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Abstract

We investigated the behavior of the non-truncated and truncated E�mov-Fradkin mod-
els (Lint = �PN

n=3 �n'
n) at �nite temperature in a generic D-dimensional at spacetime.

The thermal contribution to the renormalized mass and coupling constants are obtained
in the one-loop aproximation by the use of a mix between dimensional and the Epstein
zeta function analytic regularization and a modi�ed minimal subtraction procedure. We
proved that for Dc(N � 1) � D there is not a temperature for which at least one of the
renormalized coupling constants becomes zero, where Dc(N � 1) is the critical spacetime
dimension for the renormalized coupling constant �N�1. For Dc(N) � D < Dc(N � 1)
only the renormalized coupling constant �N�1 becomes zero at some temperature ��1N�1.
For D < Dc(N) the renormalized coupling constants �N�1(�) and �N (�) become zero
at temperatures ��1N�1 and ��1N respectivelly. In the latter situation, for temperatures
��1N�1 < ��1 < ��1N the e�ective potential has a global minimum. For temperatures above
��1N the system can develop a �rst order phase transition, where the origin corresponds
to a metastable vacuum. In the nontruncated model, corresponding to a non-polynomial
Lagrange density, for D � 2 all the coupling constants remain positive for any tempera-
ture.
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1 Introduction

In this paper an attempt is made to understand the vacuum stability mechanism in
scalars models at �nite temperature assuming polynomial and non-polynomial Lagrange
densities. It is of common knowledge that the ultraviolet divergences that arises in mod-
els with non-polynomial Lagrange densities are not worse graph by graph than those
encountered in polynomial renormalizable models [1]. This result was obtained using a
summation method introduced by E�mov and Fradkin [2][3]. The idea of the method is to
investigate the Borel summability of the divergent perturbative series [4]. The interaction
Lagrange density of these models may be expanded in a power series of the type,

Lint = � lim
N!1

NX
n=3

�n'
n(x); (1)

where '(x) is a hermitian scalar �eld and �n are the coupling constants of the model.
Instead of regularizing the model using a ultaviolet cuto� � in the Euclidean momenta,

or assuming the existence of a spacetime microscopic structure, characterized by a lattice
spacing a, we prefered to regularize it by using a combination of two di�erent methods:
the dimensional [5] and a analytic regularization methods [6]. The advantage of this
technique lies in the fact that the dependence of mass and coupling constant with the
temperature appear in a very straighforward way. A recent discussion on the relation
between the cuto� method and analytical regularization procedures to obtain the Casimir
energy in an arbitrary ultrastatic spacetime with or without boundaries, may be found
in Svaiter and Svaiter [7]. Upon the application of the analytic regularization method
a mass parameter � is introduced, in order to deal with dimensionless quantities in the
analytic extensions. It is not di�cult to show that the canonical dimension of the coupling
constants of the model are given by

�n = �D�
n

2
(D�2) (2)

where D is the spacetime dimension. Each coupling constant in the expansion given
by eq.(1) has a critical dimension Dc(n). By critical dimension of each coupling con-
stant we mean a spacetime dimension such that bellow it the coupling constant may be
a large quantity due to its positive dimension D � n

2 (D � 2) in terms of � (or using
the critical phenomena language, in terms of the original scale 1

a
where a is the lattice

spacing). We de�ne the critical spacetime dimension Dc(n) as the spacetime dimension
where the renormalized coupling constant �n is dimensionless. Bellow Dc(n) the model is
super-renormalizable. We demonstrate that in the super-renormalizable case above some
temperature the system may su�er a �rst order phase transition.

In two recent papers studying the �'4 model, the possibility to change the sign of
the renormalized coupling constant was raised [8][9]. In the �rst one, the thermal and
topological contributions to the renormalized mass and renormalized coupling constant in
the one-loop approximation were obtained [8]. In the second one we extended the study
of the �'4 model at �nite temperature to a generic D-dimensional spacetime with trivial
topology of the spacelike section and we also discussed the behavior with the temperature
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of the Gross-Neveu model, which is an ultraviolet asymptotically free model. In the Gross-
Neveu model, we proved that for D = 3 the thermal contribution to the renormalized
coupling constant is zero. In the other hand, for D 6= 3 our results are inconclusives
[9]. Studying the �'4 model we obtained more concrete results. Still using the e�ective
potential and the one-loop aproximation, we presented the thermal contribution to the
renormalized mass and coupling constant. The thermal renormalized coupling constant
is given by

�(�) = �(1) + ��(�); (3)

where �(1) is the temperature independent renormalized coupling constant and ��(�)
is its thermal correction. Using the fact that ��(�) is negative, we proved that for D < 4,
at su�ciently high temperatures, the system may su�er a �rst order phase transition with
a metastable vacuum at the origin.

