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Abstract

The Dirac equation in four dimensions has an intimate connection
with the representations of the group SU(4). This connection is shown
in detail and subsequent properties are displayed in the continuum as
well as in the lattice description.
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1 Introduction

The Dirac equation was introduced almost sixty years ago [1] and imme-
diately shown to nicely describe the properties of spin-1/2 fermions. Its
physical content as related to the electromagnetic properties of the electron
and the muon has been exploited to a high degree of accuracy in its second
quantized version[2].

The symmetry properties of fermions have been exhaustively studied
since those early years. The transformation properties under the discrete
time reversal, space reflection and charge conjugation operations were of
high interest at the time when the structure of weak interactions began to
be disclosed(3].

In the study of the strong interactions as described by the non-abelian
color gauge theory (QCD) it was first proposed by Wilson[4] to translate

field theories onto the lattice, at the expense of Lorentz invariance, to inves-
tigate the problem of confinement. The introduction of fermions as described
by the Dirac equation was not straightforward. Massless Dirac fields, when
taken naively, led to a proliferation of chiral fermions in the continuum limit.
Of course, several procedures were soon developed to dispose of this prob-
lem: Wilson{4] introduced auxiliary terms, vanishing in the continuum and
breaking chiral invariance on the lattice; Banks, Kogut and Susskind[5,6]
developed a formalism where fermionic degrees of freedom were spread over
lattice points; Drell, Weinstein and Yankielowicz[7] introduced a non-local
derivative on the lattice which allowed the elimination of redundant compo-
nents.

The question of how natural this difficulty is for fermions remains. There
is no general agreement on whether it translates a characteristic feature not
previously seen or is just an accident of the description in the continuum.

A fundamental leap forward was produced by Nielsen and Ninomiya[8).
Any description of fermions on the lattice satisfying

a) locality of the interaction

b) hermiticity of the Hamiltonian

c) having currents constructed as bilinears of spinors
is bound to produce several species of fermions in the continuum limit.
This result is related to the topological properties of the mapping of the
continuum onto the lattice.

Currently the practitioners of the game of putting fermions on the lattice
play mostly with the alternatives proposed by Wilson and by Banks, Kogut
and Susskind. Gliozzi[9] observed that the introduction of a “double-spaced”
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lattice led to the natural grouping of fermion species and studied geometric
properties resembling gravitational features.

An important step towards the understanding of the problem of fermion
proliferation as a limit of lattice theories was given by Becher and Joos[10].
They proposed to adapt to the lattice the Kihler formalism[11] in order
to deal with fermions in terms of differential forms. It proposes a point of
view which is attractive: differential forms provide geometrical structures
which are easily adapted to the lattice. The point is that these structures
presented a natural SU(4) degeneracy and Kihler’s fermions on the lattice
transcribed the Kogut-Susskind fermions, the number of species being the
same in the continuum. Lately, these features have been applied to the clas-
sification of irreducible representations of symmetries to be used in lattice
calculations[12).

Recently, we have shown[13] that this SU(4) structure is also contained

in the original Dirac equation. It arises as a natural consequence of the fact
that the algebra of Dirac matrices is related to the algebra of the generators
of the SU(4) group. In general, for even dimensions (n) of spacetime, we
conjecture that the relevant groups are SU(2"/?). We have been able to show
how the proliferation of degrees of freedom on the lattice is related to the
mixing of minimal left ideals of the Dirac algebra. It has been claimed before
in the mathematical literature[14] that the embedding of the representation
of spin-1/2 particles in the Dirac algebra through minimal left ideals is a
more appropriate procedure than the current description using spinors.

Several points of our argument deserve, however, further considerations.
Among them, the meaning of Lorentz invariance in algebraic terms, and
the relationship of symmetry operations to the Cartan subalgebra[15] of the
group in an arbitrary representation of the Dirac matrices.

