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ABSTRACT

We show that the techniques developed by Baxter to solve the eight-vertex model can
be applied to study a spin-1/2 twisted XXX chain.
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The purpose of this letter is to show how a spin-1/2 twisted XXX chain [1] can be
treated through the techniques developed by Baxter to solve the eight-vertex model [2],
along the lines of the Quantum Inverse Scattering Method (QISM) [3-5]. In the QISM
one introduces an auxiliary problem with the help of the so-called Lax operator, L,(\) €
End(V @ n,) with V = €' ? the auxiliary space and n, = €' ? the internal space of the site
“rr.

Associated to Lg(A), one introduces an invertible matrix R(\) € End(V @ V') which
satisfies the quantum Yang-Baxter equation (QYBE) [6, 2]

Riz(Mi2) Ris(A1s) Ras(Aas) = Ras(Aas) Ris(Ms) Ria(Ai2) (1)
with Ay = A — Aj: Li(}) obeys the Fundamental Commutation Relation (FCR) [3 5]
Riz(M2) Lie( M) Lae(Az) = Lao(A2) Lie(A) Ria(Ai2) - (2)
In (1) and (2)
RUEZ@Z»@@@»@I , ngzZai@@l @ b; 1%2352]1 @a; Db, (3)

with the R-matrix written as
RN =>a;i @b (4)
1

and the additional indices, 1 and 2, in the L,-matrix in (2) follow
ng:[;g(@]]. R LQ[E]]. ®Lg (5)

In certain cases, also known as fundamental spin models, the matrices I, and R are directly

related to each other as
Lu()\) = Ru()\ - 77) ) (6)

where 7 is a constant. In this case, if the third auxiliary space is identified with the
internal space “0” eq. (2) follows from eq. (1).
For the vertex-type models we are considering here, a local Hamiltonian can be ob-

tained as: N
dinT
H - ZH&“& - C d)\ (7)

=1 A=n

with ' a constant and

T =TrolonLon_1-- Lot , (8)
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where the trace is over the auxiliary space by “0”. Thanks to the property (6) and to
R(0) = P, with P the permutation operator in the tensor product space under consider-

ation, one can write

d
Hyppr = C = (PR)ia| . (9)

If we now consider a matrix R of the form:

b 0 0 ¢
0 0 0
R= ¢ , (10)
0 a 00
c 0 0 b

the QYBE (1) reduces to

b()\23)a()\13)0()\12) + b()\12)b()\13)c()\23) = b()\23)a()\12)0()\23) s
b(A13)b(Aa3)c(A12) 4+ b(A12)a(A13)e(Azs) = b(Ai2)a(Aas)e(Aas) (11)
b()\12)b()\23)6l()\13) + b()\13)0()\23)0()\12) = b()\23)6l()\12)a()\23) s

which are the QYBE for a XXZ7 R-matrix of the form

a 0 0
0 ¢ b
0 b ¢
000 «a

o o O

Thus, giving a XXZ-type matrix R’ satisfying the QYBE (1) we immediately get a XYZ-
type matrix R satisfying (1). From now on we shall call the matrix R, the XYZ version
of the XXZ-type matrix R'.

For simplicity let us consider the XYZ version of the XXX R'-matrix; in this simple

case one has

a=A+1 , b=1 , c=]A (13)

and using (6) with n = ¢/2 the L-matrix becomes

L) = ¢(]{z+0§’i o 007 ) _ [ B} (14
Vo, +00) ¢(1—of)

with & = (0!, 0%, %) the Pauli matrices, o* = (0! £i0%)/2 and

¢:% L W=A—i/2 , 0=Xti/2. (15)
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Notice that, in contrast to the case of the six-vertex model, the operator v, is in general
non-degenerate thus rendering more difficult to obtain a local vacuum, either for L, or for
a finite product of such matrices. Before facing this problem let us discuss the Hamiltonian
for (10) and (13).

Using (9), (10) and (13) we get

N
H = Z(_Uilail-u + 02'202'24-1 + U?U?H) , ON41 =01, (16)
=1

apart from an additive constant. The Bethe ansatz equations for (16) are well-known but
we think it is useful to reobtain them using the method developed by Baxter to deal with
XYZ-type models. Applying this method to simpler matrices like the one given in (10)
and (13) may shed some light on the main difficulties of this kind of problem helping us
to treat unsolved problems like, for instance, higher spin XYZ chains.

