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Abstract

Viewing the AdS4;1 spacetime in the context of the conformal- compactification and covering
formalism, it is natural to view Rehren’s algebraic holography between the bulk AdS quantum matter
and that of CFT as a kind of “pull-back” of the global d-dimensional conformal (block) decomposition
theory (which results from the resolution of the apparant Einstein causality paradox in conformal
QFT) when one substitutes the lightcone in R with an hyperboloid. Whereas in the case of
lightcone this is possible in terms of fields, the use of algebras is more natural for the AdS hyperboloid.
We also mention other ways of associating (a finite set of) chiral field theories with higher dimensional

QFT’s.
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1 Historical and sociological background

There has been hardly any problem in particle physics which has attracted as much attention as the
problem if and in what way the Anti de Sitter spacetime and the one dimension lower conformal field
theory are related and if this could possibly contain clues about quantum gravity. In more specific
quantum physical terms the question is about a conjectured [1][2] (and meanwhile in large parts rigorously
understood) correspondence between two quantum field theories in different spacetime dimensions, the
lower-dimensional conformal one being the “holographic image or projection” of the AdS.

Virtually the entire globalized community of string physicist (73000) has placed this problem in the
centre of their interest and there have been approximately around 100-150 papers per month during the
last half year. Even if one takes into account the steep population growth in the number of particle
physicist during the last decades and looks only at the percentage of involved particle physicist and com-
pares it with the relative number of participants in previous similar phenomena (the S-matrix bootstrap
of Chew, Regge theory, the Gursey-Radicatti SU(6) symmetric quark theory, to name some of them)
which also led to press-conferences, interviews and articles in the media (e.g. time magazine), it remains
still an impressive sociological phenomenon. Just imagine yourself working on this problem and getting
up every morning turning nervously to the hep-th server in order to check that nobody has beaten you
on similar results. What a life in an area which used to require a contemplative critical attitude! This is
clearly a remarkable sociological situation in the exact sciences which warrants an explanation.

Leaving the explanation of these mass manifestations (on a subject which is more remote from tangible
physics than anything before in this rich physics century) to historians or sociologists of the exact sciences,
1 will limit myself to analyze the situation from the point of view of a quantum field theorist with a 30
year professional experience who still nourishes a certain curiosity about string theory with its many
successful formal mathematical consistency tests, but who has no active experience nor ambitions in that
area. Whether you consider this is an advantage or disadvantage depends on your background, age and
personal point of view.

The AdS model of a curved spacetime has a long history [3][4] as a theoretical laboratory of what can
happen in a universe which is the extreme opposite of globally hyperbolic in that it processes a self-closing
time, whereas the proper de Sitter spacetime was once considered among the more realistic models of
the universe. The recent surge of interest about AdS came from string theory and is totally different in
motivation and more related to the hope (or dream) to attribute a meaning to “Quantum Gravity” from
a string theory viewpoint.

Fortunately for a curious outsider (otherwise I would have to quit right here), this motivation has no
bearing on the conceptual and mathematical problems posed by the would be AdS-conformal QFT cor-
respondence, which turned out to be an entirely quantum field theoretical problem in a particular curved
spacetime. As a result of this peculiarity (related to the mentioned historical role of the AdS model),

there are some fundamental and interesting aspects which this problem generates in QFT which are all
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related to causality, charge transport, superselection sectors and the plea for an intrinsic formulation of
QFT [5] away from “coordinatizations” (of algebras of observables) in terms of pointlike covariant fields.
All these issues are related to real-time physics and in most cases their meaning in terms of euclidean
continuation (statistical mechanics) remains obscure, but this does not make them less physical.

This note is organized as follows. First I elaborate the kinematical aspects of the AdS;1-conformal
QF'Ty situation as a collateral result of the compactification formalism for the “conformalization” of the
d-dimensional Minkowski space. For this reason the seemingly more demanding problem of QFT in CST
can be bypassed. From this relation between the two spacetimes we see that apart from the boundary
at infinity of AdS there is no pointlike relation between the spaces but rather a relation between bulk
sets which includes in particular the “wedges” whose field theoretic distinction already appeared in many
other contexts. Therefore the field theory in the third section follows closely the recent (conceptually
as well as mathematically) rigorous solution of the AdS-conformal QFT correspondence presented by
Rehren [5] and some closely related work which supports and extends those results [7] [8].