The plan of the article is as follows. In Section 2 we expand in detail the
argument relating the Dirac algebra of 4 X 4 matrices to the Lie algebra of
the generators of the unitary group SU(4). The notion of Cartan subalgebra
or trunk[16] is made explicit and its connection with the usual concept of
representation for the Dirac matrices displayed. The notion of invariance and
covariance under a change of representa.tlon and Lorentz transformations is
presented in some detail.

Section 3 develops the study of ideals and, in particular, minimal left
(and right) ideals for the Dirac algebra. The connection between ideals and
representations is emphasized. We also try to establish a link between the
discrete operations of space inversion () and time reversal () of spinors and
the transformation of projection operators on ideals. We believe that these
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properties are quite relevant to the understanding of the physical properties
of spin-1/2 fermions and to the alternative choices to their description by
four-component spinors.

In Section 4 we examine the translation of the free theory onto the lattice.
We deal with the proliferation problem in two dimensions (four dimensions
constitute a simple extension) and make an analysis of the importance of
minimal left ideals and, indirectly, of the relevance of the representation
chosen for the Dirac matrices. The idea of the “reduction group” in the
sense introduced by Becher and Joos[10] is recalled.

The final Section 5 elaborates on the results previously obtained, con-
- tains suggestions for further research and speculations about the possible
physical relevance of the features displayed.

We emphasize in this article several properties of the current presentation
of the Dirac equation which are not found in the literature, but can be
put into correspondence with the properties appearing in the differential
form construction. The reader interested in this correspondence will find a
detailed analysis in a forthcoming article[17].

2 'The Dirac equation, the algebra of Dirac ma-
trices and SU(4)

In this section we shall mainly deal with the four dimensional Minkowski
spacetime description. Qur conventions are the ones contained in the book

by Itzykson and Zuber[18].
The Dirac equation, solution to the problem of time evolution of a par-
ticle in the relativistic domain,

Hy(z,t) = ih%%(:c,t) 1)

is obtained from the first-order Hamiltonian
H = —ikep - V + fmc?, (2)
where the matrices 8 and aj (k = 1,2, 3) satisfy anticommutation relations:
{anas} = 26; (3)

{ei,B} = 0, i=1,23. (4)



CBPF-NF-057/88

The Dirac equation may be referred to as the set of four coupled linear
first-order equations condensed in

(405 + -V = m)p(a,1) = O, - ®)

where in the last step we have adopted the “natural” system of units A =
¢ = 1. As usual,

v = fa | (6)
¥ = B (7)
{+*,7'} = 2¢*. (8)

The matrices 7%, (k = 1,2,3) generate the Dirac ring made out of their
products (and the identity):

PR (PR (O R A
T T 7 e Y T
AOqlg2  A0yly3 404243 4laZa3 (9)
iy ly 23,

In Table I we summarize the properties of these matrices. It is well known
that all the 15 matrices above have null trace. A glance at Table I read-
ily shows that we can have all matrices hermitian by multiplying by ¢
all matrices of negative square. The set so obtained is, via a well-known
theorem({18,19], a basis set in the space of 4 X 4 matrices. Calling;:

¢ =4 (10)
C = (11)
= Ok, B o= i (E=L2.3k£0)  (12)
O = POkt (B = Y (RE=1,2,3k#¢) (13)
o= 45 = idylygt (14)

Together with the identity, any 4 X 4 matrix M can be written as
M = Myl + MoC® + MapC®™® + Map, (P77 + MsC® (15)

with the coefficients obtained through:

My = %tr(cffM) (H =1,0,...,3,01,...,23,...,5).  (16)
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It is simple to show that Dirac matrices form an algebra. Table 1I contains

the result of the commutators:

[7Ha7K] = CHKL'TL

and obviously the conditions for (¥ follow. It is also simple to verify the

Jacobi identity:

- (17

0+ I L AT+ R AT = 0. (18)

From Table II, the following commutators are seen to vanish:

[1° 777"
[Pt

[, 1°r*
[+, 7%,

J e &

7,177
[t
2,7t
[1°7 1" rr*

(17,7
[# 7%, 7% 2]
[¥rE 7

[¥i7*, 7]

o o o o o o o

o B == B = T = B

?

j#k,
J#Ek#E,

J#k#£L,

(19)
(20)
(21)
(22)
(23)

(24)
(25)
(26)
(27)
(28)
(29)
(30)

From the examination of Eqs. (19)-(30), we conclude that it is always pos-
sible to have a set of three matrices which are simultaneously diagonal.