In the majority of the papers in the literature the temperature dependence of the
renormalized coupling constant is neglected. This appoach is reasonable if we are inter-
ested in study a second order phase transition. In this case the variation of the squared
mass with the temperature is the most important fact. Therefore it is su�cient to con-
sider the renormalized coupling constant as independent of the temperature and the sign
of the squared mass drives the second order phase transition. The situation which we are
interested in discussing here is quite di�erent, since the goal of our investigation is not
the behavior of the system in the neighboorhood of a second order phase transition. Our
intention is to study the model in high temperature regime (far from a critical tempera-
ture) where the possibility of vanishing some renormalized coupling constant witha �rst
order phase transition at some temperature arises.

We would like to emphasise that the study of the dependence of the coupling constant
with the temperature is not new in the literature. Many authors have been studied such
dependence in scalar models [10] and also in non-abelian gauge theories [11]. In the former
case, since QCD is an asymptotically free theory, it can be shown that as the temperature
increases, the temperature dependent renormalized coupling constant goes to zero. As we
discussed, in the �'4 model if D < 4, for temperatures ��1 above the temperature ��1T

the renormalized coupling constant �(�) becomes negative and the origin is a metastable
vacuum. Such kind of problems occours with non-asymptotically models. The growth
of the coupling constant at large momenta corresponds to the temperature growth (in
modulus) of the renormalized coupling constant.

Even in the absence of temperature, the instability of the vacuum of models using
scalar �elds has been discussed in the literature. An enlightening discussion has been done
by Linde [12]. Studying the O(N) model and performing an 1

N
expansion of the e�ective

potential, this author showed that the e�ective potential is a double-value function of the
�eld ' (where the �eld � = ('1; ::; 'N) has a classical part � =

p
N('; 0; ::; 0)). In the

upper branch appears a tachyonic pole which leads to disregard it as a non-physical one,
remaning the e�ective potential described by a unique curve which for large values of the
classical �eld is not bounded from bellow.

We would like to stress that the situation treated in this paper is very similar to
the examples where renormalized quantities depend on the geometric parameters of the
spacelike section. The simplest example is the renormalized vacuum energy of scalar �elds
con�ned in a parallelepipedal box, where the sign of the energy may depend on the relative
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lengths of the cavity. Indeed the sign of the Casimir energy may depend on the spacetime
dimension, the type of boundary conditions, etc. [13], but we would like to emphasize
only the dependence of the Casimir energy on the ratio of the sizes of the box (imposing
Dirichlet b.c.) to give a rough idea of what kind of behavior we expect in situations where
a regularization and renormalization procedures are obligatory. Note that the possibility
of obtaining a negative renormalized coupling constant in the �'4 model was conjectured
by Nash a long time ago [14].

In this paper, we will investigate the one-loop renormalization of the truncated and
non-truncated E�mov-Fradkin model assuming thermal equilibrium with a reservoir at
temperature ��1. Using the one-loop e�ective potential discussed briey in ref.[8] and
ref. [9], we will show that if D � Dc(N � 1), all the renormalized coupling constants of
the truncated model are positive for any temperature (note that for reasons of stability
in the tree level N must be even). For Dc(N � 1) > D � Dc(N) only the renormalized
coupling constant �N�1(�) becomes zero at some temperature ��1N�1. For Dc(N) > D the
renormalized coupling constants �N�1(�) and �N (�) become zero at the temperatures
��1N�1 and ��1N respectivelly.

The outline of the paper is the following: in section II the e�ective potential is pre-
sented. In section III the thermal contribution to the renormalized mass and coupling
constant are presented in the truncated model (N = 4). In section IV we repeat the
calculations of the truncated model for (N > 4) and in the non-truncated model. Finally,
we discuss some aplications of our results in curved spacetime and high order behavior of
perturbation theory. Conclusions are given in section V. In this paper we use �h = c = 1.

2 The one-loop e�ective potential of the E�mov-

Fradkin model at zero and �nite temperature.

In this section we will generalize some results obtained in Ref.[8] and Ref.[9]. Supose a
D-dimensional at spacetime with trivial topology of the spacelike section and Bose �elds
in thermal equilibrium with a reservoir at temperature ��1. Let us assume the following
Lagrange density associated with a massive neutral scalar �eld.

L =
1

2
(@�')

2 � 1

2
m2'2 �

1X
n!

