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Abstract. We solve the Klein-Gordon equation for a massive
real scalar field in the Novello-Salim Eternal Universe, i.e.,
non singular spatial homogeneous and isotropic cosmological
background which is tangent to Milne universes in the distant
past and future (and hence asymptotically flat) and evolves
between these two geometries via a phase of contraction to a
point of maximum curvature followed by expansion. This allows

a computation of the Bogolyubov coefficients of the scalar
field, usually interpreted as thé rate of creation of matter

by the time varying gravitational field, either when the

vacuum is defined at the moment of maximum curvature (the false
Big-Bang) or at the far beginning of the cosmic evolution. This
new exact solution is compared to the results obtained when

the geometry is that of the Milne universe. It is intended to
shed some light on the controversial issue of disentangling
observer dependent and curvature effects in the process of

matter creation within the framework of general relativity.

Key-ords: Quantum field theory; Cosmology; Particle creation.
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1. Introduction

The theory of quantum fields in cosmological back-
grounds and more specifically the possibility of the creation
of matter by strong and rapidly varying cosmological gravita-
tional fields have been extensively studied [cf. e.g. Birrel
& Davies 1984 - for a revie&]. If indeed the universe
started its evolution from a highly. curved
initial state (the "Big-Bang") the conditions existed for
such a mechanism to operate and it is physically relevant to
study it.

When however the background is takeﬁ to be the standard
Friedmann model the evolution of which is driven by classical
matter, either dust or pure radiation, the program runs into
two specific difficulties: the existence of a curvature singu-
larity, which renders the definition of an initial vacuum state
for the quantum fields particularly delicate, and the absence
of an asymptotically flat region where the well-established
special relativistic theory of quantum fields can serve as a
guide to define the particle states hic et nunc. These
difficulties must be carefully dealt with but perhaps not from
the outset. Indeed the conceptual problem of the very definition
of gquantum particles within the framework of general relativity,
that is the problem of combining a quantum definition of matter,
which is global, with a theory based on the principle of equi-
valence, which is local, is still pending and should perhaps be
tackled first.

A number of toy models have hence been designed which

cut out these difficulties while retaining the main feature of
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"the problem: a time -varying gravitational field. Unfortuna-
tely most of theée models cannot be justified by some under-
lying cosmological theory and very few, however simplified
they may be, are exactly soluble.

These are éﬁr motivations for studying gquantum
fields in a Friedmann Robertseon - Walker universe with negati-
vely curved spatial sections the line element of which, in
the spherical coordinates (r=sinhX,B $) and the "cosmic time"

t or the "conformal time" n , is:

- 2
as? = at? - c(t) I:'_ drz + r2(d92+sin_29d¢2):|
1+r

2 _ _ar?
)

14r

C(n) |dn - rz(de2 + sinzednzi]

c(n) [dnz - a¥? - sinhz.X(d92+sinzed¢2):| (1.1)

with C(t) =.(a02

+t2} or eduivalently C(n) = aozcoshzn, aq being
a positive constant of the order of the Planck length if the
model is to be thought of in the context of some unified theory.

This universe is non singular and asymptotically
tangent, when t or n tend to +wor =-», to two distinct Milne
universes (Milne 1932 and e.g. Bondi 1952}. It is hence
asymptotically flat. The entire cosmic evolution then consists
in an infinite period of contraction to a point of maximum

curvature (reached at t = n = 0 when F.m)RmJ 6/a02c09h2n=6/a02)

1]

followed by an infinite phase of expansion. This universe is
therefore well adapted for our purpose of examining the problem
of the definition and creation of matter in cosmological geome-

tries that avoid the additional complications of the standard
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model. In this universe moreover, the Klein-Gordon equation
is, as we shall see, exactly soluble in terms of Mathieu
functions. Finally it has the interesting property to tend to
a flat space-time described by the Milne coordinates rather
than by the standard Minkowskian cartesian coordinates. This
feature should allow some insights in the question of
disentangling coordinate, observer-dependent and curvature
effects in the process of matter creation within the framework
of general relativity.

We wish now to stress that the metric (1.1) is not
just another artificial example designed t test a theory. It
arises in the context of primordial cosmologies when the matter
fields which drive the evolution are no longer supposed to be
minimally coupled to gravity. In the model of Novello and Salim
for example (Novello & Salim 1979), the main source of curvature
of the universe is a spin-one field Au(x) coupled to gravity
in a gauge-breaking way, which can be interpreted as non-linear

photon endowed with a mass. The Lagrangian density of that

model is
= Wip _ 1 UV
L= {1 + AAuA JR 5 Fqu
with R the scalar curvature of the manifold, Fuv = auAv - avnu

A a constant, so that the derived field equations admit (1.1)

as a solution, The field Au(x) is then given by

A, = (8,8 , Ay =|/3(1 + tanhn)

Another example is the Melnikov-Orlov model (Melnikov & Orlov 1979)
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where the cosmic evolution is driven by a scalar field 9 (x)
conformally coupled to gravity. It is based on a Lagrangian
density often considered in the context of inflationary cosmo-
logy, to:

1

= 1 - 1 ;2 e _
L= (1 z ®°)R + au¢a ¢ - m

2,2

" + c¢4 .

The metric (1.1) is again a solution of the corresponding field

equations with ao2 = 1/240 and $(x) given by

=1
b(n) = [/% a, coshrﬂ

(see also Sthyaprakash et al. 1986).
Finally the field equations derived from the very simple Lagran-

gian

= _ 1,2 B
L=(1-go)R+ 3506370

+

also admit (1.1} as a solution with % (x) given by

¢(n) =_¢0 - “éf tanhn
a
0
where A is an integration  constant. In this last model the
1 1
6
the course of the evolution, a property which may be used to

effective gravitational constant (1 - @2)_ changes sign in
test the stability of the theory against the apparition of
ghosts (Deruelle & Novello 1988).

The paper is intended to be self-contained and

organised as follows. In section 2 we briefly review the second

quantisation of a massive real scalar field in a Robertson Walker
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background iﬁ order to specify our framework and fix the
notations. In section 3 we apply this formalism to the case
when the background is the Milne universe, that is flat space-
-time in a non cartesian coordinate system which does not
cover the whole Minkowski manifeold. By means of this thoroughly
studied example (see e.g. Birrell and Davies 1984 and refe-
rences therein) we intend to illustrate the well-known conceptual
difficulties encountered when trying to define a gquantum par-
ticle, even in flat space~time, when the existence of privileged
inertial reference frames is denied. Section 4 is the core of
the paper where we solve the Klein-Gordon equation for a
massive real scalar field in the metric (1.1} in terms of
Mathieu functions.