Several possible sets are:

v093,919%,4°  (Kramers-Weyl representation)
7% 7*9%,7%919? (Dirac-Pauli representation)

41,4%9%, 494142 (Majorana representation)
Aly243 4142 43 (Sharatchandra, Thun and Weisz)[20].
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The three diagonal matrices in a given representation correspond to the
only three available ways to have two —1 and two +1 diagonal elements.

We thus have 15 hermitian matrices with null trace, three of which are
diagonal, which form an algebra. The classification of all possible matrix
algebras was worked out by Lie, Cartan and others[15,16,21]. There is just
one possible Lie algebra as the one built starting from the Dirac matrices
and their products, having fifteen elements and three of them diagonal: the
Lie algebra corresponding to the groups SU(4) or O(6). Our choice favors
SU(4) because in two dimensions the corresponding unitary group is SU(2).
We conjecture that for higher even dimensions the relevant unitary group
for the Dirac equation is SU(2"/2).

The abelian subalgebra is known as the Cartan subalgebra or trunk{16].
It turns out that any of the representations of the Dirac matrices corresponds
to one of the possible choices within the commuting subsets displayed in
Table IT and Eqs. (19)-(30).

A change in the representation of Dirac matrices in this point of view
means that a given set of three diagonal matrices in an initial Cartan sub-
algebra transforms into another Cartan subalgebra. The Dirac equation (5)

is form-invariant under this operation, which can be expressed in terms of
left multiplication by a given matrix of the ring:

b = my (31)
ity 0, = my"y (32)
iha, = my (33)
1 = ()t (34)
¥ = 7. (35)

Given a representation and a corresponding solution of the Dirac equa-
tion, a change of representation retains the solution but under a new guise.

In the space of spinors, a representation of a given group of transfor-
mations will also admit an expansion in the basis (10)-(14). A symmetry
transformation, at the same time, leads to a change of basis. Let us con-
sider the case of a Lorentz transformation, for instance. We mean by this a
general homogeneous coordinate transformation:

z' = Az. - (36)
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We then have

0

and the equation is covariant under the transformation (36) provided that

iva; f.:r Pz = A2') = me(z = A7) (37)
7™ = afy’. (38)

Usually, another requirement is imposed. Since the matrices are irreducible,
there exists a similarity transformation

Y™ = §THAN"S(A), (39)

so that we have

.
i

S(A)Y(z = A'I#:') = mS(A)¥(z = A™1z"), (40)

which is the requirement of invariance for the Dirac equation.

In the first case, we have the manner in which the old situation is seen
in a new coordinate system. In the latter, Eq. (40), we reproduce the old
situation in the new coordinate system.

An elementary but instructive example is the following. Assume a /2
counterclockwise rotation around the 3 axis:

g = 2? (41)
3:’2 = -—:Bl. (42)

The original equation, in the Dirac-Pauli representation, is expanded as
follows:

1

| ¥
Y(z) = s (43)

(N
0o + 10104 + Ogha + 03¢z = miy (44)
100tz + 10143 — Datps — i0sths = mi2 (45)

—$0p%3 — 10192 — Btz — i0s1 = (46)
—10g14 — 111 + 01 +i0a = miy. (47)

|
3
<
w
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Under the change of variables (41), (42) we have:

i0ot1 + 0194 — i03%a + 18393 = myy - (48)
i0o%2 — 0193 — 053 ~ 183 (49)
—i0gtps — 0192 + 10512 — id3hy (50)
—i00%s + 01¥1 + 03¢ + isps = mihy, (51)

where 8}, = 8/0z"(k = 1,2). The equations (48)-(51) have the form of the
Dirac equation provided:

o
3 3
§§

1 = vde (52)