�n

n!
'n + counterterms: (4)

Since the model is non-renormalizable, the counterterms have meaning only in the context
of a �nite number of loops. Note that we are not assuming inversion simmetry in the
model, i.e. V ('0) = V (�'0). If we assume it, the only surviving terms will be the even
powers of the �eld. The time ordered products of the �elds can be continued analytically
to imaginary times and we de�ne an Euclidean action integrating the analytic continuation
to imaginary times in the Lagrange density. After a Wick rotation, de�ning the normalized
expectation value of the �eld by '0 =

<0j'j0>
<0j0> , the zero temperature e�ective potential is

given in the one-loop aproximation by

V ('0) = VI('0) + VII('0) (5)
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where:

VI ('0) =
1

2
m2'2

0 +
1X
n=3

�n

n!
'n
0 + counterterms; (6)

and

VII('0) =
1X
s=1

(�1)s+1
2s

� 1X
n=3

1

(n� 2)!
�n'

n�2
0

�s Z dDq

(2�)D
1

(!2 + ~q 2 +m2)s
: (7)

There is no di�culty to extend the above results assuming that the system is in ther-
mal equilibrium with a reservoir at temperature ��1. In the study of quantum �elds at
�nite temperature two di�erent approaches are currently used. The �rst one is the real
time formalism in the canonical [15] or path integral approach [16]. The second one, is the
Euclidian time formalism and will be used from now on in this paper. After a Wick rota-
tion, the functional integral runs over the �elds that satisfy periodic boundary conditions
in Euclidian time. The e�ective action may be de�ned, as in the zero temperature case,
by a functional Legendre transformation. Regularization and renormalization procedures
follow the same steps taken in the zero temperature case, since temperature e�ects do not
change the ultraviolet behavior of the model. Summing up, to study temperature e�ects
in Bose �elds we must perform the following replacements in the Euclidian region:

Z
d!

2�
! 1

�

X
n0

(8)

and

! ! !n0 =
2�n0

�
(9)

where !n0 = 2�n0

�
are the Matsubara frequencies. Introducing a mass parameter � and

de�ning the dimensionless quantities,

c2 =
m2

4�2�2
; (10)

(��)2 = a�1; (11)

and

ki =
qi

2��
; (12)

the Born terms plus the one-loop contributions to the e�ective potential are given by,

V (�; '0) = VI('0) + VII(�; '0)

where

VI (�; '0) =
1

2
m2'2

0 +
1X
n=3

�n

n!
'n
0 + counterterms; (13)

and

VII (�; '0) =
p
a�D

1X
s=1

(�1)s+1
2s

� 1X
n=3

�n'
n�2
0

4�2�2(n� 2)!

�s 1X
n0=�1

Z
ddk

1

(an02 + ~k2 + c2)s
: (14)
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Owing to the discreteness of the Matsubara frequencies, an analytic regularization
procedure will be used. De�ning the inhomogeneous Epstein zeta function as

Ac2

N (s; a1; a2; ::; aN) =
1X

n1 ;n2::nN=�1

(a1n
2
1 + a2n

2
2 + :::+ aNn

2
N + c2)�s; (15)

we will see that its analytic continuation will be used to regularize the model. Before
showing how this analytic continuation works and in order to simplify eq.(14), it is conve-
nient to de�ne gn and � as the new coupling constants and an adimensional (for D = 4)
vacuum expectation value of the �eld

gn =
�n

4�2�4�n(n � 2)!
(16)

and
'0

�
= �: (17)

Substituting eq.(16) and eq.(17) in eq.(14) we obtain

VII(�; �) = �D
p
a

1X
s=1

(�1)s+1
2s

� 1X
n=3

gn�
n�2

�s 1X
n0=�1

Z
ddk

1

(an02 + c2 + ~k2)s
: (18)

Since the spatial section of the spacetime is non compact, in order to deal with the
divergences in the integral of eq.(18), we will �rst use dimensional regularization. From
the well known formula,

Z
ddk

(k2 + a2)s
=

�
d

2

�(s)
�(s� d

2
)

1

a2s�d
; (19)

and de�ning f(D; s) as

f(D; s) = f(d + 1; s) =
(�1)s+1

2s
�
d

2�(s � d

2
)

1

�(s)
(20)

it is possible to write VII(�; �) in terms of the inhomogeneous Epstein zeta function as:

VII(�; �) = �D
p
a

1X
s=1

f(D; s)
� 1X

n=3

gn�
n�2

�s
Ac2

1 (s�
d

2
; a): (21)

The terms s � D
2 are divergent which implies that the e�ective potential is not yet

regularized. To complete the regularization, let us assume that each term in the series
of the one-loop e�ective potential V (�; �) is replaced by its analytic extension, de�ned
at the begining in a open connected set of points of the complex plane s. Since we
discussed carefully the process of the analytic continuation in the previous works, here
we will only sketch this derivation. First, it is necessary to write eq.(21) in terms of
the modi�ed inhomogeneous Epstein zeta function as we did in the above citated works.
For Re(s) > N