We first define the vacuum state at the beginning
of the cosmic evolution, when the geometry is asymptotically
flat, and compute the number of guanta present in that state at
the end of the whole evolution, after the universe has gone
through its phase of contraction and is expanding approaching
its final, asymptotically flat state. In the physically relevant
limit when the ratio ma of the minimum value of the scale factor
of the universe and the Compton wave lenght of the scalar field
is small, an explicit expression for the number of created
quanta can be given, which is shown to depend crucially on
the relationship between ma, and the energy of the field.
For "resonani" values of the energy, the number of quanta
created reaches a maximum value; for "antiresonant" values it
vanishes. Then we quantise the field following as closely as

possible the procedure used in the Milne case. This leads us
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to define a vacuum state at the moment of maximum contraction
(the false Big-Bang) and compute the number of guanta that are
present in this state at thé end of the evolution. Section 5
has a pedagogical motivation. It treats the problem in a
metric that approximates (l.l) and reproduces the basic features
of the preceding results by means of the more familiar Bessel
functions. Section 6 draws a few conclusions and attempts to
interpret the results in terms of an actual creation of par-
ticles. A first appendix gathers the properties of the
Mathieu functions that are required to derive the results of
section 4. In the second appendix the probleﬁ is treated in

the WKB approximation.
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2, Quantisation of a scalar field in a Robertson-Walker back-

ground: a compendium

(For more detailed treatment cf. e.g. Birrél & Davis
1984).

Consider a 4-dimensional space-time V possessing a
maximally symmetric 3-dimensional subspace. Let the coordinate
system (n,r,9,¢),where (r,0,¢) are the spherical coordinates and
M, Ny < n <mn,, is the "conformal” time, cover a pﬁrt V of V.
The line element in ¥ then is:

2

= c(m |an? - —95—5 - rz(d92+sin29d¢2i] (2.1)
1-Kr

d92
with K = +1,0 or -1 and where C(n) solveg the dynamical equations
(such as Einstein's) that determine the geometry of V; C(n) is
a positive function that may go to zero only when n -+ Nyr OF
n > n, but that we shall leave otherwise unspecified. The

cosmic time t is defined up to a constant by

n . .
t = J. an' /Jcm"y

It is uniformly increasing function of n varying in ]tl,t2{
when n € ]nl,nzt. It is the proper time of a comoving observer
at constant (r,9,¢). We shall also make use of the radial coordi-
nate X, X é [0,2[, defined as: r = sinhX.

Consider now a real scalar field ¢ of mass m few aching
this space-time without perturbing its geometry. It satisfies the
Klein—Gordbn equation:

e + m? +ERme =0 (2.2)
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where [_] is the d'Alembertian operator in the metric (2.1) and
R the scalar curvature of V; we shall here restrict ourselves

to the case of conformal coupling: £

1. (Note however that

the Milne and the eternal universes that we shall

consider on sections 3,4,5 all have a vanishing scalar curvature
so that the nature of the coupling, that is the value of £ ,
will be irrelevant.)

In order to solve (2.2) let

o(x) = M2 ya Gyxg (m) (2.3)

whefe Yi(E) is a solution of

23 Y@ = -k-e) )

"with k € 10,+=[ if ¢ = -1, k= |k|, K €R> if ¢ = 0 and k € N
if e = +1, ﬁ(3) being the Laplacian operator associated with
the spatial part (signature +++) of the metric (2.l). See e.q.
Birrel and :Davies 1984 for the explicit expression of Y(x)
in terms of spherical harmonics. As for Xk(n) it is a solution

of

ax

Zx, [KZmicm] = 0 (2.4)

dan

The modes (2.3) are normalised to unity:

= —i < ¥ H =
(¢E’¢E') = ; JZ (¢E Bu 0%.) n"dz Gkk' {2.5)
where n* is the unit vector orthogonal to an arbitrary space-

-like hypersurféce L, d¥ being its volume element, and where
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When the functions YK(;) are normalised to unity (2.5) amounts

to imposing:

-

Xk aﬂ Xk' = i

Now denote Xin the solution of (2.4) which behaves

like a positive frequency wave when t -+ t (or n » nl) that

is which is proportional to exp(-iE}tn z), Ein being some

positive number and z a uniformly increasing function of t
such as t itself or n. In Minkowski space-time in cartesian

coordinates, E;n =V §2+m2 and can be interpreted as the

energy of a particle associated to the wave. In curved space-
-time or in Minkowski space-time in non-cartesian coordinates

such an interpretation holds in general by analogy only.
in in¥*
In any case however the set ¢K and Qi constructed from

Xi? forms a basis of the Hilbert sgpace of ¢ and any real

”solution of (2.2) can be written as

s 3 o in in in*@in*
| (x) = du (k) [ak ¢k (x) + ag % (x) 1]
in int ' >
where ag and ag are conjugate complex numbers and dulk)

is the measure associated with the functions YK(E).
Similarly we denote x‘p“‘t the solution of (2.4) which
behaves like a positive frequency wave when t - t, {for n » nz),

so that ¢(x[ can also be written as:

o (x) ="J aud) (354 x) + ag““%g‘“*(xn .
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As the vectors of the in-basis can be expanded in the out-basis

we has:

¢%n(x) = I au(p) oy qut + B3 ¢g“t*]

where the Bogoliubov coefficients a;i and Bgi are given by

i *
PoBpy = - (0FR,030) L (2.6

The field ¢ can now be gquantised by inverting

. .
a%n. and aﬁn into "annihilation" and "creation"™ conjugate

hermitian operators satisfying the commutation rules:

. . . -f- .
{a%nra%?] = {a%n raé?+] =0 H
. . T :
[aﬁ“, aﬁ? 1 = 8§ (k,k") . 2.7)

These operators act on a Fock space constructed from a

"in-vacuum state"” |0>'" such that
aln|0>1n = 0

A basis of the Fock space is then obtained by iteratively

applying the creation operators on |0>1n. The resulting

. . + f
"one-particle"™ state or "k-in quantum” |1E>ln = az" |o>1"

as well as all the other many-particles states such as

k | & in _ int” . inT. in .
[“ng, ng,>>" = (ag In,(ag” ) o |o> arg normalised to \
unity: ln<1ﬁ]1ﬁ,>ln = 6(?,?'}etc. The operator nE“ = aEn a%n

can then consistently be called the "number of k in quanta®
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operator since, por example:

in

in_k k! ink k!
et g I g, g o5 =

k -

A non-necessarily equivalent quantisation of ¢

. . . out out™ .
consists in converting aE and ag into opertors satis-

fying commutation rules similar to (2.7) and acting on
another Fock space constructed from an out-vacuum state |0>°ut.