7% = —1bp. (53)

The solutions of (48)-(51) correspond to the system rotated 7/2 clockwise.
If, besides this, we perform the following change in :

'1’5,4 = —3"91’5,4,

eqs. (48)-(51) are brought to the form (44)-(47). That is, the old situation is
translated to the new system. One can easily show, by constructing systems
of basis vectors in the Dirac ring and in the Lie algebra of SU(4), that what
is meant by a change of representation of Dirac matrices in dimension four
is a change of reference frame in the Lie algebra. This can also be checked
in two dimensions for SU(2).

The analysis above can be taken as an expression of the SU(4) properties
of the Dirac equation. It is related to what happens with the translation onto
the lattice, which we shall consider after dealing further with the algebraic
properties of the Dirac ring.

3 Minimal ideals

Given a ring (or algebra} with the operation of multiplication on the left (or
commutation), a set of elements of the ring T (algebra, A) form an ideal if,
for any member r(a) of the ring (algebra), we have

rICT ([a,A] C A). (54)
A minimal ideal is an ideal which has no subset with this property[21}.
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The ideals of the Dirac ring have been studied by Corson[22]. In a given
representation of gamma matrices, a minimal left ideal is formed by matrices
with just one column filled. For example, the matrices

1 0 00 0 000 0 000 0000
0 000 1000 0 00O 0 000
ooooj’loocooj’lr1000|’I0O0D00
0 000 0000 0000 1000

are a basis for a minimal left ideal.

A representation is characterized by the Cartan subalgebra, whose ma-
trices are diagonal. The minimal left ideals are labelled by the eigenvalues of
those subalgebra matrices. For the first column, the corresponding matrices
are

[ 1 \ 1
d1 = 1 -1 ’ dz = -1 1 y
\ -1 -1
(1 \
dy = -1 - (56)
—1 ’
\ 1)

and the eigenvalues are (+++). For the second column, the eigenvalues are
(+ — ). They are (— 4 =) and (— - +) for the third and fourth columns,
respectively.

It is possible to define projection operators[22] P8 on the i-th column
of the representation in which a Cartan subalgebra (CS) is diagonal. They

satisfy the usual properties; they are hermitian and the following relations
hold:

4

TP =1 (57)
k=1
PP = p(Blg,,. (58)

A minimal left ideal in a given representation is of course not minimal
in another. To be precise, let us exemplify with
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oo o

1 . .
=71+ 7° + iyl y? 4 i),

oo o

0
0
0
0

o0 o =

0

in the Pauli-Dirac representa,tioh. It becomes, respectively, in the Kramers-
Weyl and Majorana representations, into the following matrices:

10 -1 0
1| oo oo
KW} 3l <10 1 0
0 00

\
(
(M):

|

v, o = O
i
-
l
—
]

- s,
f—y

\

We can always write a matrix of the Dirac ring in terms of its components
in each left ideal. A change of representation leaves its expression invariant,

77 =S L), (59)
k

where LECS) is the k-th minimal left ideal in the representation where a
given Cartan subalgebra is diagonal. In a sense, this is an invariant defini-
tion of the index H, a natural consequence of implementing the change of

representations A — B through similarity transformations:
(s = S7'(A - B)y(3S(A — B). (60)

Thus, the coefficients cf of (59) remain the same for a given H, regardless
of the representation (and, consequently, of the Cartan subalgebra chosen
as diagonal).