2
, the modi�ed inhomogeneous Epstein zeta function, Ec2

N (s; a1; a2; ::aN)
converges and represent an analytic function of s, so Re(s) > N

2 is the largest possible
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convergence domain of the series. Then, using a Mellin transform it is possible to �nd
its analytic continuation. After some calculations using the results of ref.[17] we rewrite
eq.(21) as:

VII(�; �) = �D
1X
s=1

� 1X
n=3

gn�
n�2
�s
h(D; s)

�
1

2
D

2
�s+2

�(s�D
2
)(
m

�
)D�2s+

1X
n0=1

�
m

�2�n0

�D

2
�s

KD

2
�s(mn0�)

�

(22)
where:

h(D; s) =
1

2
D

2
�s�1

1

�
D

2
�2s

(�1)s+1
s

1

�(s)
: (23)

Although eq.(22) is ill de�ned, in the one-loop aproximation it is possible to �nd the
exact form of the counterterms in such a way that, mass and coupling constants (and
consequently) the e�ective potential are �nite quantities. To extract the singularities
from the analytic extensions, let us de�ne the mass squared as the value of the inverse
propagator at zero momentumand the coupling constant �n as the proper n-point function
at zero external momentum. In the next section, we will develop such idea in a very
simple case: the truncated (N = 4) E�mov-Fradkin model and subsequently present the
temperature dependent renormalized squared mass and coupling constants of the model.

3 The renormalized mass and coupling constants in

the truncated (N = 4) E�mov-Fradkin model.

The goal of this section is to study how temperature e�ects leds to instabilities in
scalar massive models. For the sake of simplicity and in order to obtain some insight
about the thermal contribution to the renormalized mass and coupling constants in the
non-truncated E�mov-Fradkin model, let us suppose the truncated model, i.e. �n = 0 for
n > 4. We remark that the theory de�ned only with the term �3 is not consistent in any
spacetime dimension since the energy is not bounded below, and so no ground state can
exist in the interacting theory. The inclusion of �4 introduce a global minimum at the
model. De�ning

f(D; s) =
1

2D=2�s+2
�(s� D

2
);

it is possible to write VII(�; �) as

VII(�; �) = �D
1X
s=1

sX
k=0

h(D; s)Ck
s g

s�k
3 gk4�

s+k
�
f(D; s)(

m

�
)D�2s+

1X
n=1

�
m

�2�n

�D

2
�s

KD

2
�s(mn�)

�
:

(24)
In order to �nd the exact form of the counterterms that will render the model �nite,

let us consider the renormalization conditions for the non-truncated model

@2

@�2
V (�; �)j�=0 = �2m2 (25)
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and
@n

@�n
V (�; �)j�=0 = �n�n; n = 3; 4; ::: : (26)

We should point out that, strictly speaking, there is no need for wave function renor-
malization because the vacuum expectation value of the �eld has been chosen to be a
constant. Using eq.(6), eq.(24), eq.(25) and eq.(26) it is possible to �nd the exact form
of the countertems in such a way that they cancel the polar parts of the analytic exten-
sions. In the neighbourhood of the poles, the regular part of the analytic extension of the
inhomogeneous Epstein zeta function has two contributions: one which is independent
of the temperature (this contribution can be absorbed in the counterterms), and another
that depends on it. The thermal contribution to the renormalized coupling constant is
proportional to the regular part of the analytic extension of the inhomogeneous Epstein
zeta function in the neighborhood of some poles for the ultraviolet divergent graphs.
Of course non-ultraviolet divergent graphs do not need to be regularized giving a �nite
thermal contribution to the renormalized quantities.

Note that we are choosing the renormalization conditions at '0 = 0. This may be done
in the truncated model even if the minimumof the e�ective potential is not at '0 = 0, since
the renormalization point is totally arbitrary. The values of the renormalized quantities
obtained using '0 = 0 as the renormalization point are related to the corresponding
quantities obtained in the true vacuum '0 = a by the equations,

m2j'0=a =
1

2
m2 +

1

2
�3a+

1

4
�4a

2; (27)

�3j'0=a =
1

3!
(�3 + �4a); (28)

and �nally
�4j'0=a = �4: (29)

Analysing the sign of the thermal corrections to the renormalized physical parameters
evaluated at � = 0, the sign of eq.(27) and eq.(29) does not change. This is expected
since the metastable behavior and the existence of a global minimum cannot depend upon
the choice of the renormalization point. For the case of the coupling constant �3(�) with
the restrictive condition ja�4j < j�3j, all the forthcoming conclusions also apply.