It is then a matter of simple algebra to obtain:

Qut
N
P

1-
in<0|agut a%ut“])in _ I du(i)rﬂgﬁlz

J duei)|(¢§“,¢§“t*)|2 . (2.8)

This number is consistently interpreted as the "number of 5
out-quanta in the in-vacuum state".

In the framework of special relativity when the field ¢
interact with, say, an electric field in a Minkowski background,

18 ana |0>out represent the physical vacuum in the

the states |0>
distant past and future. A ”§-in-quan£um“ then represents a
physical particle in the state kK in the distant past and a
"5-out-quantum" a physical particle in the state E in the

t represents the number of

distante future. Therefore Ngu
particles in the state E created from the wvacuum during the
evolution. (That is the so-called Klein'parédox see e.q.
Damour 1977.)

In the case here considered where the field inter-

acts with the geometry of space-time the same interpretation is

usually believed to remain sensible although the interpretation
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>in

and |0>out

that the states |0 represent physical vacua is
beclouded with uncertainty since it relies on an arbitrary
extension to curved space-times of the natural identification,
in Minkowski space-time of the modes Xin and xgut with
particles. It is therefore still a matter of debate to know
whether an hypothetical observer, moving with the cosmological
fluid and measuring frequencies in terms of his proper time
(the dosmic time), having switched on a in-particle detector
in the distant past énd making a measurement at the end of the
cosmic evolution, would or would not detect Ngut particles,
given by (2.8), in the state E . The issue is even more con-
troversial when Ve V' so that the coordihate system (n,r,8,¢)
covering V can be extended to a system (T,X,Y,Z) that covers
the whole manifold V. Indeed, as a direct consequence of the
non local qharacter of quantum particles, quantisation in
these two systems is not equivalent although the principle

of equivalence a priori forbids to endow one or the other with

any privileged status.
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3. On the concept of particle in the Milne universe: a thorny
example
(For details cf. e.g. Birrell & Davies 1984 and refe-

rences therein.)
Consider a Robertson-Walker space-time with line element
(2.1) when € = -1 (negatively curved spatial sections) and where

cm) =e?" , nel-e,4e] . (3.1)

This defines the Milne universe (Milne 1932 and e.g. Bondi 1952).
A real scalar field in this background geometry can be gquantised
according to the procedure of section 2. We are therefore led to
solve eq. (2.4) which reads:

2
a%x,
an?

k2+m2e?™ = o0 ) (3.2)

+Xk

Changing the "conformal"™ time n into the "cosmic" time t such that:

brings (3.2) into the standard form of the Bessel equation (see e.g.

Abramowitz & Stegun 1965):

¥
ZZ

dzxk dx,
5 tzadz t X (-

[

=0 , 2z € 10,+=[ {3.3)
dz

where z = mt and v = -ik (k > 0). (The case m = 0 must be treated
separatly.)

One solution of (3.3} is the Bessel function Jv(z) the
asymptotic behaviour of which, when t » 0 (or n » -=) is (see eq.

(A.18) App. A)

- - v =ik
Iy (2) §+—w0+ é?{il) - éT{E}k) exp (-ikn) (3.4)

Y
which behaves like a positive frequency wave with respect to t

{(or n) (since k > 0). After normalisation (cf. eq. (A.19}) we
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hence denote:

. 1/2
in — il T

Following the second gquantisation procedure of section 2 we can

then use Xin and Xin* to define an in-vacuum state in the asymptotic

region t + 0 (n » -») that is near the Milne "Big~Bang"” where C(n}~+> 0.
Another solution of (3.3) is the Hankel function of the se-

cond kind Héz)(z) the asymptotic behaviour of which when t + +« (or.

n*> +») is (see Eq. (A.20}):

Héz)(z) ﬁ::: Vnz expl-i(z - &5 - )] =\/E%E ™/ 2exp[~i(mt-1/4))

which behaves like a positive freguency wave with respect to the
cosmic and conformal times t and n. After normalisation (using A.1l6
and A.19) we hence denote

out .\ - L4 e~ k/2 L(2)

X1 5 _1k(me ) (3.6)

and use xgut and Xout

to define an out-vacuum state in the asympto-
tic region where t >+~ {(and n + +=).

Using the properties of the Bessel and Hankel functions, we

have:
in _ out out
with
oy = 1 . Bk = + 1
l_e—2ﬂ e21Tk__1
(o, |“-18, |“ = 1) so that the Bogoliubov coefficient introduced in
(2.6) is:

= <4 _.._..._1.._ G(E'i)
eZﬂk-l

Using the "golden rule" (cf. e.g. Lifchitz & Pitaevskii 1973)
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that:

to@ k2 = -2y e@B [ az
(2m)

we obtain for the number per unit volume of E out-quanta in

the in-vacuum state (see (2.8)):

ang%tsar = 1 L
P (2m)3 e2™P-1

(3.7)

By analogy with the theory of quantum fields in Minkowski
space-time one is led, from the asymptotic behaviour of xin
[see (3.5) and (3.4)], to interpret k {or p) as the energy
of the ingoing quanta (which hence does not depend on their
mass). With this interpretation the out-quanta (3.7) have
therefore a Planck spectrum for a Bose-Einstein gas in 4 di-

mensions at temperature

T0 = 1/2ﬂkB '

where kB is Boltzmann constant, in the coordinate system using

the conformal time n or at a temperature

(3.8)

in the coordinate system using the cosmic time t.

We note that (3.7) is independent of the mass m of
the scalar field. When m = 0 however Eq. (3.2) is trivially
solved: Xin * e—lkn, X;ut = kaxin so that Ngut {(m=0) = 0.

-

There are no massless p out-quanta in the in-vacuum state.
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Before now concluding that the particle detector of
a comoving observer would actually detect the thermal spectrum
(3.8) we must enquire whether the in- and out-vacuum states
used in the derivation represent actual physical vacua.
As one know indeed the Milne universe is flat since the

change of coordinates

T =" V 1+r2 . R =c¢'r (3.9)

brings the line element (2.1) with C(n} given by (3.1) into a
Minkowskian form:

2 2

ds? = 4ar 2

- ar? - r%(a0%+sin28a¢?) (3.10)

with

m-r% > ¢ , T> 0 (3.11)

Clearly this metric (3.10-11) which by construction describes
only the future cone of the origin of the (T,R,6,¢) coordinate
system can be trivially continued to the whole Minkowski mani-
fold by simply dropping the condition (3.11). The Milne comoving
observers at constant r (or X},9 and ¢ are then nothing but
inertial observers whose trasectories R=cte T, T > 0, radiate
from the origin of the (T,R,9,¢) coordinate system.Moreover their .
proper time (the cosmic time t = e) is proportional to the
Minkowskian time T = e V1+ri (but the constant of proportio-
nality V 1+r2 differs from one trajectory to another). The
Minkowski vaéuum, defined by solving the Klein-Gordon equation
in the metric (3.8), being invariant under Lorentz transfor-

mations, it may thus seem a priori surprising that a Milne
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observer should detect the particle spectrum (3.8) at the end
of its evolution.

