)N1(�(q � 1)�) (16)

for q > 1.

3 Quantum Ideal Gases

We choose as basis states the number representation where H and N are diagonal whose
eigenvalues are E

(N)
L and N respectively. The number of particles N = 0; 1; 2:::, and

E
(N)
L represents the N-particle energy spectrum (characterized by the quantum number
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or set of quantum numbers L). Thus, we can obtain the equilibrium distribution for the
grand-canonical ensemble from Eq. (4), this is

p
(N)
L =

h
1� �(1� q)(E(N)

L � �N)
i 1

1�q =�q(�; �): (17)

It is convenient to remark that in general

pN �
X
L

p
(N)
L 6=

"X
L

h
p
(N)
L

iq#1=q
� p(N) (18)

where pN is the probability of having N particles (no matter the energy value) and p(N)

is the quantity which enables us re-writting Eq.(3) as
P
1

N=0N
h
p(N)

iq
= Nq; unless q = 1,

pN generically di�ers from p(N) ( for instance,
P
1

N=o pN = 1 always, whereas in generalP
1

N=0 p
(N) 6= 1 ).

In this representation Eq.(5) is

�q(�; �) =
1X

N=0

X
L

h
1� �(1� q)(E(N)

L � �N)
i 1

1�q : (19)

3.1 Quantum Statistics

The statistics of N-body quantum systems plays a crucial role in determining the ther-
modynamic behavior at very low temperature. It is known however that, in the standard
framework, there is no di�erence between Bose-Einstein and Fermi-Dirac statistics at
high temperature. Maxwell-Boltzmann statistics is the name given to the statistics which
describes the behavior of the systems at high temperature.

When evaluating the trace in Eq.(5) or the set of quantum numbers L in Eq.(19) we
must be careful to count each possible state of the system only once. If the quantum state
of the system is speci�ed by the one-particle states. The total energy is given by

E
(N)
L = �l1 + �l2 + : : :+ �lN ;

where �li is the energy of the single particle i.
Then, the generalized grand partition function for the Maxwell-Boltzmann statistics

can be written as

�M�B
q =

1X
N=0

1

N !

X
l1

X
l2

: : :
X
lN

[1� �(1� q)(�l1 + �l2 + : : :+ �lN �N�)]
1

1�q ; (20)

where we have inserted the factor 1=N ! in the same way as in the q = 1 statistics, because
it gives us the proper form of the grand partition function for indistinguishable particles
at high temperature.

We consider particles with periodic boundary conditions as a simple application of
Eq.(7) and Eq. (20). If the volume is large enough, the particle energies will be closely
spaced and we can replace the sum over l by an integral over a continuous variable k.
Thus,
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1X
l=�1

e���l !

 
`

2�

!D
2�D=2

�(D=2)

Z
1

0
dkkD�1e���h

2k2=2m; (21)

where D is the dimension. Hence, when q = 1, Eq.(20) becomes

�M�B
1 =

1X
N=0

eN��

N !

"X
l

e���l
#N

=
1X

N=0

1

N !
eN��

 
m`2

2��h2�

!ND=2

; (22)

Replacing Eq.(22) into Eq.(7), we obtain:

�M�B
q =

1X
N=0

�(2�q
1�q

)[1 + �(1� q)�N ]
1

1�q
+ND

2

N !(1� q)DN=2�(2�q
1�q

+ ND
2
)

 
m`2

2��h2�

!ND=2

; (23)

for q < 1, this is the high-temperature approach. Eq.(22) is recovered from Eq.(23) in the
limit q! 1.

The generalized grand partition function in Fermi-Dirac statistics, according to Pauli
exclusion principle, is given by

�F�D
q =

1X
N=0

1X
l1

1X
l2=l1+1

: : :
1X

lN=lN�1+1

[1� �(1� q)(�l1 + �l2 + : : : �lN �N�)]
1

1�q : (24)

Each di�erent set of occupation numbers corresponds to one possible state.
The generalized grand partition function in Bose-Einstein statistics is given by

�B�E
q =

1X
N=0

1X
l1

1X
l2=l1

:::
1X

lN=lN�1

[1 � �(1� q)(�l1 + �l2 + : : :+ �lN �N�)]
1

1�q : (25)

Here, there is no restriction on the number of particles that can occupy a given momentum
state.

