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Abstract

We show that the techniques developed by Baxter to solve the eight-vertex model can

be applied to study a spin-1=2 twisted XXX chain.
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The purpose of this letter is to show how a spin-1=2 twisted XXX chain [1] can be

treated through the techniques developed by Baxter to solve the eight-vertex model [2],

along the lines of the Quantum Inverse Scattering Method (QISM) [3{5]. In the QISM

one introduces an auxiliary problem with the help of the so-called Lax operator, L`(�) 2

End(V 
 �`) with V � CI 2 the auxiliary space and �` � CI 2 the internal space of the site

\`".

Associated to L`(�), one introduces an invertible matrix R(�) 2 End(V 
 V ) which

satis�es the quantum Yang-Baxter equation (QYBE) [6, 2]

R12(�12)R13(�13)R23(�23) = R23(�23)R13(�13)R12(�12) ; (1)

with �ij = �i � �j ; L`(�) obeys the Fundamental Commutation Relation (FCR) [3{5]

R12(�12)L1`(�1)L2`(�2) = L2`(�2)L1`(�1)R12(�12) : (2)

In (1) and (2)

R12 �
X
i

ai 
 bi 
 11 ; R13 �
X
i

ai 
 11 
 bi ; R23 �
X
i

11 
 ai 
 bi ; (3)

with the R-matrix written as

R(�) =
X
1

ai 
 bi (4)

and the additional indices, 1 and 2, in the L`-matrix in (2) follow

L1` = L` 
 11 ; L2` � 11 
 L` : (5)

In certain cases, also known as fundamental spin models, the matrices L and R are directly

related to each other as

L1`(�) = R1`(� � �) ; (6)

where � is a constant. In this case, if the third auxiliary space is identi�ed with the

internal space \`" eq. (2) follows from eq. (1).

For the vertex-type models we are considering here, a local Hamiltonian can be ob-

tained as:

H =
NX
`=1

H`;`+1 = C
d lnT

d�

�����
�=�

(7)

with C a constant and

T = Tr0L0NL0N�1 � � �L01 ; (8)
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where the trace is over the auxiliary space by \0". Thanks to the property (6) and to

R(0) = P , with P the permutation operator in the tensor product space under consider-

ation, one can write

H`;`+1 = C
d

d�
(PR)`;`+1

�����
�=�

: (9)

If we now consider a matrix R of the form:

R =

0
BBBBBBB@

b 0 0 c

0 0 a 0

0 a 0 0

c 0 0 b

1
CCCCCCCA

; (10)

the QYBE (1) reduces to

b(�23)a(�13)c(�12) + b(�12)b(�13)c(�23) = b(�23)a(�12)c(�23) ;

b(�13)b(�23)c(�12) + b(�12)a(�13)c(�23) = b(�12)a(�23)c(�23) ; (11)

b(�12)b(�23)a(�13) + b(�13)c(�23)c(�12) = b(�23)a(�12)a(�23) ;

which are the QYBE for a XXZ R-matrix of the form

R0 =

0
BBBBBBB@

a 0 0 0

0 c b 0

0 b c 0

0 0 0 a

1
CCCCCCCA

: (12)

Thus, giving a XXZ-type matrix R0 satisfying the QYBE (1) we immediately get a XYZ-

type matrix R satisfying (1). From now on we shall call the matrix R, the XYZ version

of the XXZ-type matrix R0.

For simplicity let us consider the XYZ version of the XXX R0-matrix; in this simple

case one has

a = �+ i ; b = i ; c = � (13)

and using (6) with � = i=2 the L-matrix becomes

L`(�) =

0
B@ �( 11 ` + �3` ) 	�+` + ���`

	��` + ��+` �( 11 ` � �3` )

1
CA =

0
B@ �` �`

` �`

1
CA ; (14)

with ~� = (�1; �2; �3) the Pauli matrices, �� = (�1 � i�2)=2 and

� =
i

2
; 	 = � � i=2 ; � = � + i=2 : (15)
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Notice that, in contrast to the case of the six-vertex model, the operator ` is in general

non-degenerate thus rendering more di�cult to obtain a local vacuum, either for L` or for

a �nite product of such matrices. Before facing this problem let us discuss the Hamiltonian

for (10) and (13).

Using (9), (10) and (13) we get

H =
NX
i=1

(��1i �
1
i+1 + �2i �

2
i+1 + �3i �

3
i+1) ; ~�N+1 � ~�1 ; (16)

apart from an additive constant. The Bethe ansatz equations for (16) are well-known but

we think it is useful to reobtain them using the method developed by Baxter to deal with

XYZ-type models. Applying this method to simpler matrices like the one given in (10)

and (13) may shed some light on the main di�culties of this kind of problem helping us

to treat unsolved problems like, for instance, higher spin XYZ chains.