Minimal left ideals have been used by Rabin[23] to represent spinors.
His trick is to simply put the components of a spinor in the different rows
of a given column, for example,

¢1 0 ",01 0 0
P 0 ¥, 00
s |10 4 00 (61)
() 0 %4 0 0
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The procedure is safe from the standpoint that we recover again a mini-
mal left ideal in the new representation, since minimal left ideals are precisely
invariant subspaces under left multiplication, if we multiply by a matrix cor-
responding to a change of representation like (60). |

From the point of view of minimal left ideals, the SU(4) invariance of the
Dirac equation translates into the fact that any one out of four minimal left
ideals may represent a spinor. Since we can label minimal left ideals through
the eigenvalue set of the matrices of the Cartan subalgebra, this can be taken
as a kind of “flavor” for each ideal. The point we shall demonstrate later is
that the lattice transcription mixes ideals which, in the continuum, evolve
independently.

As important and relevant as left ideals are right ideals. For right ideals,
the definition analogous to (54) is

IrC1Z. (62)

For right ideals, an analogue of expression (59) is valid. One can easily see
that the following properties hold:

i) The minimal right ideal represented by a given row of a representa-
tion is orthogonal, by matrix multiplication, to any but the corresponding
minimal left ideal (column):

RiLy = wbpye, (63)

with w being a complex number.

i) The left product of a left ideal with a right ideal generates a full 4 x 4
matrix.

iii) The set of projection operators 'P,ECS) (idempotents) also projects by
right multiplication onto the minimal right ideals.

The minimal left ideal is a kind of invariant subspace of the algebra. It
can be put in correspondence with the spinor space. Precisely the SU(4)
symmetry of the Dirac ring is present in the fact that there are four min-
imal left ideals which can be put in correspondence to a given spinor. It
should be remarked, however, that while for spinors a linear transformation
is represented by a matrix operating on a vector, for a minimal left ideal,
the transformation proceeds rigorously through similarity, as in (60). (For
right ideals, the corresponding vector space would be that of adjoint spinors
or row matrices).
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To throw more light on the physical meaning of the decomposition in
minimal left ideals, we make the following observation. The multiplication
table for the matrices in the Cartan subalgebra (see eqs. (56)) is precisely
that of the abelian “four group” constructed out of parity and time reversal.
This group is abelian, but not cyclic. Since the group is abelian, its irre-
ducible representations are one dimensional and are essentially equal to the
characters, x(R),(R = 7,7, 77). The set of matrices in a Cartan subalgebra
may be called a “reduction group”, to use the name given by Becher and
Joos[10] (and introduced in Sharatchandra, Thun and Weisz[20)). See Ta-
ble ITII. There we immediately recognize that the x, are precisely the labels
introduced for the minimal left (or right) ideals in the Dirac algebra (Eq.
(56)).

A glance at the properties of Dirac bilinears under these operations is
now needed to clarify this matter further. As a simple way of understanding
what happens, we shall use the behavior of bilinear expressions as can be
found, for instance, in Killén’s book[3]: |

F = [falz), Oithy(2)]

with
i= S, = 1
1=V, = 4#
i= T, = gt
i= A, = ik’
i= P, 0= 7

Table IV reproduces, with some notational changes, the effects of space

reflection or parity (x), time reversal (), charge conjugation (k) and their
product (k7T).

If we apply these results to the combination that gives the idempotents
corresponding to the first column (or minimal left ideal labelled by (+++))
we get the results which are summarized in Table V for several representa-
tions of the Dirac algebra. The conclusion is that, under discrete operations,
there is a mixing of minimal ideals. In other terms, if a spinor is represented
by a given left minimal ideal, under these operations it goes into another.
This behavior is spectacularly manifest on the lattice, as we shall show in
the next section. -

To conclude our with analysis, the SU(4) structure apparent for the
Dirac ring of matrices is put into evidence through the discrete operations
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which are incorporated in the Lorentz group as an invariance group for spin-
1/2 particles. The possible representations of a spinor through a minimal
teft ideal of the Dirac algebra were related, as we have shown, to a Cartan
subalgebra of the SU(4) Lie algebra, and cannot be considered as equivalent
under these operations.