Since one of the most important messages is the “holographic” aspects, we then present in the fourth
section some recent more general results obtained by the methods of algebraic QFT which relate the
structure of an arbitrary QFT to a finite set of chiral quantum field theories and their relative position in
a common Hilbert space. In massive d=1+1 theories this amounts to lightray holography, but in higher
dimensions it is more appropriate to refer to this process as “scanning”. Although such an extension of
holographic ideas is not required for the understanding of the AdS-conformal correspondence, it gives a
good glimpse of the future perspective of fresh attempts at a nonperturbative constructive approach to
QFT [9] and hopefully also some clues on quantum gravity (commented on in the last section). In that
last section we also return to the theme of “facts and fictions” theme by including the string theoretical

point of view as mentally processed by a curious, critical and altogether sceptical quantum field theorist.

2 Conformal Compactification and AdS

One possibility to get to conformal QFT is to notice that the Wigner representation theory for the Poincaré
group for zero mass particles allows an extension to the conformal symmetry: Poincaré group(d)—
SO(d,2). Besides scale transformations, this larger symmetry also incorporates the fractional transfor-
mations (proper conformal transformations)

_ x — bx?
1 — 2bx + b222

/
T

(1)

It is often convenient to view this formula as the translation group transformed with the hyperbolic

inversion

—X

T — — (2)
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acting as an equivalence transformation within an extended group. For fixed x and small b the formula
(1) is well defined, but globally it mixes finite spacetime points with infinity and hence requires a more
precise definition in particular in view of the positivity energy-momentum spectral properties in its action
on quantum fields. Hence as preparatory step for the quantum field theory concepts one has to achieve a
geometric compactification. This starts most conveniently from a linear representation of the conformal
group SO(d,2) in 6-dimensional auxiliary space R(*? (i.e. without field theoretic significance) with two

negative (time-like) signatures

+1

and restricts this representation to the (d+1)-dimensional forward light cone

LCW@2) — (£ = (£,8,,65) ;€2 + 65— €54, =0} (4)

where ¢2 = 53 - 52 denotes the d-dimensional Minkowski length square. The compactified Minkowski

space is obtained by adopting a projective point of view (stereographic projection)

ML) = { __ & e LC(“)} 5
¢ v §a+ i ¢ ®)

It is then easy to verify that the linear transformation which keep the last two components invariant
consist of the Lorentz group and those transformations which only transform the last two coordinates

yield the scaling formula

TR I eis(fdiﬁdﬂ) (6)

leading to z — Az, A\ = e°. The remaining transformations, namely the translations and the fractional
proper conformal transformations, are obtained by composing rotations in the §;-§, and boosts in the

§;-£4,1 planes.

The so obtained spacetime is most suitably parametrized in terms of a “conformal time” 7

ML) = (sinT,e,cosT), e € S*
sint . €
t = = , &= — (7
e% + cosT e% 4 cosT

et +cost > 0, —n<T< T

so that the conformally compactified Minkowski space is a piece of a multi-dimensional cylinder which is
carved out between two d-1 dimensional boundaries which lie symmetrically around 7 = 0,e = (0,e% =
—1) where they touch each other [11]; but the projective aspect of Hilbert space vectors as representing
physical states demands that we use the universal covering space which is the full cylinder (which has a

tiling into infinitely many ordinary Minkowski spaces)

MY = g1 xR (8)
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Indeed in order not to be limited by the narrow confines of Huygen’s principle (which tends to limit
relativistic system to non-interacting ones [8]), the “nature” of local quantum physics demands the
use of the covering space (or as the substitute a conformal decomposition theory of local fields into
irreducible components with respect to the center of the conformal covering) as will become clear in
the next section. The relevance of this covering space for the notion of relativistic causality was first
pointed out by I. Segal [10] and nicely presented within the context of QFT by Luescher and Mack
[11). Formally it solves the “Einstein causality paradox of conformal quantum field theory” [12] which
originated with would be conformal models of quantum field theory as the massless Thirring model which
violated Huygens principle. The naive reason for this apparent violation was that there exist continuous
curves of conformal transformations which lead from spacelike separations via the lightlike infinity to
timelike separation which obviously generates a contradiction with the structure of the Thirring model
whose timelike anti-commutator unlike the spacelike one does not vanish. The covering structure formally
solves this causality problem by emphasizing that the path through lightlike infinity was in fact a path
which led into another sheet and it is only the unjustified projection of one of the end-point back into
the thomboid Minkowski space (7) which has a timelike distance and not the point itself (which remains
causally disjoint). If one depicts the covering space as a cylinder, then it contains infinitely many copies
of the original Minkowski space (in d=1+1) of which the above one (7) is (for d=1+1) a compact region
which allows a nice picture [11].