According to Baxter one de�nes a gauge equivalent matrix L0

`(�) [2] as

L0

`(�) = M�1
`+1(�)L`(�)M`(�) =

0
B@ �0` �0`

 0` �0`

1
CA (17)

where the Mn(�) are arbitrary non-singular 2 � 2 numerical matrices, leaving invariant

the transfer matrix, T 0 = T , for MN+1 = M1.

It turns out that the gauge transformations M`(�) can be chosen in such a way that

each matrix L0

`(�) has a local vacuum, independent of �, that is annihilated by its lower

left element for all �.

Denoting M`(�) as

M`(�) =

0
B@ r` r0`

r`p` r0`p
0

`

1
CA ; (18)

where r and p are numbers, 0` is given by

0` = a+` �
+
` + a�` �

�

` + a3`�
3
` + a4` 11 ` (19)

with

a+` =
1

detM`

r`r`+1(� �	p`p`+1) (20)

a�` =
1

detM`

r`r`+1(	� �p`p`+1)

a3` =
�1

detM`

r`r`+1�(p` + p`+1)

a4` =
�1

detM`

r`r`+1�(p` � p`+1) :
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Let e�` be a vector in �`

e+` =

0
B@ 1

0

1
CA ; e�` =

0
B@ 0

1

1
CA : (21)

From (19) and

!` = f+e+` + f�e�` ; (22)

the condition

0`!` = 0 (23)

reduces to

p`+1f
+ + (� �	p`p`+1)f� = 0 (24)

(	� �p`p`+1)f+ + p`f
� = 0 :

Eq. (24) is a pair of homogeneous linear equations for f+ and f�, thus the determinant

of the coe�cients must vanish leading to

p`p`+1 = 1 : (25)

We consider the simplest solution of eq. (25), p` = 1; substituting it in (24) we have

f+ = f� � f ; (26)

giving

!` = f(e+` + e�` ) : (27)

Choosing, for simplicity, r` = 1 r0` =
�1
2 and p0 = �1 it is easy to obtain the action of

the diagonal elements of (17) on !`

�0`!` = �!` (28)

�0`!` = �	!` :

From the local formulae (23) and (28) there follow analogous formulae for the elements

of �0(�)

�0(�) = L0

N (�) � � �L
0

1(�) =

0
B@ A(�) B(�)

C(�) D(�)

1
CA (29)

with respect to


 = !1 
 � � � 
 !N : (30)
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Namely,

A(�)
 = �N


D(�)
 = (�1)N	N
 ; (31)

C(�)
 = 0 :

Let us now derive the FCR satis�ed by L0

`(�). From (5) and (17) we have

L1`(�) = (M`+1(�) 
 11 )L0

1`(�)(M
�1
` (�) 
 11 ) (32)

L2`(�) = ( 11 
M`+1(�))L
0

2`(�)( 11 
M�1
` (�)) :

Substituting (32) in (2) we have

R12(�12)(M`+1(�1)
M`+1(�2))L0

1`(�1)L
0

2`(�2)(M
�1
` (�1)
M�1

` (�2)) = (33)

(M`+1(�1)
M`+1(�2))L0
2`(�2)L

0
1`(�1)(M

�1
` (�1)
M�1

` (�2))R12(�12) ;

which leads to

R
(`+1)
12 (�12)L

0

1`(�1)L
0

2`(�2) = L0

2`(�2)L
0

1`(�1)R
(`)
12 (�12) ; (34)

where

R
(`)
12 (�12) = (M�1

` (�1)
M�1
` (�2))R12(�12)(M`(�1)
M`(�2)) : (35)

In the special case we are considering,

M` = M =

0
B@ 1 �1=2

1 1=2

1
CA (36)

does not depend on ` and � and R(`) reduces to

R`(�) = ~R(�) =

0
BBBBBBB@

� + i 0 0 0

0 �� i 0

0 i �� 0

0 0 0 �+ i

1
CCCCCCCA

: (37)

The above ~R(�) matrix is also obtained taking the non-deformed limit of the twisted

(��N+1 = (�1)N��1 ) XXZ model (see for instance [7]), which is the twisted (��N+1 =

(�1)N��1 ) XXX model. In fact from

~R(�12)�
0(�1)�

0(�2) = �0(�2)�
0(�1) ~R(�12) (38)
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one derives easily the well-known Bethe ansatz equations

 
�� � i=2

�� + i=2

!N

= (�1)N
MY
�=1

�6=�

�� � �� � i

�� � �� + i
; � = 1; � � � ;M � N : (39)

The Hamiltonian (16) becomes one of the twisted (��N+1 = (�1)N��1 ) XXX chain after a

suitable rede�nition of axis in the spin-space and a similarly transformation [7].

In summary, we have developed in this letter a di�erent treatment of a spin-1=2 twisted

XXX chain which is not a trivial specialization of refs. [2, 3]. This method has the ad-

vantage of presenting some of the important techniques used by Baxter, when solving the

eight-vertex model, in a very simple way and may shed some light on unsolved problems

like, for instance, higher spin XYZ chains.
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