According to Baxter one defines a gauge equivalent matrix Lj(A) [2] as
o B

Ly(A) = Mz (A Le(V) M(h) =
e O

(17)

where the M, (\) are arbitrary non-singular 2 x 2 numerical matrices, leaving invariant
the transfer matrix, 7" =T, for My, = M.

It turns out that the gauge transformations M;(\) can be chosen in such a way that
each matrix Lj()) has a local vacuum, independent of A, that is annihilated by its lower
left element for all A.

Denoting M,()\) as

= " (18)
Tepe TePy

where r and p are numbers, v} is given by

v = afof +ajo; +ajo} 4+ a;l, (19)
with
1
af = det M, rerep1 (0 — Wpepeyr) (20)
B 1
a, = det M, WWH(‘I’ - 9p£p£+1)
—1
a; = det M, rerop1(pe + pogr)
—1

a? = WW+1¢(W - pz+1) .
‘
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e}'(l) ,eg(o). (21)
0 1

Let ef be a vector in 1,

From (19) and

wr = fref + e, (22)
the condition
Ywr =0 (23)
reduces to
P fT+ (0 —Vppia)f~ =0 (24)

(U — Opeper ) fH +pef~=0.

FEq. (24) is a pair of homogeneous linear equations for f* and f~, thus the determinant

of the coefficients must vanish leading to

Pepes1 = 1. (25)

We consider the simplest solution of eq. (25), p, = 1; substituting it in (24) we have

ffef=1, (26)
giving
we = flef +¢7) . (27)
Choosing, for simplicity, r, = 1 7} = _71 and p’ = —1 it is easy to obtain the action of
the diagonal elements of (17) on wy
apor = by (28)
52(4)@ = —\I/u)g .

From the local formulae (23) and (28) there follow analogous formulae for the elements

of T'(\)

T'A) = Liy(A)--- Ly(A) = ( (29)

with respect to

D=, ® - Quwy . (30)
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Namely,
AN = oNQ
DV = (=N | (31)
CAQ = 0

Let us now derive the FCR satisfied by Lj(A). From (5) and (17) we have

Lu(N) = (Mep(N) © DLLN)(M7 (N © 1) (32)
LN = (1 & Mua(\))Zp(N(1 @ M)

Substituting (32) in (2) we have

Ris(Ma2)(Miga (A1) @ Moga (M) L5, (M) Ly (A2) (M7 (M) @ MY (X)) = (33)
(Meg1(M) © Miga (M) Loy (M) Ly, (M) (MM (A1) @ M7 (Ag))Riz(M2)
which leads to
R o) L (M) L (A) = Ly, (M) L, (M) R (o) (34)

where

R (M2) = (M7 (M) @ M7 (A2)) Riz(O2) (Me(Ar) @ Mo(Az)) - (35)

In the special case we are considering,

( 1 —1/2 )
My =M = (36)
1 1/2

does not depend on ¢ and A and R reduces to

R'(A\) = R(\) = . ' : (37)
0 0 0 X+id

The above fx’()\) matrix is also obtained taking the non-deformed limit of the twisted
(cf 1 = (—=1)Vof) XXZ model (see for instance [7]), which is the twisted (o%,, =

(—1)Noif) XXX model. In fact from

ROua2) T ()T () = T'(A) T (A1) B(A2) (38)
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one derives easily the well-known Bethe ansatz equations

As—i/2\ " [UE.LA P Yy’
(1 — . B=1,-,M<N.
(Aﬁ+z‘/2) SR | e ek R (39)
a#

The Hamiltonian (16) becomes one of the twisted (o, = (—1)Noif) XXX chain after a
suitable redefinition of axis in the spin-space and a similarly transformation [7].

In summary, we have developed in this letter a different treatment of a spin-1/2 twisted
XXX chain which is not a trivial specialization of refs. [2, 3]. This method has the ad-
vantage of presenting some of the important techniques used by Baxter, when solving the
eight-vertex model, in a very simple way and may shed some light on unsolved problems

like, for instance, higher spin XYZ chains.
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