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We propose a Feynman path-integral solution for harmonic oscilator motions with stochastic fre-

quency.

The problem of the (random) motion of a harmonic
oscilator in the presence of a stochastic time-dependent
perturbation on its frequency is of great theoretical and
pratical importance ([1], [2]). In this Brief report we
propose a formal path integral solution for the above
mentioned problem by following closely our previous
studies ([3], [4]). In first section we write a Feynman
path integral representation for the external forcing
problem. In section two we consider similar problem
for the initial condition case.

1. The Green function for external forc-
ing

Let us start our analysis by considering the motion
equation of a harmonic oscilator subject to damping
and an external forcing
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At this point we remark the following indetity be-
tween the Schrodinger equation (4), (5), (6) and the
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Here w3(1 + ¢(t)) is the time dependent frequency
with stochastic part given by the random function g()
obeying the gaussian statistics

{9(t)g(1") = K(t,1') (2)

The solution of eq. (1) is, thus, given by

e(t,[g]) = / G(t, 1, [ F()dt 3)

where G(t,1,[¢g]) denotes the problem Green function-
ally depending on the random frenquency ¢(t) and the
notation emphasise that the objects under study are
functionals of the random part g(¢) of the harmonic
oscilator frequency.

In order to write a path-integral representation for
the Green function eq. (3) we follow our previous study
([3]) by using a “proper-time” techique by introducing
a related Schrodinger wave equations with an initial
point-source and —oo <t < +00.
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searched harmonic oscilator Green function
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Let us, thus, write a path integral for the associated

Schrodinger equation (4), (5), (5) and (6) by consid-
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where H 1s the differential operator below

ering G(s;(¢,t)) in the operator form (the Feynman
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H=—3—+v—+wi(l+g(t } 9
Dirac propagator) {dt2 dt o(1+9(1)) (9)

As in quantum mechanics we write eq. (8) as an

G (s;(t, 1) = (t| eXp(isH)|t/) (8) infinite product of short-time s propagations
|
N +oo s
y / _ ] . . y — .
(t| eXp(lsH)|t y = J\;I_I};o lj[l /_Oo dtz(tl|expz (N H) |tl_1) (10)

The standard shor-time expansion in the s- parameter for eq. (10) is given by

1iH1+ <ti |6iSH |ti_1>

s—0
= sl_i}%l+ dw; exp {is [wf —ivw; + wl (1 + gz(ti_l))] }
X exp [tw;(t; — ti—1)] (11)

If we substitute eq. (11) into eq. (10) and take
the Feynman limit of N — oo, we will obtain the fol-
lowing path-integral representation after evaluating the
w;-Gaussian integrals of the representation eq. (8)

exp {z/o [w§ (1 + g(t(c)))] da} (12)

. 2
dt

Note that the term exp {Z / —(0’)} is exactly given
2 0 dO'

by the factor exp {%(t - t/)}.

The averaged out eq. (7) is thus given straight-
forwardly by the following Feynman Polaron like path
integral

Gy = [| 10

0<o<s
t(0)=t';t(s)=t

{ [ [(dgp)ly(g_;)]}
|

—i/ooo ds (e i)

/t(o):tl;t(s):t DF[t(c)] exp { % /0 do [(5—2_) 2] }
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The two-point correlation function is still given by a two-full similar path integral, namely
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0 0

Similar ~ N-iterated  path integrals
sions hold true the N-point correlation function
(z(t1,[g]) - -x(tw,[g]))y. Explicit and approximate
evaluations of the path-integrals eq. (13) — eq. (14)
follow similar procedures used in the usual contexts

expres-

K(t) ~ K(0) — %0 It|*
K()~0 ;

[t| >> L

In this case, we have the following exactly result for

(G, 1, g])g

(14)

of Physics stastistics quantum mechanics and Random
Wave Propagation (last reference of ref. [1]).

Let us show such exactly integral representation for
eq. (13) in the case of the pratical case of a slowly
varying (even function) kernel of the form

(15)

the path-integral in eq. (13).
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Another useful formulae is that related to the
“mean-field” averaged path integral when the Kernel
K(t,t') has a Fourier transform of the general form

-I—OO . N o~
K(t,t") = %2_/ dp- PR (p) (A7)
T J—00

(16)

The envisaged integral representation for eq. (13)
18, thus, given by
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(Gt )y = —ie¥ @0 / ds e =ind)

exp {_;”f_w /_:o K(p) x M(p, s,t,t’)} (18)

X

where
|
M(p,s, t, k") = /sda/sdal / DF[t(0)] ex i/s da :
pet o 0 tt((U))=:tt’ b 2 Jy do
exp [ip (t(o) — t(o”))]} (19)
|
2. The homogeneous problem where y(t, [¢]) satisfy the first-order non-linear ordinary

. . S differential ti
Let us start this section by considering now the prob- Hierenbial equation

lem of determining two linearly independent solutions J
of the homogeneous harmonic oscilator problem d_i‘// (t)+e " (y(t))2 = —wiet! (14 g(t)) (24)
{ i o dy 1+ (t))} t)=0 (20
—+v —+4w g z(t) =
dt? dt 0 In order to obtain a path-integral representation for
eq. (24) we remark that the whole averaging (stochas-
tic) information is contained in the characteristic func-

x(O) =xg ; x/(O) =g (21) tional

with the initial conditions

It 1s straightforwardly to see that two L.I — solutions 0o
are given by the following expressions Z[i()] = {exp {z/ dt y(t, [g])j(t)})g (25)
0

aitla) = e { | e (o, D e

In order to write a path-integral representation for
t the characteristic functional eq. (25) we rewrite eq.

za(t,[g]) = x1(t, [g]) / e (#1(o, [g]))_2 do (23) (25) as a Gaussian functional integral in g(t):
0

A0 = [ D" alexw (-3 [ at dtyon= .00

oo {i [t ate.lo) (26)

At this point we observe the validity of the follow- istic functional eq. (26) after considering the functional
ing functional integral representation for the character- change ¢g(t) — y(¢) defined by eq. (24) namely:
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where we have used that the Jacobian associated to the . dy oyt o 5 2
: . : e — 4 ey () +w
functional change ¢(t) — y(¢) is unity dt 0
d _ 8g(t) {/Oo . }
detp | — +2e iyl = =< =1 28 exp { 1 dty(t)j(t 30
ctp | g+ 2] = 20 (28) p{i [~ i (30)
At this point it is instructive to remark that at the After the variable path integral change
important case of a white noise frequency process with
strenght ~ y(t) = e"'y(t) (31)
K(t,t")y =~6(t — 1) (29)
F _ vt s
the path integral representation for the characteristic D [y(0)] = e D7 [g(1)] (32)

functional eq. (27) takes the more amenable form

2] = [ orwojen {~5 1 [T a

(wo

2[j(1)] = e / DF (1)

00 _\ 2
Y dy 2_9
__r at [ &2
eXp{ o | Kdt) T

X

we get, thus, the standard Ap?*-zero dimensional path
integral as a functional integral representation for the
characteristic function eq. (25) in the white noise case

di
+  2wi 4yt — 2wy — 2uwivy + 2v i ] (t)}

dt Y

o {i [ e tsioio} (33)
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