Using the above parametrization in terms of e and the “conformal time” 7, one can immediately

globalize the notion of time like distance and one finds the following causality structure

(£(e,7) — &(€/,7))° > 0, hence (9)

e—é¢

1
2
T — 7' > 2Arcsin ( ) = Arccos (e - €')

In order to get the AdS manifold into the game, we may instead of using the directions on the light
cone also use the asymptotic directions on the forward hyperboloid €% = R?. This is admittedly a round-
about way to obtain the conformal compactified Minkowski space, but a very interesting one; as it turns
out this (d4+1)-dimensional hyperboloid defines (after a Z, identification £ < —£) the anti de Sitter
spacetime. If one only wants to use this AdS spacetime in order to describe the compactified geometry

including the covering aspects, one may simply parametrize the AdS as (for R=1)

" = V1+r2sinT

N = ret, i=1,..d

ndtl V1 + r2cost

and verify that the ensuing covering parametrization of AdS for r— oo (properly rescaled) approaches

the covering parametrization of the conformal boundary.

If it would be only for this asymptotic statement, the relation between AdS and the conformal space
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would not be very exiting. But as the d-dimensional conformal spacetime and the local quantum physics
on it can be pulled back onto the d+1 dimensional forward light cone by defining correlation functions
fulfilling certain homogeneity properties [11], one could ask whether such a “pull-back” is also possible
into the AdS hyperboloid instead of the light cone. If one relaxes the requirements and goes beyond
points and lines (direction) to more general sets, such a correspondence is indeed possible within the
conceptual framework of AQFT [5]. The idea of how to formulate such a correspondence comes from
the fact that AdS(®1) and Mc(d_l’l) and their coverings share the same spacetime symmetry namely
S0(d,2) resp. 56@72). Therefore one may start from a wedge region (reaching into the boundary) in
the d+2 dimensional auxiliary space which is defined in terms of two light rays and left invariant under
an appropriate boost transformation. If we call the projection of an ambient wedge in R(%?) onto AdS
“(AdS-) wedge” and notice that its projection on the conformalized Minkowski spacetime is generically
a double cone (a “conformal” wedge is a special case since it is conformally equivalent to a double cone),
then we have a starting point from which we can build up a correspondence. It would be natural (and
without alternative) to relate the correspondence by letting the symmetry group act in both worlds and
extend this correspondence to transformed regions and their intersections. We refer to a paper by Rehren
[5] where this has been carried out and on which this and the following section rely heavily. Now the old
problem which historically led to AdS, namely the existence of timelike closed lines and the apparently
weird causality situation of local quantum physics in such a world, can receive a helping hand from the
conformal side! where it has a more hidden counterpart in the form of an apparent “Einstein causality
paradox” whose solution in terms of conformal blocks was already found a quarter century ago [13] and

which we will present in the present context in the next section.

3 Conformal QFT pulled back into AdS

The formulation in terms of conformal covering space would be useful if the world, including laboratories
of experimentalists, would also be conformal, which certainly is not the case. Therefore it is helpful to
know that there is a way of re-phrasing the physical content of local fields (which violate the Huygens
principle and instead show the phenomenon of “reverberation” [12] inside the forward light cone) without
running into the trap of the causality paradox of the previous section. Such fields, although behaving
irreducibly under infinitesimal conformal transformations, transform reducibly under the action of the
global center of the covering Z (5’5(\d,/2)) As a unitary abelian group it is generated by the 27-translation
in the conformal time 7. A local covariant field A(x) (local in the sense of the causal structure of .5’5(\(2,/2))

corresponding unitary operator Z € Z(S0(d,2)) can be decomposed as [13]

Ada) = [ A (10)

I Meanwhile K.-H. Rehren informed me that one of his collaborators is studying this problem in detail.
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with Ag formally given by

A(z)= Y Z"Au(z)Z "exp [int(d - 26)] (11)
from which one gets
AdZ AL () = exp [—in(d — 2¢)] AS(2) (12)

