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We write a path-integral expression for the Green function of a advected scalar on a fluid fluxe.

The problem of passive scalar transport by fluid
fluxes is a subject of great interest and practical im-
portance ([1]).

Unfortunately, analyticals treatments on this prob-
lem remain very cumbersome from a mathematical
point of view. In this Brief Report, we aim to present
a analytical closed expression for the above mentioned

problem by means of a (Wiener) path integral expres-
sion for the Green function of the associated initial
value problem of the advected scalar field ([1]).

Let us, thus, consider the motion equation for a
scalar field ¢(z,t) advected by a incompressible (not
acoustic waves!) fluid with velocitty V(z,t), namely
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Here D(t) is a time dependente molecular diffusion con-
stant. j(x,?) is an external source field and Dy a refer-
ence value for the scalar diffusion constant.

As afirst step to analyze eq. (1), let us consider the
following time variable change
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We obtain, thus, the more amenable form for eq.
(1) with a constant molecular diffusion constant in this
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At this point_}et us remark that the pratical case
of eq. (1) with V(#,t) = 0 and j(Z,?) = 0 (][2]), the

problem Green function is easily given by
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and leading thus to the quadratic mean desviation
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which, by its turn, leads to a super-difuse behavior if
D(s) ~ s* for a > 0

Usual perturbative calculations may be formally im-
plemented by considering the zeroth-order Green func-
tion as given by eq. (9).
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It is well-known that the Green function associated
to a initial value problem is given by the following (for-
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Let us write a (non-perturbative) path-integral rep-
resentation for the Green function G ((x,7): (2/, 7)) -
eq. (7) —eq. (8). In order to implement such analysis
we compare it with the analogous problem in Quantum
Mechanics of a particle interacting with an eletromag-
netic field A and a scalar potential V. The Schrodinger
equation for this quantum mechanical problem in Lan-

dau gauge VA=0is given by
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mal) Feynman path-integral ([3])
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It is straightforward to note that if one makes the
following identification on eq. (11)
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one can see that the Schrodinger equation (11) reduces
to our scalar advected equation (7).

As a direct consequence of the above made remark,
we obtain the result anounced on the begining of our
study. Namely, the Green function G[(z, 1), (', 7')] is
given explicitly with a closed form by the following (now
well-defined) Wiener path-integral
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in the other words
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At this point let us remark that in the pratical im-
portant case of large-scale transport where one can set
Dy =0 on eq. (7) (with j(z, 7) = 0 for simplicity), an
exactly expression for the first-order resulting equation
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is exactly obtained by considering the limit Dy — 0 on
eq. (15) and producing the result
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where Z_’(xlyT/)(T) satisfies the Saddle-point (mini-
mum) of the positive path-integral weight, namely:
Z_’(xlyT/)(T) = Z(U)|U:T, here Z(O’) satisfies the Liouville
boundary value problem
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with
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Next Dy corrections are implemented on the path-
integral eq. (12) by similar procedures used in the Fey-
mann path-integral theory. We, thus, consider the fol-
lowing back-ground decomposition of the path manifold
on eq. (14)
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with the “fractal” path }7(0) such that
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As a consequence eq. (20) — eq. (21), we get the
next v/ D-correction for the diffusion Green function eq.
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where A, B = 1,2, 3 denote the vectorial indixes on R3
(d(Z) = (aa)(xp)) and the functional determinant asso-
ciated to the fluctuation operator at the one-loop order
should be evaluated with Dirichlet boundary conditions
eq. (21). Exactly evaluation of the above cited func-
tional determined needs the closed form of the transport
fluid fluxe d(%).

Let us exemplify this last point for the two-
dimensional vortex configuration with constant vortic-

iy (2= (z,9))
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In this case the classical trajectory equations eq.
(18) —eq. (19) are given exactly by
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where the integration constants (A;, As, p1, p2) must be
choosen in order to satisfy the boundary conditions eq.
(19). Namely,
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The functional determinant on eq. (22) is easily
evaluated by the usual path-integral techniques applied
to the problem of a particle can the presence of a har-
monic oscillator and a constant magnetic field
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As a last point worth remarking let us consider the
Boltzman-Vlasov advected damped equation on R® wiht
an external stirring f(Z,t) ([4] — pg. 22. eq. (7.12))

ON(Z,t . S . -
# = N (1)~ (I - VIN) (@.0) + (3.1)
(31)
with the inital condition
lim N(Z,t) = f(Z) (32)
t—0+
|
N(Z1t) =
Here Z_’xfyt/(t) = Z_’xfyt/(a)b:t satisfies the equations

(18) — (19)).
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