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Abstract

We apply the formalism of Thermo-Field Dynamics to two kinds of deformed

Hamiltonians. These Hamiltonians are made up of operators which satisfy deformed

Heisenberg algebras. The entropy and the speci�c heat are computed for small q�1,

where q is the deformation parameter.
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Introduction

There has been an intense activity in the area of deformed algebras and groups by physi-
cists and mathematicians. These mathematical structures, Quasi-Triangular Hopf Alge-
bras [1{4], are sometimes called Quantum Groups and have found applications in several
areas of physics [4{8] such as: inverse scattering method, vertex models, anisotropic spin
chain Hamiltonians, knot theory, conformal �eld theory, heuristic phenomenology of de-
formed molecules and nuclei, non-commutative approach to quantum gravity and anyon
physics.

Because of the relevance played by Heisenberg algebra in physics, deformed Heisenberg
algebras have attracted a lot of attention in the last few years. Their study is not a new
subject [9] and recently their connection with quantum algebras and superalgebras have
been established [10{12], together with their derivation from the contraction of quantum
algebra [11]. A two-parameter Heisenberg algebra has also recently been obtained [13] by
the Schwinger's contraction procedure for the two-parameter quantum semigroup S`q;s(2)
[14]. The algebra of S`q;s(2) is called quantum semigroup because it is not possible to �nd
an antipode function on the bialgebra S`q;s(2) to endow it with a Hopf algebra structure
[14].

The thermodynamic properties of deformed systems have also started to be investi-
gated [15{21] and many attempts to �nd a direct physical application have been made
[15{21].

On the other hand Termo-Field Dynamics (TFD) [22] is a formalismwhereby the usual
�eld theory de�ned in real space-time can be generalized to the case of �nite temperature.
In this formalism the Feynman diagram method can be easily formulated by means of
the real-time causal Green's function [23], which are expressed in terms of \temperature-
dependent vacuum" expectation values, and all the operator relations of T = 0 �eld
theory are preserved. Thermo Field Dynamics has been extensively developed and has
been applied to problems in condensed matter physics as well as in high-energy physics
[23{24].

In this paper we apply the formalism of TFD to two kinds of deformed Hamiltonians.
These Hamiltonians are made up of operators which satisfy deformed Heisenberg algebras
(q-oscillators). In section 1, we review the subject of deformed oscillators and extend the
results of ref. [20] which come out of the application of TFD to a simple deformed
Hamiltonian. In section 2 we consider a more complicated deformed Hamiltonian and
compute, its entropy and the speci�c heat. Section 3 is devoted to some �nal comments.

1 Thermo-Field Dynamics of Deformed Systems

In the formalism of TFD [22{24] one constructs a temperature dependent vacuum j0(�) >,
in which the statistical average of Ô coincides with the vacuum expectation value, using
this new vacuum j0(�) >. For instance if one uses the canonical ensemble one has

< Ô >� Z�1(�)Tr[e��HÔ] =< 0(�)jÔj0(�) > (1.1)

with � = (kBT )�1 and kB the Boltzmann constant.
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Let fjn >g be the orthonormal basis of the state vector space H consisting of eigen-
states of the Hamiltonian H

Hjn > = Enjn >

< mjn > = �m;n : (1.2)

In order to construct such a state j0(�) > one introduces a �ctitious system (tilde system)
characterized by the Hamiltonian ~H and the state vector space ~H spanned by fjn >g
obeying

~H jn > = Enjn >

< ~nj ~m > = �n;m : (1.3)

The thermal vacuum j0(�) > belongs to the tensor product space H
 ~H and is given by:

j0(�) >= Z�1=2(�)
X
n

e��En=2jn > 
jn >� Z�1=2(�)
X
n

e��En=2jn; ~n > : (1.4)

If one uses (1.4) in (1.1) one has

< 0(�)jÔj0(�) > = Z�1(�)
X
n;m

e��En=2e��Em=2 < ~n; njÔjm; ~m >

= Z�1(�)
X
n

e��En < njÔjn >=< Ô > (1.5)

which is the result claimed in (1.1). This doubling of degrees of freedom has a sensible
physical interpretation [22, 20] and is related to the algebraic formulation of Statistical
Mechanics developed by Haag, Hugenholtz and Winnink [25].