The notation is the following: d is the scaling dimension of the local (causal in the covering sense)
field A4(z) and the £-integration is the decomposition into its centrally irreducible components. These
component fields, unlike the original globally causal fields, do not fulfill the Reeh-Schlieder theorem
(sometimes referred to as the field—field-state-vector correspondence), rather they have a source and a
range and their application to a non-matching source subspace vanishes. Their physical interpretation is

easily obtained from the conformal analysis of 3-point functions

(Cae(2) Aa(®)Ba,(2)) = {Cuclw)45()Bay(2) ) (13)

Hence the quantum number of the irreducible components is related to the dimensional spectrum (critical
indices) of the theory and the ¢-dependent phase factors enter the transformation law which comes close

to the naive classical transformation

U(b)AS(x)U 1 (b) = L Al 14
(b)A5()U(b) o o G (z) (14)

whereas the more complicated law for the local field follows from the decomposition formula (10). In the
case of d=1+1 for which the group (as well as its center) factorizes S/(Q\,E) =S5U(1, 1)/;E’U (1,1) and one
obtains the well-known BPZ [14] conformal block decomposition theory with the additional remark that
it was already discovered 10 years before?. In order to facilitate the reading of our 74/75 papers [13] on
the subject, I have used exactly the same normalizations and notation. There is a special aspect of this
chiral decomposition theory. It is the only case for which one has a classification theory of the possible
spectra of dimensions/critical indices. It is given by the spectrum of phases of the so-called statistical
parameter which occurs within the superselection theory of AQFT and in the case at hand is inexorably
related to the braid group exchange algebra structure of the nonlocal irreducible components Ag.

Now the path to a nontrivial i.e. interacting QFT on AdS which can withstand the causality challenge
appears in a clearer light: pull-back the nontrivial centrally irreducible conformal block (superselected
charge sector) algebras instead of fields, using the wedge techniques of Rehren. By construction the

pulled-back charge sector algebras (and their intersections) will satisfy the correct phase relations with

the generator of the center Z which are needed for the avoidance of causality paradoxes. For AdS,

2The new result in the BPZ work were the nonabelian illustrations (minimal models) which went far beyond the abelian

exponential Bose field and current algebra of one decade before.
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the operators from these block algebras are even expected to fulfill an exchange algebra with R-matrix
structure constants. The pull-back method, unlike for the light cone pull-back cannot be done in terms
of field-coordinatizations unless one admits also multiply localized field with a charge transport tube

between them [5].

4 Generalized Holography in Local Quantum Physics

The message we can learn from the AdS-conformal correspondence is two-fold. On the one hand there is
the recognition that there are situations where it is necessary to avoid the use of “field coordinates” in
favor of directly working with local algebras. Although this idea is a rather old enrichment of advanced
QFT and forms the backbone of AQFT, in most concrete situations there were always convenient field
coordinatizations available in terms of which (in analogy to preferred coordinates in differential geometry)
the calculations simplified. For the AdS-conformal correspondence the best way is however to stay
intrinsic, i.e. to use the net of algebras.

The second message is that there may exist a holographic relation between QFT’s and lower di-
mensional conformal QFT. Here we are entering a much more recent issue of QFT which is still in its
infancy. Let us consider the simplest case: the chiral conformal holographic image of a two-dimensional
massive QFT or, using an older terminology (which will hereby attain a rigorous and at least partially
new meaning), the light ray restriction (quantization). Let us start from the right wedge algebra of a
massive 2-d QFT (either generated from a Wightman field or from the algebraic net approach) A(W).
We want to introduce the restriction of this theory on its upper horizon R which is half of the total line
of the light ray R. We first notice that compact intervals on R does not cast a two-dimensional causal
shadow, in contradistinction to a spacelike interval. The physical reason is of course that each point
in an e-neighborhood below that interval is in the backward influence cone of the points on Ry which
are outside that interval. The situation changes if we take all of R,. In that case the causal shadow
is the wedge region; this holds only for the massive case, since for d=141 massless theories there are
independent characteristic data on the lower light ray horizon of the wedge (doubling of the degrees of
freedom). In the general approach to QFT the von Neumann algebra of a compact spacetime region is,
according to the causal shadow property of AQFT (which is a local version of the time-slice property
[15]), identical to the algebra of its causally completed region. Each Lagrangian field theory, to the extend
that it exists beyond perturbation, fulfills this requirement®. If one tilts the spacelike interval into the
lightlike direction, the causal shadow region becomes gradually smaller. The only way to counteract this
shrinking is to extend the spacelike interval say gradually to the right in such a way that the larger lower

causal shadow part becomes the full wedge in the limit. The correctness of this intuitive idea which