Various lines of attach to tackle this paradox have
therefore been tried‘ (see e.g. Di Sessa 1974, Gomes et al.
1974, Fulling et al. 1974, Sammerfield 1974, is well as Grove
& Ottewiil 1983, Letaw & Pfautsch 1980, Hinton 1984,
Castagnino & Ferraro 1984, Sanchez i979).

One of them, a priori sensible but in fact contrary
to the spirit of the equivalence principle, consists in endowing
with a privileged status the "Minkowski vacuum" constructed
from the modeé ¢éM) that solve the Klein-Gordon equation in

the (T,R,8,¢) coordinate system

-i /K2+m2 T

M) .3 1 ik.R ' -
d (T,R) = e e (3.12)
; (2m 372 |

E e:m3, R = (Rsinbcos¢,Rsinfsing,RcosB). These modes (3.12)

together with their complex conjugates form a basis of the
solution of the Xlein-Gordon equation in our geometry. There-
fore the modes Q%n constructed from the Bessel functions (3.5)

as well as the modes qut

constructed from the Hankel

functions (3.6) can be expanded on the Minkowski basis ¢&M) and
¢%M)*. Now, at least.in the particular case of a 2-dimensional
space~time (a case however which due to its conformal flatness,

is more restrictive than merely considering the modes

in a plane 8 = cte , ¢ = cte), Fulling et al. 1974, using

sdme integral representation of the Hankel functions (Ryshik

& Gradstein 1963), showed that the modes ¢%“t built with (3.6)
were a linear sﬁperposition of the positive frequency waves (3.12)
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only. Hence the Fock spaces constructed with the modes (3.12)
or (3.6) are equivalent where as the spaces constructed with
the modes (3.12) or (3.5) are not (at least in the 2-dimensional
case but, presumably, in the 4-dimensional case here considered
as well).

In this perspective then only the modes (3.6) are
retained to build the Fock space of a Milne observer: the
l0>°ut vacuum alone, equivalent to the Minkowski vacuum, is
considered to be physical. Hence the "number of k-out quanta
in the Minkowski vacuum" is zero: the Milne observer should not

detect any particle.
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4, Creation of matter in an eternal universe: a tractable case

Let us now turn to the "eternal universe™ presented in
section 1, the line element of whichlis given by (2.1):

2 -
=c(m @ - 2 _ r2@ae®+sinfead?)] (4.1)

1—E:r2

dsz

with
c(n) = ay® cosh?n (4.2)
and € = =1, (The results however can be sfraiqhtforwardly extended

to ;he cases £E = 0 or £ = 1.) In terms of the "cosmic” time t:

t = a, sinhn (4.3)

the function C reads:

2 2

C(t) = + t .

ali)
We first note that, contrary to the Milne universe
(2.1),{(3.1), the manifold described by the metric (4.1),(4.2)

is geodesically complete (as can easily be checked by studying

the geodesics). We also remark that

2
. a a
com e, 20 g G0
2
a a
Ci(n) Lt N 2 e-zn ' ’ t > - 1? e N

Hence the universe (4.1), (4.2) is asymptotically tangent, in
the distante future and distant past respectively, to £wo

distinct Milne universes (3.1} considered in section 3,
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the first isomorphic to the future cone of the origin of
Minkowski space-time, the second to its past cone. The matching
of the 2 Milne universes. has to be performed through a delicate
procedure of analytic continuation through the origin of
Minkowski space-time (see e.g. Rumpf 1984) whereas in the
eternal universe considered here the matching is perfectly
smooth so that a ﬁumber of pitfalls can hopefully be avoided.
Finally the metric (4.1), (4.2), contrary to the Milne metric,
is not flat is therefore more akin to the models usually con-

sidered in cosmology.

We now again quantise a real scalar field in this
geometry following the steps of section 2 and are therefore

led to solve eq. (2.4) which reads:

2

a” ¥ :
~——§ + Xk[k2 + mzao2 cosh2n1==0
dn
and can be rewritten as.
a*x, R |
—35 = X [ = 2h“cosh2n) = 0 (4.4)
dn _

with A = —(k2+m2a02(2) and h = may/2.

Equation (4.4) is known as the modified Mathieu
equation (see Meixner & Schifke 1954; Mc Lachlan 1947,
Arscott 1964, Abramowitz & Stegun 1965 and Appendix A).

Consider the solution of (4.4) denoted M{*) (-n,n),
where the index ¥V is some complicated function of A and h

{see eq. (A.5) in Appendix A for an explicit expression of
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U when h is small); we shall just remark here that, because

A= —k2-2h2, V is pure imaginary (Floquet therem: see Meixner &
Schifke p. 131 and eq.(A.5)). We shall hence note ¥ = -ik, k e:mf.
By definition (see_eq. (A.10) in Appendix A), the function

53) (-n,h) has the following asymptotic behaviour:

(3’( -n,h) == H‘”(zhcoshn) (4.5)

Using now coshn Lttt e‘nfzﬂa—t/a (see eq. (4.3) and the

asymptotic expansion of the Hankel function H(l)

we find the asymptotic behaviocur of M(3) is

(3) ,_ e 2 it -mk/2 -in/d
Mg™ (b)) ot Vo © © €

(see eg. (A.20)),

which behaves like a positive frequency wave with respect to
the cosmic time t. After normalisation (see egqs. (A.l6),
(A.19)), we hence denote:

- g e™/2 43 (-n,n) (4.6)

X (n)
and use Xin and xin* to define an in-vacuum in the asymptotic
region where t + -= (and n + -®). We note that the modes (4.6)
have the same asymptotic behaviour as the Milne modes (3.15)
introduced to define the in-vacuum in the past cone of the
origin of Minkowski space-time. Now the Milne modes (3.15), as
shown by Fulling et al. 1974 (at least in the two-dimensional
case), define a vacuum which is equivalent to the standard

Minkowskian vacuum built from the plane waves (3.12). It is
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therefore intuitively clear (but we shall not attempt here to
give a rigorous proof of this assertion) that the Mathieu
modes (4.6) also define a vacuum equivalent to the "asymptotic”
Minkowskian wvacuum.