Let us call �m2(D;�;m; �3; �4; �) and ��n(D;�;m; �3; �4; �); n = 3; 4 the thermal
squared mass and thermal coupling constants respectivelly. In the following, in order
to simplify the notation we keep explicitly only the � dependence of the renormalized
quantities. Thus

m2(�) = m2 +�m2(�); (30)

�n(�) = �n +��n(�) n = 3; 4; (31)

and for the sake of simplicity in the notation in the rest of this section, we call �3(�) = �(�)
and �4(�) = �(�). From now on we will disregard the combinatorics factors in front
of Feynman diagrams, since they are always real positive numbers, and cannot change
qualitativelly the forthcomming results concerning the sign of the renormalized physical
parameters. We are interested only in the connected 1 particle irreducible diagrams (1PI)
which means that in the approximation we are making here, we have two graphs that
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contribute to the temperature dependent renormalized squared mass (see �g.(1)), the
terms s = 1; k = 1 (of order �) and s = 2; k = 0 (of order �2). It is not di�cult to show
that the case s = 1; k = 1 gives a positive contribution

�m2
g4
(�)��m2

g4
(1) = �D�2h(D; 1)g4

1X
n=1

(
m

�2�n
)
D

2
�1KD

2
�1(mn�): (32)

In the same way, the contribution from the term s = 2; k = 0 is negative and it is given
by:

�m2
g3
(�)��m2

g3
(1) = �D�2h(D; 2)g23

1X
n=1

(
m

�2�n
)
D

2
�2KD

2
�2(mn�): (33)

Using general properties of the Bessel function Kn(z) we obtain that the leading contri-
bution comes from the graph given by �g (1.a), i.e. �m2

g4
(�) ��m2

g4
(1) + �m2

g3
(�) �

�m2
g3
(1) > 0 and the thermal correction to the renormalized squared mass is always

positive. Using the proper time method, Braden obtained the same expression for the
thermal mass in the �'4 model (see eq. 32). This author also discussed the two-loop
correction to the mass and proved that the counterterms are temperature independent
[18]. Note that the non-leading contribution coming from the graph of �g.(1.b) is nega-
tive, going in the direction of the vanishing of the mass. In other words, in the truncated
model with only non-zero �3 coupling constant (disregarding the problem of the unboud-
edness of the e�ective potential even in the tree level aproximation), the thermal squared
mass will becomes zero and negative at high temperatures. Various investigations have
been made in theories with a cubic coupling. Gross, Perry and Ya�e [19] calculated the
thermal mass of a graviton coupled with massless fermions in the one-loop aproximation.
These authors founded that the thermal mass squared is negative the graviton develop
an imaginary mass at some temperature. This lead the authors to conclude that the hot
at spacetime is unstable. The thermal graviton one-loop correction was also analysed
by Kikuchi, Moriya and Tsukahara and and Holstein [20]. It was also shown that the
thermal e�ects desestabilize the hot curved spacetime.

The situations where we are interested in discussing the ones when some renormalized
coupling constant �n(�) vanishes by temperature e�ects. As we discussed above, if D <

Dc(n) this situation can be realized. It is important to note that in this region the
model is super-renormalizable, and when the �elds are massless, perturbative expansion
su�ers from severe infrared divergences. Since the thermal squared mass is always positive
and we are interested in high temperature regime, this problem does not a�ict us i.e.
infrared divergences never appear in our calculations at least in the one-loop aproximation.
It should be noted that this fact does not occur in higher order-loop calculations. If
we consider N self-energy insertions of O(�) (a ring correction) into a single loop, its
contribution is infrared divergent in the case of the zero mass of the �eld. In other words,
on the perturbative level the thermal mass generation does not prevent the appearance
of infrared divergences in higher order-loop diagrams.

Let us now study the thermal contribution to the renormalized coupling constants.
Initially for the thermal renormalized coupling constant �(�) we obtain,

�(�) = �(1) + ��g3(�) + ��g3g4(�): (34)
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As in the previous case it is necessary to study the cases s = 2; k = 1 and s = 3; k = 0
(see �g.(2)). In the case s = 2; k = 1 (of order �� (see �g.(2.a)), it is not di�cult to show
that it gives a negative contribution

��g3g4(�)���g3g4(1) = 2�D�3h(D; 2)g3g4
1X
n=1

(
m

�2�n
)
D

2
�2KD

2
�2(mn�): (35)

For the second case, s = 3; k = 0 (of order �3, see �g.(2.b)) the contribution is positive,

