Physical Variables for Chern-Simons-Maxwell Theory

M.A. Santos
Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290-180 - Rio de Janeiro, RJ - Brasil
Departamento de Física,
Universidade Federal Rural do Rio de Janeiro, 23851-180 - Itaguá, Rio de Janeiro, RJ - Brazil

Abstract

We get the physical Hamiltonian for the CSM theory by working with the symplectic projector method.

Key-words: Physical variables; Chern-Simons-Maxwell.

1 Introduction

Some years ago we developed a method to work in gauge field theories[1], [2] in wich we pick out from the original set of variables those which are the "true "or "physical " variables. This would be the first step to treat a gauge theory in a strictly canonical way[3], [4], [5].

We show in this letter what is the physical Hamiltonian in the $\mathrm{D}=3$ Chern-SimonsMaxwell (CSM) model with the Coulomb gauge conditions. Its expression contains a term that has not been found in a work by Devecchi et al[6]

2 The Physical Hamiltonian for CSM theory

We start from the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+m \varepsilon^{\alpha \beta \gamma} A_{\alpha} \partial_{\beta} A_{\gamma} \tag{1}
\end{equation*}
$$

with metric $(-1,1,1)$.
The generalized Hamiltonian has the following canonical form:

$$
\begin{equation*}
\mathcal{H}=\int d^{2} x\left[\frac{1}{2} \pi^{i} \pi^{i}+\frac{1}{2}\left(\varepsilon^{i j} \partial^{i} A^{j}\right)^{2}+\frac{1}{2} m^{2} A^{k} A^{k}+m \varepsilon^{i j} A^{i} \pi^{j}\right] \tag{2}
\end{equation*}
$$

with the (second class) constraints relations:

$$
\begin{gather*}
\Omega^{1}=\pi^{0}=0 \tag{3}\\
\Omega^{2}=\partial^{i} \pi^{i}+m \varepsilon^{i j} \partial^{j} A^{i}=0 \tag{4}\\
\Omega^{3}=A^{0}=0 \tag{5}\\
\Omega^{4}=\partial^{i} A^{i}=0 \tag{6}
\end{gather*}
$$

To establish a symplectic structure, we use the following correspondence

$$
\left(A^{0}, A^{1}, A^{2}, \pi^{0}, \pi^{1}, \pi^{2}\right) \Longleftrightarrow\left(\xi^{1}, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{5}, \xi^{6}\right)
$$

The constraints Ω^{i} define a local metric $\mathrm{g}_{i j}$, the inverse of $\mathrm{g}^{i j}(x, y)=\left\{\Omega^{i}(x), \Omega^{j}(y)\right\}$, which
is in this case:

$$
g^{-1}=\left(\begin{array}{cccc}
0 & 0 & \delta^{2}(x-y) & 0 \tag{7}\\
0 & 0 & 0 & \nabla^{-2} \\
-\delta^{2}(x-y) & 0 & 0 & 0 \\
0 & -\nabla^{-2} & 0 & 0
\end{array}\right)
$$

The general form of the symplectic projector is given by[1]

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}(x, y)=\delta_{\nu}^{\mu} \delta^{2}(x-y)-\varepsilon^{\mu \alpha} \int d^{2} \tau d^{2} \varpi g_{i j}(\tau, \varpi) \delta_{\alpha(x)} \Omega^{i}(\tau) \delta_{\nu(y)} \Omega^{j}(\varpi) \tag{8}
\end{equation*}
$$

with $\delta_{\alpha(x)} \Omega^{i}(\tau) \equiv \frac{\delta \Omega^{i}(\tau)}{\delta \xi^{\alpha}(x)}$;
after a straightforward calculation we find:

$$
\Lambda=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \tag{9}\\
0 & \delta^{2}(x-y)-\frac{\partial_{1}^{x} \partial_{1}^{y}}{\nabla^{2}} & -\frac{\partial_{1}^{x} \partial_{2}^{y}}{\nabla^{2}} & 0 & 0 & 0 \\
0 & -\frac{\partial_{2}^{x} \partial_{1}^{y}}{\nabla^{2}} & \delta^{2}(x-y)-\frac{\partial_{2}^{x} \partial_{2}^{y}}{\nabla^{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -m \frac{\partial_{1}^{x} \partial_{2}^{y}}{\nabla^{2}} & m \frac{\partial_{1}^{x} \partial_{1}^{y}}{\nabla^{2}} & 0 & \delta^{2}(x-y)-\frac{\partial_{1}^{x} \partial_{1}^{y}}{\nabla^{2}} & -\frac{\partial_{1}^{x} \partial_{2}^{y}}{\nabla^{2}} \\
0 & -m \frac{\partial_{2}^{x} \partial_{2}^{y}}{\nabla^{2}} & m \frac{\partial_{2}^{x} \partial_{1}^{y}}{\nabla^{2}} & 0 & -\frac{\partial_{2}^{x} \partial_{1}^{y}}{\nabla^{2}} & \delta^{2}(x-y)-\frac{\partial_{2}^{x} \partial_{2}^{y}}{\nabla^{2}}
\end{array}\right)
$$