More precisely, the change of coordinates

a a _
T = - 1? e MV 1422 , R = 7; e N r (4.7)

transforms the metric (4.1), (4.2) into:

ds? = 4e2"cosh?n [ar? - ar® - R%(d6% + sin0d¢?)]
o2
= [1 + ——-§9~§—1 (ar? - ar? - rR2(a62 + sin%0d¢3)]  (4.8)
4 (T%-R%) '
. 2 .2 . | 2 .2
with T°-R® > 0, T < 0, which tends, as n + -» or (T7-X") + +=,

to the Minkowski metric (3.10). The solutions of the Klein-
-Gordoh equation in the metric (4.8), which behéve like
positive frequency wave with respect to the asymptotically
Minkowskian time T and define the asymptotic Minkowski vacuum,
necessarily tend to the plane waves (3.12) as T =+ =-«, Since
(4.6) asymptotically approaches (3.15) which, as Fulling et al.
1974 showed, is a superposition of positive frequency plane
waves (3.12) only, the modes (4.6) therefore define a vacuum
asymptotically equivalent to the asymptotic Minkowskian vacuum.
"QED".

Consider now the solution of eq. {4.4) denoted Mé4)(n,h).
By definition (see eq. (A.10) Appendix A):

r|++oo
——

(4)
Mﬁ (n,h) o

Hézl(zhcoshn) (4.9)
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Since coshn ﬂ:ii+ en/2 v t/ao according to (4.3) and using

the asymptotic expansion (A.20) of the Hankel function (4.9)

also reads:

Mé4)(n,h)'2:jz- Z o-imt rk/2 +in/d4 4 10y

which behaves like a positive frequency wave with respect to

the cosmic time t. After normalization (see eqg. (A.16),(A.19))

we hence denote

out( )

Xg

= %; e "*/ 2yl (n,n) “4.11)

and use X§Ut and Xgut* to define an out=-vacuum in the region
where t + +° (or n > +=). As before we note that the modes
(4.11) have the same asymptotic behaviour as the Milne modes
(3.6) and the same line of argument yields to the conclusion
that the out-vacuum defined by (4.11) is asymptoticaly equi-
valent to an asymptotic Minkowski vacuum.
In order to compute the number of v-out gquanta in

the in-vacuum we note the following relation among the Mathieu
functions (see Appendix A, eq. (A.13)):
- AL ) ) = e w1 Py - oG P ) )
We also note that, when 3 = -ik, kK € R and n € RY, [MGM) (n)1" =

(3)(n), a property which follows from the asymptotic behaviour

of M(4) and M(3) (see Appendix A, eq. (A.21)). Hence we have:

in = .a-\. gut B~ -vut*
X R ARG



CBPF-NF-059/88
-4

with
ag = - 4 % - uf3l (nm‘3’ 1,
oo AT @y (3) )y (3)
8 = - 3 (& ult oo,

(In the derivation we made use of the property (A.ll) of the

Mathieu function.) Since X%? is normalised we must have

2 e
12 (g2 T2 L2k @ ,(3), (3]
log | [BL1% = 5 {e |9 M_TRMoik n—o|

- | By gt} - 1

a relationship which, to our knowledge, does not appear in the
literature about the Mathieu functions.

The Bogoliubov coefficient introduced in (2.6) is

therefore:

Ba, B = § (B, K)(- 3‘4—") E (3’(71) M“’(n):l =0 (4.13)

This formula,as such, is not particularly transparent... In the
limiting case however when h = ma0/2 is small, which is the
case of physical interest when the Compton wavelength 1/m of
the created quﬁnta is large compared to the minimum value ag

of the scale factor of the universe, the Mathieu functions
reduce to the Bessel functions (see eq. (A.15) of the Appendix).

In particular

Mé3)(4)(n'h) h>0, Hél)(z’(zhcoshn)
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In this approximation then, the exact Bogoliubov coefficient

(4.13) reduces to

_ im (11 (2) '
B2,z = s B (- Y0 o ik mif (4.14)
This is a much more tractable formula that we shall recover

and comment upon at the end of the next section.

Another interesting question one may consider in
this context is to define your positive frequency modes and
an associated @ O-vacuum® near the moment of maximum cur-
vature (n = 0) and ask for its particle contents as
compared to the out-vacuum. For this we consider the normalized

solution of eq. (4.4)

0 T (1)
X¢ (Nn) =‘/——————:'M_- {n,k)
°k 2sinhnk ik (4.15)

With help of eq. (A.1l4) and (A.9) of Appendix A we

obtain its asymptotic behavior near the origin.

Cxgtm 222 const. RN (4.16)

This confirms that they are correctly said to be positive
frequency. Interestingly enough we remark that these modes
have the same asymptotic behaviour as the Milne modes (3.5}

but at n + +=

0 i aaid T ]
Xg (n) _ J_:g (mt) . (4.17)
K t+ V/ Seinhgg i

To compute the number of V O-quanta in the out-
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-vacuum we need the Bogoliubov coefficient of eq. (2.6).

As previous remarked they reduce to

[ w ! Mm m] [ﬁe-n k/2 ,(4) ‘"’l
[ 2sinhnk dn {2 Meik
| 1) T (/T -mR/2 (4)
By = [,/ wil) (n) - [—- e mi (n)]
k 2sinhmk ik dn {2 ik

With the help of eq. (A.12) of the Appendix A this is imme-

O

diately seen to be:

o = -1
V1-g 27K
: 1
Bt“ =
k 27k _,

We then easily compute the number of X O-quanta in the out-

=vacuums:

Ngut

zk __1 [1 ] - (4.18)
d (2'rr)3 ezvﬁ;l

As before we interpret this by saying that the out-vacuum has

a Planck spectrum for a Bose gas at the temperature

T = 1 (4.19)
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The quanta energy density, we remember, is given by

2. 2!
k \/(Lz .o %0 + o(mia h
= 5 m-a, . {4.20)

5. Creation of matter in an eternal universe: a simplified model

In the preceeding section we had to solve the Mathieu

equation
a%x 2
—3 - {A = 2h"cosh2n)yx = 0 {5.1)
dn

with & = —(k2+m2a02/2), h = ma0/2 and where n is related to a

"cosmic time" by:

t = sinhn (5.2)
In this section we shall approximate cosh2n by eZH/Z for n 2 0
and by e 2"/2 for n s 0 and hence consider the system:

ax. 2_-2n

—5 - (A - h"e )X =0 nso (5.3)

dn

ax 2_2n

== - (x-hn%x = o nzo (5.4)

dn

An approximate solution of (5.1) is a solution of (5.3) together
with a solution of (5.4) which have same value and derivative
at n = 0.