Low-temperature approach for fermions with periodic boundary conditions and chem-
ical potential computations as a function of the temperature for the particles in a box
problem are shown in [8].

3.2 Generalized Distribution Function

Finally, let us also write the generalized distribution function in the Hilhorst manner.
We remark that a multiple sum appears by evaluating the trace in Eqs.(1)-(3) and (5).
That multiple sum can be transformed into a unique sum over some set of basis states of
non-interacting particles, by standard methods.

Now, let us remember that
N1 =

X
l

n1l; (26)

where n1l is known as the distribution function and it is very well de�ned in the Maxwell-
Boltzmann, Bose-Einstein and Fermi-Dirac statistics. By replacing Eq.(26) into Eq.(15)
and Eq.(16), we obtain the generalized distribution functions. We de�ne

nql =
�( 1

1�q
)

[�q(�)]
q

i

2�

I
C
d�(��)

�1

1�q e���1(��(1� q)�)n1l(��(1� q)�) (27)
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for q < 1; and

nql =
1

[�q(�)]
q �( q

q�1
)

Z
1

0
d��

1

q�1 e���1(�(q � 1)�)n1l(�(q� 1)�) (28)

for q > 1. Therefore, we have de�ned the generalized distribution functions in connection
with the standard distribution and partition functions through Eq.(27) and Eq.(28). In
addition, we have

Nq =
X
l

nql (29)

which is the generalization of the Eq.(26).

Conclusions

Clearly, the statistical and thermodynamic quantities recover their standard forms in the
q ! 1 limit.

The connection between generalized statistical mechanics in the grand canonical en-
semble and thermodynamics is well established through the relation given by Eq.(6).

Following along the lines of the Hilhorst integral transformations for the grand parti-
tion function �q, we have obtained the analogous expressions for the appropriate averages
of the particle number and the energy in the grand-canonical ensemble. In the same style,
the generalized distribution functions are de�ned as well.

Acknowledgments

The author is very indebted to Constantino Tsallis for valuable discussions and to Celia
Anteneodo for their helpful comments on the draft version of this paper. The author has
also bene�tted from �nancial support from the CLAF/CNPq.



{ 7 { CBPF-NF-060/95



{ 8 { CBPF-NF-060/95

References

[1] C. Tsallis, J. Stat. Phys. 52 (1988) 479 .

[2] C. Tsallis, in \New Trends in Magnetism, Magnetic Materials and their Applica-
tions", ed. J. L. Mor�an-Lopez and J. M. S�anchez (Plenum Press, New York, 1994)
451.

[3] C. Tsallis, Chaos, Solitons and Fractals 6 (1995) 539.

[4] A. M. Mariz, Phys. Lett. A 165 (1992) 409; J. D. Ramshaw, Phys. Lett. A 175

(1993) 169; J. D. Ramshaw, Phys. Lett. A 175 (1993) 171.

[5] E. M. F. Curado and C. Tsallis, J. Phys. A: Math. Gen 24 (1991) L69; Corrigenda:
J. Phys. A24 (1991) 3187 and 25 (1992) 1019.

[6] A.R.Plastino, A.Plastino and C. Tsallis, J. Phys. A: Math. Gen 27 (1994) 1.

[7] D. Prato, Phys. Lett. A 203 (1994) 165.

[8] S. Curilef, \Generalized Statistical Mechanics for the N-body Quantum Problem {

Ideal Gases" (1995) preprint.

[9] F. B�uy�ukkili�c and D. Demirhan, Phys. Lett. A 181 (1993) 24; F. B�uy�ukkili�c, D.
Demirhan and A. G�ule�c, Phys. Lett. A 197 (1995) 209.

[10] S. Curilef and C. Tsallis, Physica A 215 (1995) 542.


