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We write a path-integral expression for the Green function of a advected scalar on a 
uid 
uxe.

The problem of passive scalar transport by 
uid

uxes is a subject of great interest and practical im-
portance ([1]).

Unfortunately, analyticals treatments on this prob-
lem remain very cumbersome from a mathematical
point of view. In this Brief Report, we aim to present
a analytical closed expression for the above mentioned

problem by means of a (Wiener) path integral expres-
sion for the Green function of the associated initial
value problem of the advected scalar �eld ([1]).

Let us, thus, consider the motion equation for a
scalar �eld �(x; t) advected by a incompressible (not

acoustic waves!) 
uid with velocitty ~V (x; t), namely

c

@�(x; t)

@t
= (D(t)D0)��(x; t)�

�
[~v � ~�]�

�
(x; t) + j(x; t)�(x; t) (1)

d

with the initial value condition

�(x; t! 0+) = f(x) (2)

Here D(t) is a time dependente molecular di�usion con-
stant. j(x; t) is an external source �eld and D0 a refer-
ence value for the scalar di�usion constant.

As a �rst step to analyze eq. (1), let us consider the
following time variable change

� =

Z t

0

D(s)ds (3)

�(x; � ) � �(x; t(� )) (4)

j(x; � ) � � (x; t(� ))
�
D((t)(� )) (5)

~�(x; � ) � ~V (x; t(� ))
�
t(� ) (6)

We obtain, thus, the more amenable form for eq.
(1) with a constant molecular di�usion constant in this
new time scale � .

@�(x; � )

@�
= D0��(x; � )�

�
[~a � ~r]�

�
(x; � )+j(x; � )�(x; � )

(7)
lim
�!0+

�(x; � ) = f(x) (8)

At this point let us remark that the pratical case
of eq. (1) with ~V (~x; t) = 0 and j(~x; t) = 0 ([2]), the
problem Green function is easily given by

c

Gdif ((x; t
0); (x; t0)) =

�
D0

Z t

t0
D(s)ds

�� 3
2

� exp

8<
:� [(~x� ~x 0)2]

D0

�R t
t0
D(s)ds

�
9=
; (9)
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and leading thus to the quadratic mean desviation

h(~x)2i = 3

2
D0

Z t

0

D(s)ds (10)

which, by its turn, leads to a super-difuse behavior if
D(s) � s� for � > 0

Usual perturbative calculations may be formally im-
plemented by considering the zeroth-order Green func-
tion as given by eq. (9).

Let us write a (non-perturbative) path-integral rep-
resentation for the Green function G ((x; � ) : (x0; � 0)) {
eq. (7) { eq. (8). In order to implement such analysis
we compare it with the analogous problem in Quantum
Mechanics of a particle interacting with an eletromag-
netic �eld ~A and a scalar potential V . The Schr�odinger
equation for this quantum mechanical problem in Lan-
dau gauge ~r ~A = 0 is given by

c

i�h
@ (~x; � )

@�
=

�
� �h2

2m
� +

ie�h

mc
( ~A � ~r ) + ie�h

2mc2
(~r � ~A) +

�
e2

2mc2
( ~A)2 + V

�
 

�
(~x; � ) (11)

d

It is well-known that the Green function associated
to a initial value problem is given by the following (for-

mal) Feynman path-integral ([3])

c

~G [(x; � ); (x0; � 0)] =

Z
~r(� 0)=x0 ;~r(�)=x

DF [~r(�)]�

exp

(
i

�h

Z �

� 0

d�

"
1

2
m

�
~r(�)

d�

�2

+ ie ~A (~r(�); �)� V (~r(�); �)

#)

(12)

d

It is straightforward to note that if one makes the
following identi�cation on eq. (11)

�h = �i ; ~A = �~v ; V = � 1

4D0
(~a)2 + j ;

m =
1

2D0
;

e

c
=

1

2D0
; c = 1 (13)

one can see that the Schr�odinger equation (11) reduces
to our scalar advected equation (7).

As a direct consequence of the above made remark,
we obtain the result anounced on the begining of our
study. Namely, the Green function G[(x; � ); (x0; � 0)] is
given explicitly with a closed form by the following (now
well-de�ned) Wiener path-integral

c

Gdif [(~x; � ); (~x
0; � 0)] =

Z
~Z(�)=~x;~Z(� 0)=~x0

DF
h
~Z(�)

i

� exp

8<
:� 1

4D0

0
@Z �

� 0

d�

"
d~Z

d�
� ~a (~z(�); �)

#21A
9=
;� exp

�
�
Z �

� 0

d�j(~z(�); �)

�

�
Z
~Z(�)=~x;Z(� 0)=~� 0

dWiener
� [z(�)] exp

(
� 1

4D0

Z �

� 0

~a(~Z(�); �)
d~Z

d�
(�)