4 Dirac fermions on the lattice

In this section we shall analyze the problem of the proliferation of degrees
of freedom in the continuum limit of the lattice treatment of fermions. We
shall concentrate mainly on the two-dimensional case, since what is essential
to the understanding of the problem already appears at that level. We shall
be rather elementary in our exposition. A short version is contained in our
previous article[13] and an analogous application for the Kéahler treatment
of the Dirac equation will be given elsewhere[17]. The elements of the two-
dimensional lattice fermion problem are found in the Appendix.

In what we refer to in the Appendix as the Dirac-Pauli representation,
the Dirac equation is:

idp — m i h \ _
(—i61 —i@o—m) (wg) =0 (64)
We write
1,()(110, nl) = ( Z; ) el‘kﬂ],a—iwnoa, (65)

where a is the link length of a square bidimensional lattice and no,n; are
the coordinates of a site. Substituting the derivatives by finite differences,

we have:

'2%["1’1(?10 +1,m) - ¢a(no = 1,m)] - Eig[lf’z(noa ny + 1) = $a(no, m1 = 1)]

= m¢1(ng, 'ﬂl) (66)
""2%[11’1(7‘0’ n1 + 1) — ¥1(no,m1 — 1) - 5%[1.02(“0 +1,n1) — P2(no — 1,m)]
= mp(no, n1)- (67)

In terms of the proposed solution, Eq. (65), we find
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...14_
sinwa sin ka
( - m) c1 — C; = 0, (68)
a a
smaka.c1 _ (smawa + m) ¢ = 0. ( 69)

For the equation to have a solution, it is necessary that

a2

.2
sinwa = :I:a\/sul ha + m? - (70)

The solutions corresponding to positive and negative energy are

1 . .
¢+(n0! ﬂl) C+ ( sinwa—ma ) exP[zknla - tw+noa] (71)

sinka

botrarm) = o ( _inorna ) e0libmia +iomnadl. (72

sin ka

Let us concentrate on the positive-energy solution (71). We have four con-
tinuum limits for the massless case:

w=+4k, wxk=x0:

Y4,00(n0,71) = €400 ( i ) exp[iknya — iw, (k)noal (73)

w=-~k, k=Z-F:

|

Y4.0x(n0,n1) = ¢4+ 0n ( - ) (—1)™ exp[—ik'nia — iwy (K )noa] L‘,M)

w=E-uw, Ww=ak:

Y e

11).,.,,,0(1:0, n1) = C4 0 ( i ) (—1)“0 exp[iknla + 2&);(’6)7100] (75)

-k, J=F:

! —_

R

Y xn(RoyR1) = Cmm ( 1 ) (=1)"*+™ exp[—ik'na + 'y (K)noal. (76)
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Notice that (75) and (76) are obtained (up to a phase) from (73) by space
inversion, time reversal and both. In principle, all solutions are of positive
energy and, of course, positive chirality, since we are in two dimensions and
the Hamiltonian of the Dirac equation is proportional to 7°.

Let us now apply the covariance of the equation under multiplication by
any generating matrix of SU(2). To begin with, apply 5. We have

iho—m iA 01\ /% \_
(—ml -z'Ao-nlz)(l 0)(¢;)'°’ (77)

where Ag, A; Tepresent the finite differences in (66),(67). The compatibil-
ity condition is again satisfied but the system of equations (68),(69) now
becomes

_sin kac1 + (smwa _ )c2 _ _0" (78)
a a
(_ smawa _ m) - smaka ¢ = 0. (79)

This is identical with (65) if we take w — —w,k — —k. In short, we may
write

Yoy 00(n0sn1) = (=1)"+™ h an(mio, n1) - (80)
Analogously, we obtain:

by oo(no, 1) = (—1)™%P4x0(no,n1) (81)

1 00(n0,m) = (=1)"%40n(n0,71)- (82)