��g3(�)���g3(1) = �D�3h(D; 3)g33

1X
n=1

(
m

�2�n
)
D

2
�3KD

2
�3(mn�): (36)

The thermal correction to the renormalized coupling constant �(�) is given by,

[��g3g4(�)���g3g4(1)] + [��g3(�)���g3(1)]: (37)

The term between the �rst brackets of eq.(37) dominates over the second one and the
thermal correction to the renormalized coupling constant �(�) is negative. We have the
interesting situation where the renormalized coupling constant �(�) attains its maximum
at zero temperature (��1 =1) and decreases monotonically as the temperature increases.
In other words, the thermal contribution to the renormalized coupling constant ��(�) is
negative, and increases in modulus with the temperature. As we discussed in the previous
sections, for D < Dc(n) the coupling constant may be a large quantity. From eq.(2), it
is not di�cult to show that Dc(n) =

2n
n�2 . See �g.(3). Since the thermal contribuition

to the renormalized coupling constant is negative there is a temperature ��13 where �(�)
vanishes if D < 6. Above this temperature �(�) becomes negative. As we will see, even
if D < 4, there is a �nite range of temperatures where �(�) is still positive. The thermal
contribution to the renormalized coupling constant �(�) also can be calculated. The
complete expression for �(�) is

�(�) = �(1) + ��g3(�) + ��g3g4(�) + ��g4(�): (38)

As in the previous case we need to study the graphs s = 2; k = 2, s = 3; k = 1 and
s = 4; k = 0. See �g.(4). For the �rst case s = 2; k = 2 (of order �2), we get a negative
contribution (see �g.(4.a)),

��g4(�)���g4(1) = �D�4h(D; 2)g24

1X
n=1

(
m

�2�n
)
D

2
�2KD

2
�2(mn�): (39)

For the case s = 3; k = 1 (of order �2�, �g.(4.b)) we obtain a positive contribution

��g3g4(�)���g3g4(1) = 3�D�4h(D; 3)g23g4
1X
n=1

(
m

�2�n
)
D

2
�3KD

2
�3(mn�): (40)

Finally, in the last case, s = 4; k = 0 (of order �4, �g.(4.c)) we obtain a negative contri-
bution given by

��g3(�)���g3(1) = �D�4h(D; 4)g43

1X
n=1

(
m

�2�
)
D

2
�4KD

2
�4(mn�): (41)
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The thermal correction to the renormalized coupling constant �(�) is the sum of the
contributions from the three graphs of �g.(4) which gives

[��g3(�)���g3(1)] + [��g3g4(�)���g3g4(1)] + [��g4(�)���g4(1)]: (42)

The term between the last brackets in eq.(42) dominates over the others and since its
contribution is negative the thermal correction to the renormalized coupling constant
�(�) is negative. The important conclusion from the above discussion is the following:
the critical dimension for � is D = 4, which implies that if we take D < 4 there is
a temperature such that �(�) becomes zero. Let us call ��14 this temperature. If the
system is heated above this temperature ��14 the renormalized coupling constant �(�)
becomes negative. Note that we have two di�erent temperatures (for D < 4) where �(�)
and �(�) vanish. First �(�) becomes zero at ��13 (where �(�) is still positive) and after
at ��14 the renormalized coupling constant �(�) becomes zero (where �(�) is negative).
For temperatures ��1 > ��14 the system can develop a �rst order phase transition with
decay of a false vacuum [21].

Finally, the e�ective potential as a function of the temperature and the vacuum ex-
pectation value of the �eld for D < 4, m2 = � = � = 1 may be ploted in a "toy" model.
The temperature is the parameter that allows us to interpolate between the two con�g-
urations: a stable vacuum at low temperatures and a metastable state at temperatures
��1 > ��14 , (see.�g.(5)). In the next section we will repeat the calculations that we have
done in this section to the truncated (N > 4) and also in the non-truncated model.

4 The renormalized mass and coupling constants in

the truncated (N > 4) and the non-truncated mod-

els.

In this section we will suppose a general truncated model i.e. �n = 0 for n > N > 4.
Since we intend to disregard at the tree level the problem of the unboundedness of the
energy density, we assume that N is an even integer. The calculations are now formally
identical to the previous ones. The only di�erence is the richness coming from the distints
graphs contributing to the thermal renormalized coupling constants. For reasons which
will become clear latter we will study two di�erent situations

(i) D < Dc(N � 1)

(ii)D � Dc(N � 1).