)
�

exp

�
�
Z �

� 0

�
~a 2

4D0
+~j

��
~Z(�); �

��
(14)
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in the other words

�(x; � ) =

Z �

0

d� 0
Z
dx0G [(x; � ); (x; � 0)]�(x; � 0) (15)

At this point let us remark that in the pratical im-
portant case of large-scale transport where one can set
D0 � 0 on eq. (7) (with j(x; � ) � 0 for simplicity), an
exactly expression for the �rst-order resulting equation

@�(x; � )

@�
+
h
~r � (~a�)

i
(x; � ) = 0 (16)

is exactly obtained by considering the limit D0 ! 0 on
eq. (15) and producing the result

�Gdif [(~x; � ); (~x
0; � 0)] = �(3)

h
~x� ~Z(x0;� 0)(� )

i
(17)

where ~Z(x0;� 0)(� ) satis�es the Saddle-point (mini-
mum) of the positive path-integral weight, namely:
~Z(x0;� 0)(� ) � ~Z(�)

��
�=�

, here ~Z(�) satis�es the Liouville
boundary value problem

d~Z(�)

d�
= ~a

�
~Z(�); �

�
(18)

with

~Z(� 0) = ~x ~Z(� ) = ~x (19)

Next D0 corrections are implemented on the path-
integral eq. (12) by similar procedures used in the Fey-
mann path-integral theory. We, thus, consider the fol-
lowing back-ground decomposition of the path manifold
on eq. (14)

~Z(�) = ~Z(x0 ;� 0)(�) +
p
D ~Y (�) (20)

with the \fractal" path ~Y (�) such that

~Y (� 0) = ~Y (� ) = ~0 (21)

As a consequence eq. (20) { eq. (21), we get the
next

p
D-correction for the di�usion Green function eq.

(12)

c

Gdif [(~x; � ); (~x
0; � 0] � ~Gdif [(~x; � ); (~x

0; � 0)]�

det
�
1
2

F

�
� d2

d2�
�AB + [(@Aas)(@Bas)]

�
~Zx0;� 0 (�)

�

� 2 [@AaB ]
�
~Zx0;� 0(�)

�
� d

d�

�
+ 0(D0) (22)

d

where A;B = 1; 2; 3 denote the vectorial indixes on R3

(~a(~x) � (aA)(xB)) and the functional determinant asso-
ciated to the 
uctuation operator at the one-loop order
should be evaluated with Dirichlet boundary conditions
eq. (21). Exactly evaluation of the above cited func-
tional determined needs the closed form of the transport

uid 
uxe ~a(~x).

Let us exemplify this last point for the two-
dimensional vortex con�guration with constant vortic-

ity (~x = (x; y))

~a(~x; t) =

�
�1

2
wy ;

1

2
wx

�
(23)

In this case the classical trajectory equations eq.
(18) { eq. (19) are given exactly by

z1(�) = A1sen
�
�w
2
� + �1

�
(24)

z2(�) = A2sen
�
�w
2
� + �2

�
(25)

where the integration constants (A1; A2; �1; �2) must be
choosen in order to satisfy the boundary conditions eq.
(19). Namely,

A1sen
�w
2
� 0 + �1

�
= x01 (26)

A1sen
�w
2
� + �1

�
= x1 (27)

A2sen
�w
2
� 0 + �2

�
= y01 (28)

A2sen
�w
2
� 0 + �2

�
= y1 (29)

The functional determinant on eq. (22) is easily
evaluated by the usual path-integral techniques applied
to the problem of a particle can the presence of a har-
monic oscillator and a constant magnetic �eld
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c

det
�
1
2

F

8><
>:
2
64 � d2

dv2
+

1

4
w2 �w d

dv

w
d

dv
� d2

dv2
+

1

4
w2

3
75
9>=
>; =

w

4�(� � � 0) � sen
�
w(��� 0 )

2

� (30)

d

As a last point worth remarking let us consider the
Boltzman-Vlasov advected damped equation on R6 wiht
an external stirring f(~x; t) ([4] { pg. 22. eq. (7.12))

@N (~x; t)

@t
= ��N (~x; t)�

�
[~V � ~r]N

�
(~x; t) + f(~x; t)

(31)
with the inital condition

lim
t!0+

N (~x; t) = f(~x) (32)

By following the above exposed study, it is straigh-
forward to write the solution of eq. (32) as the sum
of the homogneous case with non zero initial condition
added with that of the non-homogenous case but now
with zero initial condition, namely

c

N (~x; t) = e��t
Z
d6~x 0�(6)

h
(~x � ~Zx0;0(t))

i
g(x0)

+

Z t

0
dt0e�(t

0
�t)

Z
d6~x 0�(6)

h
~x� ~Zx0;t0(t))

i
f(~x 0; t0) (33)

d

Here ~Zx0;t0(t) � ~Zx0;t0(�)
��
�=t

satis�es the equations
(18) { (19)).
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