We can then construct Table VI by repeated application of these results.
Notice that, though we have used the Dirac-Pauli representation, the table
is the same in any representation. We are now able to make the identification
of these continuum limits with the ideals of the Dirac ring in the Dirac-Pauli
representation. We need the values of the projectors for the minimal left

ideals given in the Appendix.
The first component of 4,00 in the first minimal left ideal is

9 = 20 4 o0 = G0+ (C1Prorh (89)
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whereas the second one is

PO = (7 = P00 = 5 (-1 (bhro = (<1 arr). (84

For the second minimal left ideal, we have:
1 1
P = '2'(71 +7%) 400 = 3(=1)"*(¥4m0 + (=1)" %4 2r)y  (85)

AR %(1 = 1")¥+,00 = %('!4,00 = (—1)™%4.0)- (86)

We see that the function with values at the origin of the Brillouin zone,
eigenfunction of the discretized Hamiltonian at the continuum limit, is a
combination of two ideals in the Dirac algebra.

The traditional treatment found, for instance, in the review article by
Kogut[5], uses the Kramers-Weyl representation. From that review, we take
Figure 1 where, after the spin diagonalization by Kawamoto and Smit[25],
the fermions are represented on a lattice by two superimposed lattices on
which the degrees of freedom are distributed as seen.

Kogut works in the Euclidean domain, with the following representation
for the Dirac matrices

0 01 o
= (1) =

1 0 — 2
7 (i 0) = ¢

1 0 .
5 __ — 3 _ 0.1
v = (0 1) = g = -1y

and shows that the action on the lattice can be written in diagonal form
with two fermion “flavors” by defining

- ixy) (5 ) 1)
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w = 2 - x@n) ( },) (88)
& = -j—i(xu)nx(l')-f)(},) (89)

d = -\}—i(x@)'r" +x(2)7") ( (1, ) - (90)

The x(k) are independent components of a spinor in two dimensions. Re-
calling the properties of the idempotents (see Appendix), we have, in the
continuum limit,

1 = Tglbagn = 1" e (91)

and equivalent expressions. In the limit, we can identify the continuum
limit of the naive fermion treatment with the Kogut-Susskind reduction of
fermions on the lattice.

The relationship also translates the content of the “reduction group” of
Sharatchandra, Thun and Weisz[20] which is the implementation of Table
VL ’

In four dimensions, everything goes through in the same manner. To be
specific, the basic relations are

Y000 = (1) Y, onrn (92)
Tr0000 = (=1)0 2%y conr (93)
10000 = (=1)°FMFYy rron (94)
Psoo00 = (—1)tM 9y 2rno. (95)

It requires only industrious work to produce the equivalent of Table VL
Again, everything is linked to {20].

We now have four “flavors”, instead of the sixteen corresponding to the
naive fermion approach. As Sharatchandra et al.[20] have shown, the Ko-
gut-Susskind fermions realize the minimal spreading of spin-1 /2 degrees of
freedom through the reduction group.

5 Discussion and tentative conclusions

We have tried in this article to support the view that the relationship be-
tween a unitary group (SU(4)) and the description of spin-1/2 fermions in
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four dimensions may be of relevance for the understanding of the physical
properties of these particles.

For this, we have exhibited in some detail the features of the algebra of
Dirac matrices and their products and its connection with the Lie algebra of
SU(4). The réle of the Cartan subalgebra has been shown in the definition
of the representation in which the Dirac equation is written and the spinor
solutions are obtained.

We have also looked at the purely algebraic properties that allow one to
define ideals, their relation to the given representation and the construction
of sets of (idempotent) projection operators on them. We have analyzed
the link between the Cartan subalgebra and the discrete operations of space
reflection, time reversal and their product, which transform idempotents
among themselves., We have shown that the meaning of the reduction group
of Becher and Joos, and of Sharatchandra, Thun and Weisz is related to the
Cartan subalgebras we have considered.