Getting the physical variables, $\xi_{\mu}^{*}(x)$, is a simple matter of applying the prescription

$$
\begin{equation*}
\xi^{\mu *}(x)=\int d^{2} y \Lambda_{\nu}^{\mu}(x, y) \xi^{\nu}(y) \tag{10}
\end{equation*}
$$

from them we get

$$
\begin{gather*}
\xi^{1 *}(x)=\xi^{4 *}(x)=0 \tag{11}\\
\xi^{2 *}(x)=A_{1}^{\perp}(x) \tag{12}\\
\xi^{3 *}(x)=A_{2}^{\perp}(x) \tag{13}\\
\xi^{5 *}(x)=\pi_{1}^{\perp}(x)-m \int d^{2} y\left[\left(\partial_{1}^{x} \partial_{2}^{y} \nabla^{-2}\right) A_{1}(y)-\left(\partial_{1}^{x} \partial_{1}^{y} \nabla^{-2}\right) A_{2}(y)\right] \tag{14}\\
\xi^{6 *}(x)=\pi_{2}^{\perp}(x)-m \int d^{2} y\left[\left(\partial_{2}^{x} \partial_{2}^{y} \nabla^{-2}\right) A_{1}(y)-\left(\partial_{2}^{x} \partial_{1}^{y} \nabla^{-2}\right) A_{2}(y)\right] \tag{15}
\end{gather*}
$$

Now, our original constrained Hamiltonian written in symplectic language is:
$\mathcal{H}=\int d^{2} x\left[\frac{1}{2}\left(\xi_{5}^{2}+\xi_{6}^{2}\right)+\frac{1}{2}\left(\varepsilon^{i j} \partial^{i} \xi^{j}\right)^{2}+\frac{1}{2} m^{2}\left(\xi_{2}^{2}+\xi_{3}^{2}\right)+m\left(\xi_{2} \xi_{6}-\xi_{3} \xi_{5}\right)\right] ; i, j=2,3$

The projected Hamiltonian is thus:

$$
\begin{align*}
\mathcal{H}^{*} & =\int d^{2} x\left[\frac{1}{2}\left(\xi_{5}^{* 2}+\xi_{6}^{* 2}\right)+\frac{1}{2}\left(\varepsilon^{i j} \partial_{i} \xi_{j}^{*}\right)^{2}+\frac{1}{2} m^{2}\left(\xi_{2}^{* 2}+\xi_{3}^{* 2}\right)+\right. \\
& \left.+m\left(\xi_{2}^{*} \xi_{6}^{*}-\xi_{3}^{*} \xi_{5}^{*}\right)\right] ; i, j=2,3 \tag{17}
\end{align*}
$$

Returning to the original phase-space notation, via $11,12,13,14$, and 15 we finally have:

$$
\mathcal{H}^{*}=\int d^{2} x\left[\begin{array}{c}
\frac{1}{2}\left(\pi_{i}^{\perp} \pi_{i}^{\perp}+m^{2} A_{i}^{\perp} A_{i}^{\perp}\right)+\frac{1}{2}\left(\varepsilon^{i j} \partial_{i} A_{j}^{\perp}\right)^{2}+m\left(A_{1}^{\perp} \pi_{2}^{\perp}-A_{2}^{\perp} \pi_{1}^{\perp}\right) \tag{18}\\
+\frac{1}{2} m^{2} \int d^{2} y\left(\varepsilon^{i j} \partial_{i} A_{j}^{\perp}\right)_{x} \nabla^{-2}\left(\varepsilon^{k l} \partial_{k} A_{l}^{\perp}\right)_{y}
\end{array}\right]
$$

This is the Chern-Simons-Maxwell Hamiltonian written in therms of the so called transverse fields and their associated canonical momenta. We point out that an equivalent expression, derived along another argument line[6], does not contain the last term in 18 .

Acknowledgments

We would like to thank Dr.L.C.L.Botelho for his useful remarks.

References

[1] M.A. Santos, J.C.de Mello and P.Pitanga, Z.Phys.C 55 (1992) 271
[2] M.A. Santos, J.C. de Mello and P.Pitanga, Braz. J. Phys. 23 (1993) 214
[3] E.S. Fradkin and G.A. Vilkovisky, Cern preprint (1977) TH 2337
[4] P.A.M. Dirac: Lectures on Quantum Mechanics. Belfer Graduate School of Science, New York: Yeshiva University (1964)
[5] K. Sundermeyer: Constrained Dynamics (Lect. Notes Phys. vol. 169) Berlin, Heidelberg, New York: Springer 1982
[6] F.P. Devecchi, M. Fleck, H.O. Girotti, M. Gomes and A.J. da Silva, Ann. Phys. 242 (1995), 275.