3Postulates as this in fact have been abstracted from the Lagrangian quantization setting with the idea to separate the

good physical content from the Damocles sword of existence of Lagrangian QFT’s.
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suggests
AR) = AW) (15)

can be checked against other rigorous results. One rigorous result from Wigner representation theory
(which therefore is limited to free field theories) together with the application of the Weyl or CAR (for
halfinteger spin) functor is the statement that the cyclicity spaces for an interval I on R, agree with the

total space [16]

AN = AR = AW)Q = H (16)

i.e. the validity of the Reeh-Schlieder theorem on the light ray subalgebra. In fact this holds for all positive
energy representations including zero mass, except zerc mass in d=1+1 in which case the decomposition
in two chiral factors prevents its validity. The step from spaces to (15) is done with the help of Takesaki’s
theorem (mentioned later) The second argument is that any field theory for which the wedge algebra has

polarization free generators (PFG) generators F automatically fulfills (15). Here PFG means that

d
S R a7)
locF = W

i.e. the one time application of the wedge localized generator onto the vacuum is a one particle state
without any admixture of higher particle-antiparticle pair states (vacuum polarization clouds). It is
highly surprising and nontrivial that this is possible in the presence of interactions. In some way the
PFG’s behave like free fields but in the presence of interactions and to resolve this apparent contradic-
tion they must be sufficiently nonlocal (i.e. wedge-localized). In fact it can be shown that the wedge
region is the smallest for which this is possible; any smaller spacetime region, in particular any compact
region leads to the admixture of incoming scattering states with arbitrarily high particle number as a
characteristic inexorable attribute of localization in the presence of interactions. The argument that (15)
is a consequence of the fact that A(WW) can be generated by such F’s can be found in [9] and will not
be repeated here. Again one shows first cyclicity (16) from the properties of PFG’s and then the result
follows by invoking a theorem of Takesaki on conditional expectations for subalgebras in relation to their
modular groups. Since this theorem and its setting in AQFT is very deeply related to the noncommuta-
tive structure of local quantum physics and gives an excellent look into the “natural” workshop (i.e. the
noncommutative aspect is intrinsic and not imposed by decorating (euclidean) commutative structures
with noncommutative geometry) let me briefly explain it, although it is already somewhat outside the
title of my note.

All structural investigations in AQFT start with a net of operator algebras as subalgebras of the
algebras of the algebra of all operators B(H) in a Hilbert space H. These subalgebras are indexed by

spacetime regions O in Minkowski space

O - A(0) (18)
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and fulfill a few entirely physically motivated properties which constitute the principles of local quantum
physics. This field-coordinatization independent approach brought a wealth of new physical results (in-
cluding the old perturbative results which depend on the use of pointlike fields) but it always run into
problems if one tried to extract from it an algorithm for construction of specific models which remained
faithful to its intrinsic spirit. All this has changed recently, due to the recognition of the revolutionary
role! of the modular Tomita-Takesaki theory in local quantum physics. Whereas the discovery that the
wedge algebra A(W) together with the vacuum state leads to modular objects which are related with two
important objects in QFT (the modular conjugation J with the TCP-operator and the modular group
A with the wedge affiliated Lorentz boost) was already made in the middle of the 70%* its inverse
namely the construction of a wedge algebra and its extension into a net by covariance and intersections
is a more recent discovery. It turns out that the wedge algebra has on-shell generators, namely the above
mentioned PFG’s which are determined in terms of the physical S-matrix. Therefore in cases where the
old S-matrix bootstrap program of Chew works i.e. for the factorizing d=1+41 models, the modular ma-
chinery can be directly applied. The modular program works especially well for chiral conformal theories
for which the wedge is replaced by the halfline and instead of the physical S-matrix one deals with an
unitary operator with another interpretation. In more general cases one has two options, either find a
new kind of perturbation theory for these PFG’s or one must find some way to decompose an actual
theory into chiral conformal ones. The way of associating a chiral conformal theory with e.g. a d=1+1
massive theory is the following [17]. Start from the right wedge algebra A(W) with apex at the origin
and let an upper lightlike translation a4 (which fulfills the energy positivity!) act on A(W) and produce

an inclusion
A(Wa, ) C AW) (19)