This formalism can be extended to the case of statistical averages of systems made up
of q-oscillators [20]. One calls bosonic q-oscillators the associative algebra generated by
the elements A;A+ and N satisfying the relations [10, 11, 26]

[N;A+] = A+ ; [N;A] = �A
[A;A+]A = fA(N) : (1.6)

We are going to consider here the following forms of the above algebra (1.6):

[a; a+]a � aa+ � qa+a = q�N (7.a)

[A;A+]A � AA+ � q2A+A = 1 ; (7.b)

[�;�+]� � ��+ � s�1q �+� = (sq)�N (7.c)

the �rst two algebras are related to each other via [26]

A = qN=2a ; A+ = a+qN=2 ; (8)

and the last one is the two-parameter deformed Heisenberg [13] algebra obtained from
the quantum semi-group S`q;s(2) [14] by the Schwinger's contraction.
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It is possible to construct the representation of the relations (1.7) in the Fock space
F spanned by the normalized eigenstates jn > of the number operator N as

Aj0 > = 0 ; N jn >= njn > ; n = 0; 1; 2 � � �
jn > =

1q
[n]A!

(A+)nj0 > ; (9)

where [n]A! � [n]A � � � [1]A ; [n]a = (qn � q�n)=(q � q�1), [n]A = (q2n � 1)=
(q2 � 1) and [n]� = ((s�1q)n � (sq)�n)=(s�1q � (sq)�1).

In the Fock space F it is possible to express the deformed oscillators in terms of the
standard bosonic ones b; b+ as [26]

A =

 
[N + 1]A
N + 1

!1=2

b ; A+ = b+
 
[N + 1]A
N + 1

!1=2

; (10)

and it can easily be shown in F that

AA+ = [N + 1]A ; A+A = [N ]A : (11)

Let us now consider an ensemble of q-bosons with Hamiltonian given by

H = !N (12)

with eigenvalue !n(n = 0; 1; 2; � � �) on F . We introduce the Hamiltonian of the tilde
system as

~H = ! ~N ; (13)

where the tilde q-operators we are considering satisfy the following relations

[ ~N; ~A+] = ~A+ ; [ ~N; ~A] = � ~A
[ ~A; ~A+]A = f ~A(

~N) : (14)

In the cases we are going to consider here, we have

[~a; ~a+]~a � ~a~a+ � q~a+~a = q�
~N

[ ~A; ~A+] ~A � ~A ~A+ � q2 ~A+ ~A = 1 (15)

[~�; ~�+]~� � ~�~�+ � s�1q ~�+ ~� = (sq)�N

and [A; ~A] = [A; ~A+] = 0. The temperature dependent vacuum j0(�) > is thus given by

j0(�) > = Z�1=2(�)
1X
n=0

e��n!=2
1

[n]A!
(A+)n( ~A+)nj0 >=

= (1 � e��!)1=2 expqA(e
��!=2A+ ~A+)j0 > (16)

with expqA x =
P
1

n=0
1

[n]A!
xn the q-exponential [27], and j0 >= j0 > 
j0 >. In the formula

(1.16) we used the information that the partition function of q-bosons [19] corresponding
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to the Hamiltonian (1.12) coincides with the usual one for harmonic oscillators. We can
easily see that the non-deformed case is recovered in the q! 1 limit.

We denote

u� = (1 � e��w)�1=2

v� = (e�! � 1)�1=2 (17)

GB = �i��
2
4 ~N + 1

[ ~N + 1]A

!1=2 
N + 1

[N + 1]A

!1=2

~AA

�
 

~N

[ ~N ]A

!1=2 
N

[N ]A

!1=2

~A+A+

3
5

where cosh �� � u�. With these de�nitions we can rewrite the temperature dependent
vacuum j0(�) >, (1.16), as

j0(�) >= exp(�iGB)j0 >� Bj0 > : (18)

Let us now de�ne the temperature dependent operators; they are given by:

A� � exp(�iGB)A exp(iGB)
~A� � exp(iGB) ~A exp(iGB) : (19)

It is interesting to observe that this transformation preserves the q-Heisenberg algebra
(1.6,7), i.e.

a�a
+
� � qa+� a� = q�N�

A�A
+
� � q2A+

�A� = 1 (20)

���
+
� � s�1q�+

��� = (sq)�N� :

This can be seen by the use of relation (1.10), thus the B transformation resembles a
q-Bogoliubov transformation. Obviously

A�j0(�) >= ~A�j0(�) >= 0 (21)

and the Fock space can be constructed by applying the B-transformation (1.18) on (1.9),
i.e.

jn; ~m >�=
1q
[n]A!

1q
[m]A!