Setting x = -he™ in (5.3) brings it into the
standard form of the Bessel equation (see e.g. Abramowitz &

Stegun 1965 or Ryshik & Gradstein 1963):
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2 -2
a™x 1 ax v .
—— ==+ X(1 -==) =0 , x € ]=2,01 (5.5)
dxz x dx x2

_— —_— ! =3 _
with v = -ik, X = V'k2+m2a02/2,x=k2. one solution of (5.5) is the
Hankel function of the first kind H%l){—x), the asympfotic be-

haviour of which, when x + -, is:

A1) oy BZ=® \/%&. - ™o T
Hy (-t) =— 75 SXP [-i(x + 7 + 4)]

which behaves like a positive frequency wave with respect to
the cosmic time t (5.2)as t or n tends to -~. We shall hence
dendte

1%
e 2

B (he™) (5.6)

)ﬁ%n(n) ==-% 4
We remark the similarity between (5.6) and (3.5), and (4.6).
The in-vacuum constructed from (5.6) is then the analogue to
the Miihe in-vacuum (equivalent as we have seen to a Minkowskian
vacuum) of the.z. Milne universe which is isomorphic to the past cone of
the origin of the Minkowskian coordinate system. The modes
(5.6) and their complex conjugates form a basis of the solutions
of (5.3) for n S 0. We note that when z € R and Vv is pure
imaginary, [Hél)(z)]* = Hiﬁ)(z) where Héz)(z) is the Hankel
function of the second kind.

Setting now z = he" in (5.4) also brings it into the
standard form of the Bessel equation (5.5} where x is replaced
by z, z € 10, +=[ . Another solution of (5.5) is Hi?) (z) the

asymptotic behaviour of which is, when z -+ +x:
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(2) Zrdo 2
B (z). \/ = expl-i(z - 5 = )]

which behaves like a positive frequency wave with respect to the

cosmic time t (5.2) as t or n tend to +=. We shall hence denote:

X2y = £ /7 e ™2 gl2L (ne") (5.7)

and remark the similarity between (5.7) and (3.6). The out-vacuum

constructed from (5.7) is then the analogue of the Milne out-vacuum

{equivalent to a Minkowskian vacuum) of the Milne universe iso-

morphic to the future cone of the origin of the Minkowskian

coordinate system. The mode (5.7) together with its complex con-

jugate are two independent and normalised solution of(5.4) for n 2 0.
The conhection between the modes (3.5)

and (3.6} in the two distinct Milne universes, respectively iso-

morphic to the past and future cone of the origin of the

Minkowski coordinate system,has to be done through a delicate procedure

of analytic continuation through the origin of the coordinate

syétem. In section 4 the connection between the modes (4.6} and (4.11)

defining the in-vacuum in the distant past and the ocut-vacuum

in the distant future required a careful aﬁalysis of the proper-

ties of the Mathieu functions. In this section on the other hand

the connection is more simply done. Indeed the approximateu

solution of (5.1) which behaves like a positive frequency wgve

when n =+ == isg Xinlh) for n 2 0 (eqg. (5.6)) and is of the

form a')(out+8)ibut* for n=20. The coefficient o and B are

determined by the continuity conditions of the solution and its

derivative at n = 0 that is at X = =-h and z = +h. They read:
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(1) ' (2) _ (1)
4 ﬁE/Z (y) _ -ﬂE/Z (y) -ﬂk/2 (y)
-e __3§___- = qe ——ayn——— + Be —-'ﬁ§“——
y=h y=h y=h
which yields
- | (1) ()
,a _ ewk dH’ Hlk
- (2) (1) dY =
k'Hik >y=h y=h
j (5.8)
= (2) gll)
8 = e K aH_jy H_ix
A <H(Z) gl dY y=h

-ik’Bik y=h

R T A T I e
(2) L4 Hm

where y <H

denotes the Wronskian of H
In the limit when h is large one finds, using the

asymptotic expansions of thelHankel functions for large argument:

B+0 . a-ye?i(h'"/4) (5.8)

so that |B|2 + 0, Ial2 + 1. In this limit then, the Bogoliubov
coefficient B is zero, which means that there are no quanta
created in the in-vacuum during the course of the evolution.
This result may perhaps be understood by noting that where h
is large the coupling between the quantum field and the geometry
ig weak since the compton wavélength of the quantum particle,
1/m, is small in comparison with ags the characteristic length
over which the curvature of space time changes apprecially.

In the limit now when h is small (the case of strong

coupling), one find, using the properties of the Hankel and Bessel
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functions (see e.g. the Appendix),

(4 o X7 [%ﬁi (/)% -1k (n/2)" 2k :] 
2sinh?mk L r2(1+iE) Pz(l-iF)

. X (h/2) 2% (ny2) -2k :|
- 2sinh?7k LT2(1+4i%K) 2 (1-ik)

which yields, using the properties of the T functions (see

Appendix) :
2 _ 1
|8]“ = ———5 = [l-cos(4klnh/2 + ¢)
2sinh® 7k (5.9)
'{a|2 = ————13—: [cogh2mk - cos(4klnh/2+¢)]
2sinh®7k
where ¢ is an irrelevant phase independent of h. .(One checks

that |a|2 - |B|2 = 1) . Hence one sees that the number of out-
quanta in the is-vacuum depends, in this limit, on the value
of the parameter h and can vary from |B|2 =0 to |8]2 =
sinh?7k - ge™2Tk for large wave number k. The dependence of
|B|2 on h is however fairly weak since a variation h - h+qa on
resonance (when [Bl2 is maximum) induces the change |B|2 =

= sinh™2rR > sinh™%7k(1-€) with € = 8K%a®. If this effect is
not an artefact due to some oversimplification of the model
it would be to our knowledge, the first example where a link
between the maximum curvature of the universe, that is its
"minimum radius" or in other words the Planck length or mass,

and the mass of the observed, standard particles, is knited at:

only particles in "resonance" with the curvature of space time
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at the moment of maximum contraction would be cfeated.