For D < Dc(N � 1) let us investigate the thermal renormalized coupling constants
�N�2(�); �N�1(�) and �N (�) separatelly. We must analise the leading diagrams giving
contributions to the renormalized coupling constants �N�2(�), �N�1(�) and �N (�). In
this case it is not di�cult to show that there is a positive contribution to the renormalized
coupling constant �N�2(�) given by the graph s = 1 in �g.(6). This is because the leading
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contribution comes from the graph with the smaller value of s. An example of nonleading
contributions are those given by the graphs in �g.(7). The leading thermal contribution
give us

�N�2(gN ; �)� �N�2(gN ;1) �= �D�N+2h(D; 1)gN
1X
n=1

(
m

�2�n
)
D

2
�1KD

2
�1(mn�): (43)

The result above can be generalized to the others coupling constants �3; :::�N�3. Thus,
the renormalized coupling constants �3; ::�N�2 are always positive, for any D spacetime
dimension. The situation changes in the case of the coupling constant �N�1(�). In this
case the leading graphs are given in �g.(8). The thermal contribution from these graphs
to the renormalized coupling constant �N�1 is given by

�N�1(gN ; gN�1::; g3; �) � �N�1(gN ; gN�1::; g3;1) �= (44)

�= �D�N+1h(D; 2)(gN g3 + gN�1g4 + :)
1X
n=1

(
m

�2�n
)
D

2
�2KD

2
�2(mn�)

which is a negative expression, implying that for D < Dc(N � 1) it must have a tempera-
ture where �N�1(�) vanishes. Finally, for the coupling constant �N (�) the leading graphs
are given by �g.(9). A straighforward calculation gives for the thermal contribution to
the renormalized coupling constant �N the value

�N (gN ; gN�1::; g3; �) � �N (gN ; gN�1::; g3;1) = (45)

= �D�Nh(D; 2)(gN g4 + gN�1g5 + ::)
1X
n=1

(
m

�2�n
)
D

2
�2KD

2
�2(mn�):

As in the previous case the coupling constant �N also becomes zero at the temperature
��1N if D < Dc(N). >From the same arguments related to the critical dimension of
each coupling constant, for D � Dc(N � 1) all the renormalized coupling constants are
positive for any temperature. A very interesting situation is the case where Dc(N) �
D < Dc(N � 1). Although the coupling constant �N�1 becomes negative above the
temperature ��1N�1, the e�ective potential has a global minimum, since the renormalized
coupling constant �N (�) is positive for any temperature. In this case the ground state
of the model is stable. Note that we are using the renormalization conditions at � = 0.
Imposing only even powers of the �eld in eq.(1) all the above conclusions apply. Including
odd powers of the �eld, the global minimum of the e�ective potential is not at � = 0. Let
us suppose that the minimum occurs at some value � = a. It is possible to show that the
results concerning the sign of the renormalized coupling constant �N (�) and squared mass
do not change. From a physical point of view this could not be otherwise, since the critical
behavior of the system and the existence or not of vacuum decay should not be a�ected
by a change of the renormalization point. Summing up, in the truncated model we have
tunelling between di�erent vacua if D < Dc(N) where Dc(N) is the critical dimension of
�N .

The above discussions can be sumarized as follows. In a massive scalar
super-renormalizable model at �nite temperature, there is a temperature ��1N such that
the renormalizable coupling constant �N (�) becomes zero. Above such temperature there
is tunelling between di�erent vacua.
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Particularly important is the connection between our investigations and instantons
solutions as we have discused in the end of section (3), for the case N = 4. It is well known
that in D = 4 the massive �'4 model does not admit real instantons solutions. In the
massless case also there are no real instantons solutions (with positive action), nevertheless
a complex instanton solution (with negative action) is known [22]. The instanton solution
is related to the fact that the renormalized coupling constant � is negative. It is not
di�cult to see the connection between the mechanism studied by us and the possible
existence of instantons, since in our case the renormalized coupling constant may become
negative as the temperature changes. In the simplest case of massive �'4 and D < 4
instantons could exist in the model for ��1 > ��14 .

As noted a long time ago by Dyson, in QED, for negative coupling constant e2, the
Hamiltonian is unbounded bellow and the vacuum is a metastable state. In this situation,
particles and antiparticles would repel each other increasing the distance between them
and pairs of particle and antiparticle would be continually created. In the vacuum energy
(the sum of all connected diagrams having n vertices and no external legs) appears an
imaginary part. As it was noted originally by Bender and Wu studying the quantum
anharmonic oscillator, there is a relation between the nth Rayleigh-Schrodinger coe�cient
and the lifetime of the unstable states of a negativelly coupled anharmonic oscillator [24].
The idea was used also in Field Theory by Parisi and others [25][26][27]. Asymptotic
estimates in perturbation theory can be obtained by computing the imaginary part of
the Green's functions for small negative coupling constant. More recently Fainberg and
Iofa also calculed the high order corrections to the instantons contribution to the Green's
functions in the regime � < 0 [28].