(A+
� )

n( ~A+
� )

mj0(�) > (22)

for n = 0; 1; � � �.
Let us now compute the average of A+A which, as we are going to see, depends on

the deformation considered. In the TFD approach this average is given by:

< A+A >=< 0(�)jA+Aj0(�) >=< 0(�)j[N ]Aj0(�) > : (23)

In order to perform this calculation we go to the basis of non-deformed bosonic operators.
In the non-deformed case one has [22]

b� = exp(�iG�)b exp(iG�) = u�b� v�~b
+

~b� = exp(�iGB)~b exp(iGB) = u�~b� v�b
+ (24)
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with the inverse given by

b = u�b� + v�~b
+

~b = u�~b� + v�b
+
� (25)

where
GB = �i��(~bb� ~b+b+) : (26)

Now using (1.25) one �nds the following expression for the number operator N

N = v2�( ~N� + 1) + u2�N� + u�v�(b
+
�
~b+� +~b�b�) : (27)

Here we recall that the generators of SU(1; 1) algebra, J�; J0, can be realized �a la
Schwinger [28] as

J+ = b+�
~b+� ; J� = ~b�b� ; J0 =

1

2
(N� + ~N� + 1) : (28)

Thus using (1.28) we can rewrite (1.27) as

N = (u2� + v2�)J0 + u�v�(J+ + J�) +
1

2
C (29)

with
C = N� � ~N� � 1 : (30)

Notice that C commutes with the �rst two terms of the right-hand side of expression
(1.29).

Using now (1.29) and taking qm = exp�, the relevant terms in the calculations of
(1.23) have the form

< 0(�)je�Nj0(�) >=< 0(�)je�[(u2�+v2�)J0+u�v�(J++J�)+ 1

2
C]j0(�) > : (31)

This last expression can be computed by means of the Baker-Campbell-Hausdor� (BCH)
formula, which can be derived for the SU(1; 1) algebra [29]. The BCH formula for the
case we are considering is given by:

e�[(u
2
�+v

2
�)J0+u�v�(J++J�)] = e�J+eJ0e�J� (32)

where

� =
2v� sinh(�=2)

cosh(�=2) � (u2� + v2�) sinh(�=2)

 = �2 ln[cosh(�=2) � (u2� + v2�) sinh(�=2)] : (33)

The above procedure amounts to normal ordering eq. (1.31). Using this we obtain

< 0(�)jqmNj0(�) >= 2q�m=2

qm=2 + q�m=2 � (u2� + v2�)(q
m=2 � q�m=2)

: (34)
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Finally using (1.23) and (1.34) we can see that

< 0(�)ja+aj0(�) > =
e�! � 1

e2�! � (q + q�1)e�! + 1
(35.a)

< 0(�)jA+Aj0(�) > =
1

e�! � q2
(35.b)

< 0(�)j�+�j0(�) > = 4(e�! � 1) � [(s�2 + s�1(q + q�1) + 1)(e�! � 1)2 +

� 2(s�2 � 1)(e2�! � 1) +

+ (s�2 � s�1(q + q�1) + 1)(e�! + 1)2]�1 (35.c)

where (1.35a,b) agree with the results given in ref. [19].

2 Entropy of Deformed Systems

In this section we are going to consider, using the formalism of TFD, the entropy of
a deformed system. As we have noticed in the previous section the partition function
corresponding to the Hamiltonian (1.12) coincides with the usual one for standard har-
monic oscillators and as we are not changing the statistical averages the thermodynamic
functions are not modi�ed, therefore we take another Hamiltonian given by

H = "[N ]A � �N : (1)

The form given by (2.1) is a general deformed Hamiltonian that describes in the q ! 1
limit the usual harmonic oscillator. Note that both [N ] and N are deformed but, as we
shall see later, their statistical properties are di�erent because only [N ] a�ects the exten-
sivity. This choice permits to follow where the deformation modi�es the thermodynamic
functions (e.g. when " = 0 one recovers the non-deformed quantities). This is indeed the
case as one can easily check later. For a collection of oscillators, such as q-boson gas, the
second term in (2.1) corresponds to the chemical potential.