Finally, when m = 0 strictly, the Bogoliubov coeffi-
cients cannot be obtained by taking the limit h + 0 in (5.9}.
In this case however the equations (5.3) and (5.4) are identi~
cal and trivially solved in terms of exponentials. In this

case then there are no out-quanta in the in-vacuum.
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6. Conclusion

We have analysed the main properties of a real scalar
quantum field in a homogeneous and isotropic universe whose
non-singular metric is given by eq. (1.1).It represents a world
in wich cosmic evolution begins at t = -» in an asymptotic flat
phase; goes through a phase of contraction; reaches a point of
maximum curvature at t = 0; and finally expands untill another
asymptotic flat region at t = +~, This geometry is not an
artificial model designed to test quantum field theory in
curved space but instead has the good properties needed to be
a cahdidate to represent the geometry of our Universe. This
metric has many interesting properties. Among those, the
Klein-Gordon eguation is exactaly soluble. One can then use
the methods of quantum field theory in order to evaluate the rate
of particle production in this Universe. This happens to be given
by a very simple and fashionable expression. Also the feature
of asymptotic (t = iw)} flatness allow us some insights in
the quest of disentangliné €oordinate, observer-dependent and
curvature effects.

It seems worth to remark that this geometry reproduces
the main properties of our expanding phase, without producing
the difficulties of the standard model, by the avoidance of a
singular origin. This geometry can be obtained from a quantum
scalar field (Melnikov & Orlov), inwich case the minimum allowable
radius is, as should be expect, of the order of the Planck
length. In this case it should contains almost all properties
of a classical Big-Bang. From the classical scheme, the minimum

radius is not related to Planck length , it becomes a non-
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predictable finite value and depends only on the minimals
strength of the classical field (Novellof& Salim). Defining a
vacuum |0§)in the phase of maximum contraction it follows, due
to the cosmic expansion that this vacuum will be observed at

t = +» as a boson gas in thermal equilibrium, whose temperature

is given in terms of the geometry as

T = 1 , (4.19)

2 k. Va, 2+t?

B 0

and whose energy density is given by the order &k of the

Mathieu function, wich to first order in ma, is:

, (4.20)

k = \/1<2+1r|2r:l|::,2/2l + 0(m2a0 )

It seems worth to point out that the general form of k con-
tains all details needed to characterize completely the problem.
We may alsc compare observables defined in the two
asymptotic flat phases, when the extension of well known concepts
of quantum field theory is straight forward. We have shown that
the gravitational interaction creates from the vacuum |0§n(chosen
in the distant past) a non-zero number of particles recognized as
such in the distant future. The problem is mathematically
equivalent to scattering in a one dimensional potential
barrier. This can help us to understand the behavior of]ﬂgut:
For high frequencies the problem can be treated as in a classical
domain, in which the reflection coeficient tends to zero (eq.
(5.8')); in £he other hand the quantum domain behavior is quite

distinct: one finds resonance effects between the two lenghts

1/k and ag wich is responsible for a sort of mass gquantization.
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of the created particles. This fact is, as far as we know, new
in the literature. This fesult was confirmed by two approxima-
tive methods (Section 5 and Appendix B) and enables one to
circunvent the problems of coordinate dependence and interpre-
.tation of Quantum Field Theory in Milne universe.

Finally we should like to comment that some open
questions still remain to be treated. To understand completely
what is going on, it is not enough to know the value of N.
There remains to calculate not only the mean-value of the
energy-momentum-tensor but also the pfopagators'of the field.
The above quoted analogy with‘the scattéfiné problem suggest us
an inverse problem: given the asymptotic conditions to the
solutions of eq. (2.4) and the spectrum Ngut' whath is éhe
form of the conformal factor C(n) ?  One could eventually try
to generalize the powerfull technics of périodic potentials

of solid state thsics to the case of potentials with

imaginary periodicity. This seems a good perspective to the

near future.
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Appendix A: Mathieu and Bessel functions: a formulary

Oﬁr references are Meixner & Shifke 1954 (M.S.) and
Abramowitz & Stegun 1964 (A S )

Consider the Mathieu equation
2 2 2 _
d®y/dz® + (A~2h“cos2z)y = 0 (MS p 98) (A.1)

This equation has two essential singularities at z = #~, Its
solution are then énalytical functions of A, hz, z € C up to

these points.From a theorem by Floquet the solutions must behave

like:
y(z+7) = e1™y(2) (MS p 101) (A.2)

due to the periodicity of the éosine £erm. If v €R the solution
are then bounded; otherwise they are unstable. The parameter Vv
is an involved function of A and h® and the conditions on A
and h2 leading to unstabilities have been the focus of most
of the work on Mathieu functions.

One solution of (a.l), mev(z;hz), is obtained as a

Fourier series:

me, (z,h%) = j_Z_mc‘,“’,j(hz)ei“’”j’z s pub

Substituting this series in the Mathieu equation (A.1l) yields
recurrence relations for d;j(hz) which read, when expanded in

series of h2
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Cv :
21 o () U n¥d + o2t ms p121)(a.4)
o 2 3le'(1+v+j)
Similarly we have
A, (%) = V2 o+ --%&-—.h‘ + o(n®) M S p. 1195 (A.5)
2(v4-1) -

s¢c that:

2, dvz _ .2 1 i(vizlz _ 1 _i{v-2)z 4
me (z;h%) = e h (gFT © T-1) © + 0(h’)

(A.6)

(M s p. 122)

The functions me,(z) and me_, (2) (v ¢ z) form a set of indepen-
dent solutions of (A.1) (M S p 102).
The functions mev(z,hz) have the following properties

(v & 2):

me_v(z) = mev(-z) Ms p. 102) {Ri7)

Consider now the modified Mathieu eguation:

a%y/dz? - (r-2h? cosh 2z)Y = 0 (M'S p. 130) (A.8)
which has the following solution:

Mev(z,hz} = mev(-iz,hz)
4
I ey eVt2r)z (v 5 130)

r=—w

"

(A.9)

The properties of Mev(z,hzj hence follow from (A.3-7).

We will also be interested in the solutions Méj) of
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(A.8) the asymptotic behaviour of which is imposed to be:

lim M3 (z;n) = 23 (2ncoshz) M s p. 166) . (a.10)

Rez >+
where Zéj) stands for the Bessel (or cylinder) functions:
Zél) is the Besgsel function (of the first kind)'Jv(z); 232) is

the Bessel function of the second kind'Nv(z) {or Y {(z) also

233) (4) are the

known as the Neumann or Weber function); and Z
Hankel functions of the first and second kind Hél) and Héz’
respectively.

This functions have the additional interesting pro-

perties, v @ Z:

(3)
Mv {(z,h)

(1) . . (2) :
M, {(z,h) + i M (z,h)

(4) (1) . e (2)
Mu {(z,h) Mv (z,h) - i Mv {z,h)
(3) _oimv ,(3)
M_L'(z,h) =e M7 (z,h)
p _ (a.11)
| u! ) ) = I M) (2,1

( isinvﬂné3)(z,h) = Mfi)(z;h) - r-:_:.LTW Mél)(z,h)

1-isinvvné4)(z,h)

m{2 (z,h) - cosvr m{) (z7mp

(M 8 p. 169).