This inclusion is halfsided “modular”, i.e. the modular group A% of (A(W),Q) (which is the Lorentz

boost, as previously stated) acts on A(W,_ ) for t<0 as a compression
AdAit.A(WM) CAW,,), t<0 (20)

The assumed nontriviality of the net i.e. the intersections® of wedge algebras entails that the relative

commutant (primes on algebras denote their commutant in B(H))
A(Wa,) N AW (21)

is also nontrivial and insures that the inclusion is what has been termed “standard”. But it is known

that standard modular inclusions correspond to chiral conformal theories, i.e. the classification problem

4In mathematics it played a crucial role in the work of Alain Connes on the classification of von Neumann algebras
and it is also present (but as a result of the assumed finitcness of algebras not as prominent) in Vaughan Jones work on

subfactors; both contributions led to a Fields medal.
5The nontriviality of the intersections are the algebraic counterpart of the “good” short distance behaviour in a quanti-

zation approach (which is a prerequisite for renormalizability); both are necessary (and in the algebraic case also sufficient)

for the existence of the theory.
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for the latter is identical to the classification of all standard modular inclusions. In the case at hand the
emergence of the chiral theory is intuitively clear since the only “living space” in agreement with Einstein
causality (within the closure of W and spacelike with respect to the open W,_ ) which one can attribute
to the relative commutant is the lightray interval of length a, starting at the origin. From the abstract
modular inclusion setting the Hilbert space which the relative commutant generates from the vacuum
could be a subspace H, C H, H, = PH of the original one. With the help of the L-boost (=modular
group A% of (A(W),Q) one then defines a net on the halfline Ry and a global algebra

ARy)
ARL)Q = Hy

alg {UrcoAdA™ (AW, ) N AW))} € AW) (22)

The modular group A% of the original algebra leaves this “lightray algebra” invariant and hence we are
in the situation of the Takesaki theorem which states that a subalgebra together with the vacuum which
is left invariant by the modular group of the larger invariant has modular objects which are restrictions

of those of (A(W), )

(A™*(Ry), Q) = ((A™)™,J™) (23)
notation B™° = PBP

In addition the condition on the invariance of the subalgebra is the precise condition under which a
conditional expectation E with A™*(Ry) = F(A(W)) = PA(W)P (the noncommutative counterpart of
the physicists decimation process with the help of “integrating out” degrees of freedom in the sense of
Wilson/Kadanoff). The existence of PFG generators of A(W) insures that H; = H and in that case the

Takesaki theorem leads to the desired equality
A (Ry) = ARy ) = AW) (24)

The identity shows that identification of chiral conformal theories with zero mass is a prejudice caused
by the naive confusion of covariances with localization favored by the quantization point of view. Whether
chiral theories are describing massless or massive situations depends on the interplay of covariance and
locality. In the present case locality and covariance coalesce in the case of a4 lightray translations and
L-boosts which restrict to dilations. These are the standard covariances which are used to define a net
structure on A(R, ). However the third covariance on A(W') namely the opposite lightray a_ translation,
which acts locally on the A(W) net, becomes enormously nonlocal if one tries to interprete in terms of
the A(R,) net structure. In fact the action is not geometric at all but rather totally “fuzzy” [18] : an
a_ translation acting on a ay-indexed interval spreads all over R} bur does not loose its solid algebraic
meaning in the sense of transforming the original interval-indexed subalgebra into another one which does

not permit any spacetime indexing in the “lightray world”. This second “hidden” symmetry® is important

6The original A(W)-net also has hidden symmetries, ¢.g. the two conformal rotations belonging to chiral theories on

Ry.
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for the finite mass spectrum: although the P, spectra (lightray momentum spectrum) separately goes
to zero and mimics a zero mass situation, the product (not a tensor product as in the massless d=1+1
case!) Py P_ has a mass gap.