For free systems, in the TFD approach, one can de�ne an entropy operator, K̂ , as
follows. Let us consider the thermal vacuum j0(�) > which, as we have seen, is

j0(�) > = Z�1=2(�)
X
n

e��En=2jn; ~n >=

= e`nZ
�1=2(�)��H

X
n

jn; ~n >� e�K̂=2
X
n

jn; ~n > (2)

with
K̂ = lnZ(�) + �H ; (3)

where the entropy, K, is obtained from K̂ as

K = kB < 0(�)jK̂j0(�) > : (4)

One can see that if one writes [22]

j0(�) >=X
n

p
wnjn; ~n > (5)
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with wn = e��En=Z(�) we have

< 0(�)jK̂j0(�) >=X
n

wn[lnZ(�) + �En] = �X
n

wn lnwn (6)

where
P

n wn = 1 by construction. Thus K given by (2.4) recovers the usual Shannon
entropy.

For the deformed system we are considering, (2.1), one can be convinced that the
entropy is given by the Shannon entropy with

wn = �e�("[n]A��n)=Z(�) (7)

where

Z(�) =
1X
n=0

e��("[n]A��n) : (8)

As the partition function cannot be computed exactly we take q = e�1; s = e�2 and
consider the case where � is small. De�ning �̂ = �("� �) we may rewrite Z(�) in terms
of the non-deformed partition function as

Z(�) = �e�"([�@̂]A+@̂)Z0(�̂) (9)

where @̂ = @=@�̂, and

Z0(�̂) =
1X
n=0

e��̂n (10)

the non-deformed partition function.
Performing an expansion in � and taking into account only the lowest order in � we

have for Z(�)

Z(�)�1 = Z�10 (�̂)

"
1� �2

1

�"

3!
(Q(3) �Q(1)) +O(�4

1)

#
(11.a)

Z(�)�1 = Z�10 (�̂)[1 + �1�"(Q
(2) +Q(1)) +O(�2

1)] (11.b)

Z(�)�1 = Z�10 (�̂)

(
1� �2�"Q

(1)� �2
1

�"

3!
(Q(3) �Q(1))+

+ �2
2�"

�
�"Q(1)2 � 1

2
(Q(1) + 2Q(2) +Q(3) + �"Q(2))

�
+

+ O(�4
1; �

4
2)
o

(11.c)

for the algebras (1.6,1.7a) (1.6,1.7b) and (1.6,1.7c) respectively, where

Q(i) = Z0(�̂)
�1@i

�̂
Z0(�̂) : (12)

A useful expression for the calculation with the Q(i)'s is

Q(i) =
iX

j=0

(�1)j a(i)j Zj
0
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where the coe�cient a
(i)
j are found by the recursion law:

a
(i)
j = ja

(i�1)
j�1 + (j + 1)a(i�1)j

a(i)o = 1 ; a
(i)
i+1 = 0

For the exponential in (2.7) we have

e��("[n]a��n) = e��̂n
"
1� �2

1

3!
�"n(n2 � 1) +O(�4

1)

#
(13.a)

e��("[n]A��n) = e��̂n[1� �1�"n(n� 1) +O(�2
1)] (13.b)

e��("[n]���n) = e��̂n
(
1� �"

"
�2n+

�2
1

3!
n(n2 � 1)+

+
1

2
�2
2n((n � 1)2 � �"n)

�
+O(�4

1; �
4
2)
�
: (13.c)

Substituting (2.7) and (2.10-12) in the entropy we get after a straightforward calcula-
tion

Sa = S0 � �2
1kB�"�̂e

�2�̂(1 � e��̂)�4(e��̂ + 2) +O(�4
1) (14.a)

SA = S0 � 4�1kB�"�̂e
�2�̂(1 � e��̂)�3 +O(�2

1) (14.b)

S� = S0 � �2kB�"�̂e
��̂(1 � e��̂)�2 � �2

1kB�"�̂e
�2�̂(e��̂ + 2)(1 � e��̂)�4 +

� �2
2kB�"e

��̂f�"
2
(1� e��̂)�2 +

�̂

2
[2e��̂(2 + 7e��̂)(1� e��̂)�4

� �"(1 + e��̂)(1 � e��̂)�3]g
(14.c)

with S0 the entropy of the non-deformed system and Sa; SA and S� the entropies corre-
sponding to the algebras (1.6,1.7a,b,c) respectively. It has been suggested [30] that there
is an underlying lattice structure with lattice spacing � = q�1 for deformed theories with
deformation parameter q. We see from the above formulae that the entropies of deformed
systems are lower than the standard ones for qi > 1, i.e. the deformations introduce a
correlation which could be interpreted as an underlying lattice structure. When the de-
formation parameter is lower than one we do not have the lattice interpretation anymore
and for the (2.14b,c) cases, due to a linear contribution in �1 and �2 respectively, the
entropy increases with respect to the non-deformed case. This kind of oscillators (1.7)
with q < 1 were shown to be related to the Brownian motion [31] which could explain the
increase of entropy.