The Wronskians of two M(J) are the same as the

Wronskians of the associated z(J’. Hence, denoting:

[5,k1 = M3 g., () = w3 &y &y

we have:
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[3,4] = -4i/m ; [1,3) = -[1,4] = 2i/7m ;
. ' (A.12)
[1.'2] = _[213] = '[214] = 2/"

[(M S p 171) and (A-S p 360)], and:

{(A.13)

(M S p 171).

Finally we note that the functions Méj) and Me  are

related by:

(1)
M (C,h)
M\El)(z;h) = [“—-—-—2-—] Me  (z;h%) (A.14)
mev(o,h )
(¥ S p 181) and that
Mij)(z;h) k>0, zéj)(thoshz) (A.15)

for all Rez > 0 (M S8 p 171).

To conclude let us file a number of basic properties

of the Bessel functions (A S p 358 et seq.):

Hél)(z) = siivw [e—v“i-Jv(z)'- J_y(2)]
N . (A-lﬁ)
.362)(2) = EI%VF [_,(z) - evﬂlJv(z)]

(1) - vri (1) i (2) _ =vTi . (2)
H_,, (;) = e H)""(2) ; H_.[j'(z) =e B,7" (2)

(A.17)

z+0, 1 .V
I,(2) =~ (32) /T (1) (A.18)
'Jv(z)“gg J_,(z) = - 32%921 (A.19)
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"_Jv(z) lElif* V2/m1z cos(z - %Uﬂ - %ﬂ)
. 1 1 '
oo i(z - Svr - =m)
J Hél) lzl> , 2/rz e 2 1 (A.20)

. 1 1
o -i(z - svn - =7)
Héz)(z) lEl:—* v2/Tz e 2 4
\

if z emnm,

[Jv(z)]* = T e(2) (from A S p 360)

mit (21" = 12 (2)

Analytic continuation: (A § p 361):

(1) mi, _ -vmi . (2)

Hv (Ze ™) = -e Hv {z)
' . : (A.22)
Héz)(Ze_“l) = Vi Hél)(Z)

We also used in the calculations the following pro-

perties of the T functions:

. . _ kw
F{l-ik)}T'(1l+ik) = SinhkT (A S p 256) (A.23)
I'(1+iy) = ig T'{ig) (A S p 256) (A.24)
. 1 w
Rinl'(iy) = 3 1n m (A 8 p 257) {A.25)
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Appendix B: A WKB approximate solution

Consider the equation
2 2 _
a°X{an“ - wmx =0 , nNneER ’ (B.1)

where W(n) is a real, ¢ and negative function of n so that
the solutions of (B.l} have everywhere " an oscillatory behaviour.
Consider the solution which represents a sum of an incident and
reflected wave at n + =-» and a purely transmitted wave at

n + +», The problem is to obtain an approximate expression of
the transmission coefficient ‘T, that is the square of the ratio
of the moduli of the transmitted and incident waves.

When W(n) is everywhere negative the standard WKBJ
iteration method (see e.g. Morse & Feschbach 1953, Bender & Orszag
1978 or Landau & Lifchitz 1967) consists in setting ¥ = Aeis,

A and S real, so that (B.l1l) is equivalent (up to an integration

constant) to , '

AY s (swaeavayl , s =-a

which, as long as A"/A < -W can be rewritten as:

]
Az = + {—W+A"/A)_l/2 7 8§ = ¢ J (-w+A"/A)1/2 dn' (B.2)

The iteration method consists in neglecting at lowest order

-1/4

A"/A in (B.2), obtaining A v A (-W) ; computing (A“/A)O,

0=
using this expression to obtain Ayl and iterating. As long as
(A“/A)n < -W the normalised nth order solution of (B.1l}

corresponding to a purely.transmitted wave then is



CBPF-NF-059 /88

X () = (wear/ay 1714

n
n-ll exp +i.[ [-W+(A"/A)n_£P/2dn'

which is a good approximation to X in the short wavelength limit.
Hence in this approximation scheme, the transmission coefficient
is always unity. This result is at the root of many of the
features of the "adiabatic vacuum™ introduced when studying
quantum fields in curved space times {see e.g..Birrell & Davies
1984).

In order to obtain a better approximation for T another
method must therefore be designed.

To this end we note that if W(n) were positive in some
region (for, say, o £ n € B), the WKBJ method would give for the
transmission coefficient through this potential barrier:

B :

T=e% , = J /W dn (B.3)

o
(see e.g. Morse & Feschach 1953, Landau & Lifschitz 1967 and
Bender & Orzag 1978) that the WKBJ method can be extended to the

complex n~plane. Consider first, as an example, the potential:

Win = - (a® + b%p?) (B.4)

which is encountered when dealing with a quantum field inter-
acting with a Robertson-Walker geometry (see e.g. Birrell &
Davis 1984 p 70) or with a constant electric field in Minkowski
spacetime (see e.g. Damour 1977). If we allow n to be complex,
W(n) has two zeros on the imaginary axis: M =*i(a/b). A
meaning can therefore be given to (B.3) by changing the sign

of W and rotating the integration axis by 7/2 that is by
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setting n = iz, z € R . Then:

a/b
az Va?-52:2" = 7a2/2p " (B.5)

—a/b

a
I

and hence T enp[—nasz]. Now the exact solution of (B.1}),

with W given by (B.4), in terms of parabolic cylinder functions

(see e.g. Birrell & Davies 1984 or Damour 1977} yields for the

transmission coefficient of an inqident wave exactly the same

results. (The fact that (B.5) happens to be the exact rather

than some approximate result is commented upon in Damour 1977.)
Let us now apply the same procedure to the case when
w(n) = » - 2n? cosh2n

with A = —(k2+m2a02) and h = maO/Z. The zercos of W(n) are:

nt = i% t a cosh a = %_argCh(1+2k2/m2a02). To compute (B.3) we

therefore change the sign of W, set n = ir/2+z and integrate

of z, z €R. Then:

+a
¢ = j V-r-2n2cosh2z  az (B.6)
-Q

In the limit when k2 << m2a02/2, cosh2z v 1+Zz2 in the
integrand of (B.6) which then reduces to:

L n wk2/4h
so that 2

7 oo TR /20

In the other limit when k2 >> m2a02/2 we can set

2z

2cosh2z Vv e for z > 0 in the integrand of (B.6) which is then

approximated bys 5
ln(—A/h ) 2
z ~v 2 J =-A-h"e
0

2 4z .
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