The e�ects we have described in this paper may also be applied to cosmological phase
transition problems. The study of phase transition in cosmological models has been
widelly discussed in the literature. For a complete review see [29] and other references
therein. It is shown that in the evolution of the universe, metastable vacuum states may
appear. The decay of such metastable states is materialized in the Lorentzian spacetime as
nucleation of a bubble of true vacuum in the false vacuum phase. Frequently, in the study
of the false vacuum decay, it is assumed that the system is "prepared" in a metastable
state. Such metastable states appear naturally in our formalism by temperature e�ects
that change the sign of renormalized coupling constants. For instance, as we have seen
before, in the truncated model (N = 4) for 4 � D < 6, the coe�cient of the '3 term
becomes negative above the temperature ��13 . This is a natural realization of the potential
studied by Gleiser et al [30] and Vilenkin and Ford [31]. If we assume that the universe
expands and supercools, the possibility of the creation of bubbles of true vacuum arises
nevertheless there are subtleties in this process. Back to Lorentzian time, let us de�ne ��
as the time necessary to the temperature of the enviroment to drop down to ��14 , where
the vacuum state becomes stable. On the other side, if the mean life of the metastable
state �t is larger than �� there is no nucleation of the bubbles at all. Only if �t < �� ,
there would be a �nite probability of nucleation of bubbles.

In the case of "real" cosmological evolution it is necessary to include gravity, non-
trivial problems may appear, as for example the possibility of presence of horizont. For
a carefull analysis of these situations, see [32]. We cannot disregard the possibility that
particle creation associated with the tunneling process will destroy the above scenario.
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Particle creation which occurs in the process of nucleation of bubbles was analized by
Rubakov [33]. We still do not know how to introduce these e�ects in our model. The
discussion of tunnelling e�ects, instantons and how they contribute to high order estimates
in perturbation theory will be presented in a forthcomming paper [34]

5 Conclusion

The purpose of this paper has been to discuss the e�ect of keeping local terms with higher
powers of the �eld in the Lagrange density of a neutral scalar �eld. We also assume that
the system is in thermal equilibriumwith a reservoir at temperature ��1. We proved that
in the truncated E�mov-Fradkin model:

(i) for D � Dc(N � 1) there is not a temperature where at least one of the coupling
constants becomes zero,

(ii) for Dc(N � 1) > D � Dc(N) There exist a temperature ��1N�1 where only the
renormalized coupling constant �N�1(�) becomes zero and all the others renormalized
coupling constants remain positive,

(iii) for D < Dc(N) the coupling constants �N�1(�) and �N (�) become zero at some
temperatures ��1N�1 and ��1N respectivelly.

It is clear that in the non-truncated case, all the renormalized coupling constants
remain positive for D � 2. We would like to point out that some care must be taken in
order to not extrapolate the results of this paper to regions outside the domain of validity
of the aproximation we have done, i.e. beyond one-loop level. As we discussed in the
previous section, a natural extension of the ideas of the paper is to include gravitation,
although there are some subtleness related with this approach. The techniques of the
paper with the Euclidian path approach can only be implemented in some special cases (for
example Schwarzschild or de Sitter spacetime), i.e. to continue analytically to Euclidian
space the metric must have a section in the complexi�ed spacetime on which the metric
is real and positive de�nite. In spacetime metrics where this properties works all the
calculations can be repeated of course with the subtleness of the curved metric.
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Fig.(1) - The two graphs that contributes to the temperature dependent renormalized
mass m2. Note that they are ultraviolet divergent for D = 4.

Fig.(2) - The two graphs that contributes to the renormalized coupling constant �(�).
Note that only the �rst one is ultraviolet divergent for D = 4.

Fig.(3) - The critical dimension as a function of n for each coupling constant �n.

Fig.(4) - The three graphs that contributes to the renormalized coupling constant �(�).
Again, only the �rst is ultraviolet divergent in D = 4.

Fig.(5) - The e�ective potential as a function of the vacuum expectation value of the
�eld and the inverse of the temperature. For low temperatures it has a global
minimum and for temperature ��1 > ��1g4

, the potential has a metastable vacuum.

Fig.(6) - The graph that gives the leading contribution to the renormalized coupling
constant �N�2(�).

Fig.(7) - The graphs that gives non-leading contributions to the renormalized coupling
constant �N�2(�).

Fig.(8) - The graphs that gives the leading contribution to the renormalized coupling
constant �N�1(�).

Fig.(9) - The graphs that give leading contributions to the renormalized coupling con-
stant �N (�).
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