The present modular inclusion approach to “lightray physics” and degrees of freedom reduction [19][20]
clarifies some opaque features of “light cone quantization”, notably those which have to do with locality
and covariance, i.e. the reconstruction of the local massive d=1+1 net from its “lightray holography”.
On the one hand it brings into the open an old suspicion that lightray physics is nonlocal (and therefore
threatened by lack of physical interpretability), but on the other hand shows that the situation, if treated
with the proper concepts and methods, is not without redemption. It gives additional weight to a point
which was made by Rehren in the above context of the AdS-conformal correspondence namely: field
coordinatizations are not so useful for describing holographic relations, the more intrinsic net structure
is better adapted. The lightray holography remains of course conceptually different from the hologra-
phy through a boundary at infinity (for which the AdS-conformal correspondence is the only known
example). The former two-dimensional illustration has a structurally very rich and only partially ex-
plored generalization to higher dimension. In that case the modular method applied to one wedge only
transfers a small fraction of the structure of the original theory into a chiral conformal theory which
localization-wise should really be associated with the upper light front horizon of the wedge. But since
its transversal localization remains completely unresolved, the so obtained light front theory only contains
the longitudinal localization data of a chiral conformal net. Let me explain the transversal resolution
in the simplest case of a d=1+2 theory. In that case one tilts the wedge by a L-boost which leaves the
upper defining light ray for the initial wedge invariant [9]. One then convinces oneself that this newly
positioned second wedge has a modular associated chiral conformal theory which, though being unitarily
equivalent to the first one, carries the missing information (which is needed for the reconstruction of the
original d=142 theory) in form of its relative position in the common Hilbert space H. This method
should be more appropriately called scanning by (a family of) chiral conformal theories. The idea is to
approach the existence and construction problem of higher dimensional QFT’s by the apparently simpler
looking problem of studying a finite family of chiral conformal theories in a prescribed relative position.
Almost all complex problems owe their solution to chopping up one difficult problem into several less
difficult ones and the progress (outside perturbation) on this issue (of construction of QFT) left much to
be desired just because the problem proved too viscous against such chopping up attempts.

For a more detailed analysis with emphasis on thermal aspects (localization temperature and entropy)

we refer to [9]
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5 Lessons on Quantum Gravity: Fact or Fiction?

Despite the interesting messages about the nature of the AdS-conformal correpondence, there is yet no
hint at possible properties which could point into the direction of quantum gravity (which after all was
the prime reason why string theorist revived the interest in the AdS model).

The strange socio-scientific situation described in the introduction requires an explanation. Even if
one takes into account the new marketing aspect which accentuates fashions on a globalized scale (and
from which also other areas of exact sciences were not spared), one still finds it difficult to explain the
mere size if over a thousand papers in a relative short time on a special model for only one special
purpose (to get a glimpse of quantum gravity) in view of the fact that there are many interesting and
theoretically challenging problems around (even more than at any other time in this century). One’s
surprise and bewilderment (I am talking about physicists who had a professional life already before the
new string time) even increases if one notices, as we did in this note, that there is a nice solution [5]
of the problem which is not only clear from a mathematical viewpoint but hardly leaves anything to be
desired from a conceptual point of view. The reason why this has been totally ignored in my view is not
just that it argues in a framework outside of the differential-geometric setting of string theory. Rather
one gets the suspicion that it is related to the fact that, similar to the present work, it does not confirm
those hopes of string theoreticians about quantum gravity. This is why (even though some of their AdS
conjectures were made precise and rigorously proven!) they seem to remain unhappy about that work.
Since as a theoretical physicist I am not qualified to comment on sociological aspects, the only thing I
can do is to go back and try to understand from where this stubborn believe in the inexorable connection
if string theory with quantum gravity is coming from. This is not possible without a little excursion into
history.

The split of string theory away from local quantum field theory can be traced back to the time
of the invention of the dual model. Before there was an attempt at a pure on-shell S-matrix theory
which got bogged down on the insufficient physical (and consequently also mathematical) conceptual
understanding of crossing symmetry and on the fundamentalistic cleansing rage against off-shell (field
theoretic) concepts. Phenomenologist introduced a very special form of crossing called “duality”. It
consisted in demanding that crossing symmetry for two-particle scattering should already be enforceable
with infinitely many one particle states which via crossing (between the Mandelstam s t and u channels)
should form a bootstrapping situation (“nuclear democracy”) already among one-particle contributions.
It had no basis in QFT (nobody ever found a quantum field theoretic realization) and it is almost
impossible to convey to a contemporary physicist the strange physical ideas which led to it (and which
are presumably totally unknown among younger string theorist). But it did serve as the prime motivation

for the introduction of Veneziano’s dual model” which in turn allowed an interpretation in terms of a