All this seems to be of importance for the understanding of the pro-
liferation of spin-1/2 particles in the continuum limit of massless particles
described on the lattice. We have shown this by emphasizing the relation
between the Kogut-Susskind treatment of fermions on the lattice and the
characterization in terms of ideals of the solutions of the Dirac equation near
different edges of the first Brillouin zone. Needless to stress, the “chiral”
projection operators on ideals in the “chiral” Kramers-Weyl representation
are relevant.

There is undoubtedly further work to be performed.

Our results show a close connection with the description of fermions with
differential forms, to be presented in a forthcoming article[17]. The analogy
however is not yet complete.

The generalization to higher even dimensions and presumably to any
(even or odd) number of dimensions may be considerably helped by the
analogy. For instance, the fact that in three dimensions a pair of SU(2)
groups is needed for the treatment of fermions may be simply connected to
the fact that the eight basic differential forms split naturally in two sets of
four related by taking the adjoint. It is easy to enlarge these considerations
to other dimensions and work along this line is in progress. As stated before,
our conjecture is that for even dimensions the unitary group whose Lie
algebra is related to the corresponding Dirac matrices is SU(2"/?) whereas
for odd dimensions it is SU(2("~1/2) x SU(2(n-1)/2),

A main point raised by our study is how crucial it is to understand the
relation of spin-1/2 fermions to a unitary group. Is an electron, in the real
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world, properly speaking, an SU(4) object? This may be an interesting
question and we think a hint on it may be provided by the following obser-
vation. The square of the operator of time reversal, which is antiunitary,
produces a minus sign in the usual treatment of spinors. It is the fourth
power which brings one back to the original description. This is reminiscent
of the situation of spin-1/2 particles in non-relativistic quantum mechanics.
A totation of 27 generates a minus sign, which was only relatively recently
checked experimentally([26], through careful and nice experiments involving
slow neutrons.

In the Euclidean regime, a 27 rotation along any axis produces a change
of sign for spin-1/2 particles. In the same sense that a physical rotation
means an incomplete rotation on SU(2), it may be that the minus sign in
time reversal in the real world implies that what we need is a complete
SU(4) rotation, which, of course, cannot be approximated by (or inside
of) SU(2). The matter is complicated since to devise an experiment to
eventually check this property must involve a kind of spacetime rotation (a
Lorentz transformation, in fact) in Minkowski space. It is possible that the
geometric properties uncovered by Gliozzi[9] on the lattice provide a hint
for the setting of an appropriate experiment.

We think that several of the results we present under separate guises
might be globally phrased in a more sophisticated language. This is perhaps
a rewarding task for the future.
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Appendix. The Dirac equation in two dimensions

To stick to the conventions in four dimensions, we shall call the Dirac-
Pauli representation the one in which 4° is diagonal, and the Kramers-Weyl
representation the one with ~5 hermitian and diagonal.

Dirac-Pauli:

o 1 0 =  Oa 1 _ 01 = ida
Y - 0 -1 - 3 7T = -1 0 - 21
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Kramers-Weyl:

s _ . - (10
TE% T o -1 )

The commutator algebra of the hermitian matrices is the one of the gener-
ators of SU(2), as is well known. The solution to the Dirac equations are:
Dirac-Pauli:

vE(k,z) = ot ( _; ) gikz—iwt

k

w = (k¥4 m?)/?
Kramers-Weyl:
1 .
+ k,z) = c:l: ( )etkr—swt
wE(k,2) s

w = :I:(k2 + m2)1/2
Minimal left ideals:

Dirac-Pauli Kramers-Weyl
(;3) 1+ )
| ( (1] 3 ) 3+ &5) —%('r" +71)
(3 3) 0+ S04
(6 ) eem ja-w



%(1 +1°)
%(-7‘_+ 7°)
%(‘71 +7°)
%(1 - 7‘5)
%(1 +7°)
%(-7"_ +7')
%(—'r" +7%)
1

'2'(1 -7%)

A complementary table is the following:

Dirac-Paul:

10
0 0

00
10

)
)
)
)
)
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FIGURE 1
Figure 1,

Kogut-Susskind fermions on a two~dimensional lattice.
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