After a long but straightforward calculation the speci�c heat can be found as:

C(a) = C0 + �2
1 C

(a)

�2
1

+ � � � (15.a)

C(A) = C0 + �1 C
(A)
�1

+ � � � (15.b)

C(�) = C0 + �2C
(�)
�2

+ �2
1C

(�)
�2
1

+ �2
2C

(�)
�2
2

+ � � � ; (15.c)
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with C0 the standard speci�c heat and

C
(a)

�2
1

= C
(�)

�2
1

= 2kB�
2"("� �)e�2�̂(2 + e��̂)(1 � e�̂)�4 +

� kB�
3"("� �)2e�2�̂(2 + e��̂)2(1� e��̂)�5 (16.a)

C(A)
�1

= 4kB�
2"("� �)e�2�̂(1� e�̂)�3

[2 + e��̂ � 2�("� �)(1� e��̂)�1(1 + e��̂)] (16.b)

C(�)
�2

= 2kB�
2"("� �)e��̂(1 � e��̂)�2 �

kB�
3"("� �)2e��̂(1 + e��̂)(1� e��̂)�3 (16.c)

C
(�)
�2
2

= �2kB�2"("� �)e�2�̂(2 + 7e��̂)(1 � e��̂)�4 �
kB�

2"2e��̂(1� e��̂)�2 + 4kB�
3"2("� �)e��̂(1 + e��̂)(1� e��̂)�3

�kB�3"("� �)2e��̂(1 � e��̂)�5(20 � 64e��̂ + 35e�2�̂ � 27e�3�̂)

�3

2
kB�

4"2("� �)2e��̂(1 � e��̂)�4(1 + 4e��̂ + e�2�̂): (16.d)

If we consider the high-temperature approximation, � ! 0, one can see that when the
deformation parameter is bigger than one the speci�c heat is lower than the standard
one, Co. As before, in this limit, when the contribution of the deformation for the speci�c
heat is linear and the deformation parameter is lower than one the speci�c heat increases
with respect to Co. It is interesting to notice that the system has the memory of the
deformation in the � ! 0 limit.

The di�culty in computing the exact value of the thermodynamic potentials in the
case of the Hamiltonian (2.1) can be understood in the formalism of TFD in the following
way: Consider the thermal vacuum for the case of the Hamiltonian (2.1) and call it
j0(�) >q, where

j0(�) >q= Z�1=2(�)
X
n

e�
�
2
("[n]A��n)jn; ~n > ; (17)

then it is possible to express (2.15) in terms of the thermal vacuum for the Hamiltonian
(1.12) j0(�̂) >

j0(�̂) >= Z
�1=2
0 (�̂)

X
n

e��̂nj0 > (18)

as
j0(�) >q= Z�1=2(�)F (@�̂)Z

1=2
0 (�̂)j0(�̂) > (19)

with
F (x) = e��"(

1

2
[�2x]A+x) : (20)

Showing that the transformation from the non-deformed thermal vacuum to the deformed
one (2.17) is highly non-trivial, being simple only when the deformed and non-deformed
Hamiltonians have the same spectrum.
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Final Remarks

We have considered in this paper the approach of TFD for two di�erent Hamiltonians,
each one made up of a di�erent kinds of operators satisfying deformed Heisenberg algebras.
The �rst Hamiltonian is linear in the number operator N and does not present any di�-
culty, however the second Hamiltonian generates a partition function and thermodynamic
potentials which cannot be exactly computed for arbitrary values of the deformation pa-
rameter. Even if it is more complicated the second Hamiltonian is more interesting; it is
non-interacting with non-additive energy.

We have also seen that the exact computation of mean values for general deformed
Hamiltonians is a rather complicated issue, the reason being the non-trivial relation (2.17).
We think that it would be very useful to develop a variational approach to deal with such
systems.

The non-additivity of energy seems to be a deep property of deformed systems and its
is already present in the deformed Poincar�e group [32]. There is still no strong evidence
of the presence of the Quantum Group structure in physical systems, we believe that the
non-additivity of energy present in deformed systems could give evidence of the presence
of such structures as discussed in [32] for the case of deformed Poincar�e group. The same
issue is analysed in the context of the Generalized Statistical Mechanics [33, 34] in ref.
[21].

We also consider that it would be interesting to develop TFD in the context of the
Generalized Statistical Mechanics [33, 34], which would permit the analysis of the models
we have discussed within this approach.
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