"Even in this new setting duality in its original one particle form could not be maintained but had to receive unitarity

corrections.
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quantum string (the birth of the old string theory). But it should be emphasized that it was not a string
in the sense of objects with semiinfinite spacelike localization as envisaged on a formal intuitive level by
Mandelstam in local gauge theory or more rigorously as AQFT describes the spacetime carriers of d=1+2
braid group statistics (or more generally of topological charges in the sense of AQFT [6]). Rather the
string of string theory is a “spectral string” in the sense of an oscillator like spectrum for the eigenvalues
of the mass operators (i.e. an infinite particle tower). The question of spacetime localization, so the
experts explained at that time (and still keep telling) is ill-posed in the present string formalism; one has
to first have a second quantized form (“string field theory”) and then one can address this question®. To
make this point a bit more palatable, string theorist invariably point to an alleged analogue situation
between relativistic particle Lagrangian (square root of the Minkowski line element) and quantum field
theory. This is done on a basis of some prescriptions of how to handle such extremely formal functional
integral expressions which are then formulated in such a way that the result is the well-known Schwinger
alpha-parameter representation of the free field Feynman propagator. What is usually forgotten is to say
that a theory of interacting particles on that line of thinking simply does not exist and for precisely this
reason one does QFT! Hence this analogy seems to contain a somewhat detrimental and undermining
message. In the end it does of course not interest in what way one arrives at an idea as long as it produces
some testable experimental results or relates to existing theoretical principles in an interesting way which
also could mean transcending (but never ignoring) existing principles.

The next step, namely the gravity interpretation of string theory (the old string was a kind of nonper-
turbative proposal for strong interactions) consisted in identifying the string tension constant with the
Planck length and meant initially just sliding up the energy scale without but keeping the same mathe-
matical formalism. It was by far the most adventurous step in particle physics, if not in the entire history
of physics (May be this explains the conspicuous absence of the string theorist of the first generation as
e.g. Neveu and most of his collaborators). Many years later, with the ascend of differential geometric
knowledge among particle physicist, arguments in the spirit of the differential-geometric sigma model
were proposed in favor of a gravity interpretation for the spin=2 component (in the spectrum of all spins
which a spectral string theory always contains and which made it useful for Regge phenomenology for a
number of years). But it cannot be overstressed that it was the sigma-model reading and not any physical
principle or concept which created the quantum gravity aspect of string theory. The power of rational
arguments in particle physics is of course limited as in any other human activity. They are generally
not sufficient to undo ingrained prejudices or fundamentalistic believes (especially if they are related to
TOE’s).

As a mathematical physicist the present situation permits me to draw the conclusion (from the facts
presented in this note) that the solution of AdS-conformal correspondence does not shed any more light

on this problem than any other curved spacetime model with a local quantum matter content. Besides

8 There were some courageous attempts in the light cone gauge [22], but it seems that they have been ignored.
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string theory there are other ideas [21][9]. To the extend that they use methods of algebraic QFT, they
rely heavily on the modular localization properties of local quantum matter enclosed behind Killing or
pure “quantum horizons” and use many of the concepts touched upon in the previous section (extended
into the direction of thermal properties of such localized matter, including “localization entropy”). In
such a framework it is suggestive to introduce an equivalence class of theories which coalesce at the
horizon in the hope to find properties of that class which one could associate with quantum gravity. But
a lot of work has to be carried out in order to get more physical breath into (or to bury) such ideas.

Note added: The well-known relation of complex spacetime geometry related to the analytically
continued (tube, extended tube, permuted extended tube) correlation functions of covariant fields or
more general localized operators (the BWH-theory [23]) may be adapted to the AdS spacetime in order
to find a complex counterpart of the real spacetime formalism of this paper. One expects that the only
significant change (for QFT which are genuinely interacting and therefore violate the Huygens principle in
an even number of spacetime dimensions) would consist in the loss of the uni-valuedness of the correlation
functions in the AdS-adjusted BWH-domain. In d=1+1 this phenomenon is well-known and results from
the change from Fermi/Bose spacelike commutation relations to plektonic ones which reflect the R-matrix
structure of the exchange algebras. However in higher dimensions the analytic ramification properties of
the vacuum expectation values of the block components of centrally reducible local fields are still a terra
incognita. I believe one has two options, either use operators and real geometry /analysis as done here and
also in [5], or study state vectors obtained by multiple application of fields to the vacuum or correlation
functions with the help of complex geomety/analysis. It is however not possible to use complx methods
for operators and therefore the terminology “holomorphic fields” is an extremely unfortunate one.

In a recent paper by G. W. Gibbons [24] such complex methods were used, but since the relation to
QFT correlation functions has not been made, it is not possible to say anything about the precise relation

to [5] or to the present work.
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