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Centrally Extended Residual Symmetries in the Presence of a Constant

EM Background
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aCCP - CBPF, Rua Dr. Xavier Sigaud 150,
cep 22290-180, Urca, Rio de Janeiro (RJ), Brazil

In this talk I discuss the properties of the symmetry algebra (denominated \residual symmetry") of a QFT in
the presence of a non-vanishing, constant, electro-magnetic background. It is shown that this problem can be
formulated and solved on a purely Lie-algebraic ground (i.e. it is model-independent).

One of its simplest consequences consists in recovering the central extension in the commutator of the transla-
tions, associated with the abelian U(1) charge.

For illustrative purposes the case of the (2 + 1)-dimensional Poincar�e invariant QFTs coupled with a constant
external EM background is discussed in detail. The deformed (and gauge-�xing dependent) surviving Poincar�e
generators are explicitly computed. In the generic case the residual symmetry algebra is isomorphic to u(1)�Pc(2),
where Pc(2) is the centrally extended 2-dimensional Poincar�e algebra.

The connection with the Noncommutative Field Theories is briey mentioned. A short discussion concerning
the possible physical implications and the outline of the forthcoming research is given.

1. INTRODUCTION

In the present days the issues of Noncommu-
tative Field Theory are vastly explored. Much
of the activity on this topic was in consequence
of the Seiberg and Witten's observation [1] that
a non-commutative gauge theory may be equiv-
alently described by a commuting gauge theory
formulated in terms of ordinary (not star) prod-
ucts of a commuting vector potentialA�, together
with an explicit dependence on ��� , which is re-
garded as a constant background. The equiv-
alence established by Seiberg and Witten mo-
tivated much of the following investigations on
Field Theories formulated in terms of the Moyal
star-product (for more information and references
see, e.g., the now available book collecting the
Proceedings of the Winter School held here in
Karpacz few months ago [2]).
On the other hand, the Seiberg and Witten's

observation can inspire a complementary and,
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so to speak, more \conservative" point of view,
namely the investigation of QFT's in a given con-
stant background within the standard commuting
space-time framework. This is the viewpoint ad-
vocated here.
In this talk I will furnish an answer to the fol-

lowing question: which symmetries survive w.r.t
the free case, for a system described by a QFT in
a given constant background (which, in practical
applications, can be regarded as reached adiabat-
ically). This is why I have employed the notion
of \residual symmetry" in the title, even if the
term \residual" could be misleading. It appears
to suggest that such symmetries form just a sub-
algebra of the original symmetry algebra. I will
prove in the following that this is not the case.
My motivation in investigating such a problem

came after the work of [3]. Based on some pre-
vious results, especially of Cangemi and Jackiw
[4,5], the analysis of [3] concerned the very sim-
ple, almost trivial, model of a free massive com-
plex boson in 1+1 dimensions minimally coupled
to an external gauge-�eld.
The main result of [3] consists in the proof that,

in the presence of a constant electric �eld E, the



2

Lie algebra of symmetries of the action is the cen-
trally extended Poincar�e algebra in 1 + 1 dimen-
sion. Basically, what happens is that the origi-
nally internal U (1) global charge for E = 0, for
E 6= 0 appears as a central charge in the com-
mutator of the momenta. Despite the extreme
simplicity of the model, the result of [3] is nev-
ertheless noteworthy because it produces another
mechanism to produce centrally extended sym-
metries, besides the known ones based on the
arising of anomalies, either quantum [6], or even
classically [7]. A systematic analysis of all these
features is presented in [8].
On the other hand, the result of [3] concerns a

very speci�c model. In this talk I will prove that
the analysis of the residual symmetries and their
central extensions can be performed by using
solely Lie-algebraic methods, which are model-
independent. Due to such a reformulation of
the problem it is tempting to say that it is the
property of the symmetries themselves which dic-
tates how the residual symmetries are rearranged
and the central extensions make their appearance.
The generators of a surviving symmetry corre-
spond to a deformation of the original generators.
In consequence of this purely Lie-algebraic in-

vestigation, it turns out that the results here ob-
tained have a more general validity (they can be
applied, e.g., also to interacting theories). Fur-
thermore, the computations involved are techni-
cally simple, which make them easily applicable
to more elaborated frameworks, such as standard
and higher-dimensional �eld theories.
In this talk I will limit myself to treat and com-

pute the residual symmetry algebra associated to
a Poincar�e-invariant theory in (2+ 1) dimensions
coupled with an abelian U (1) external gauge-
�eld, assumed in a constant electric and magnetic
background. The choice of this example is just for
illustrative purposes. The analysis of the residual
symmetries originated by more complicated Lie
and super-Lie algebra is currently under investi-
gation (further comments will be furnished in the
Conclusions). The mathematical techniques em-
ployed in such analysis, however, are straightfor-
ward generalizations of the techniques furnished
here.

2. STATEMENT OF THE PROBLEM

For pedagogical reasons it is convenient to for-
mulate and solve the problem by working out
a speci�c example. It will be clear, however,
that the problem and the method for its solu-
tion can be straightforwardly generalized to more
complicated algebraic structures than the one
here discussed. The case here treated concerns
the computation of the residual symmetry for
generic Poincar�e-invariant �eld theories in (2+1)-
dimension, coupled with an external constant EM
background. The two-dimensional case of [3] is
recovered by performing a dimensional reduction.
In the absence of the external electric and mag-

netic �eld, the action S is assumed to be invari-
ant under a 7-parameter symmetry, namely the
six generators of the (2 + 1)-Poincar�e symmetry
which, when acting on scalar �elds (the following
discussion however is valid no matter which is the
spin of the �elds) are represented by

P� = �i@�;
M�� = i(x�@� � x�@�); (1)

(the metric is chosen to be +��). The remaining
symmetry generator corresponds to the internal
global U (1) charge that will be denoted as Z.
It is further assumed that in the action S

the dependence on the classical background �eld
is expressed in terms of the covariant gauge-
derivatives

D� = @ � ieA�;

with e the electric charge.
In the presence of constant external electric and

magnetic �elds, the F�� = @�A� � @�A� �eld is
constrained to satisfy

F 0i = Ei; F ij = �ijB; (2)

where �; � = 0; 1; 2 and i; j = 1; 2. The �elds Ei

and B are constant. Without loss of generality
the x1, x2 spatial axis can be rotated so that E1 �
E, E2 = 0. Throughout the text this convention
is respected.
In order to recover (2), the gauge �eld A� must

depend at most linearly on the coordinates x0 �
t, x1 � x and x2 � y.
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The gauge-transformation

A� 7! A�
0 = A� +

1

e
@��(x

�) (3)

allows to conveniently choose for A� the gauge-
�xing

A0 = 0;

Ai = Eit� B

2
�ijx

j: (4)

The above choice is a good gauge-�xing in the
sense that it completely �xes the gauge (no gauge-
freedom is left). It is easily proven that the dis-
cussion which follows is independent of the choice
of the gauge-�xing. In particular, the residual
symmetry is a true physical symmetry and its
symmetry algebra is the same no matter which
gauge-�xing has been chosen.
Due to (4), the action S explicitly depends on

the x� coordinates entering A�. The simplest way
to compute the symmetry property of an action
such as S which explicitly depends on the coor-
dinates consists in performing the following trick.
At �rst A� is regarded on the same foot as the
other �elds entering S and assumed to transform
as standard vector �eld under the global Poincar�e
transformations, namely

A�
0(x�0) = ��

�A�(x
�) (5)

for x�0 = ��
� + a�.

For a generic in�nitesimal Poincar�e transfor-
mation, however, the transformed A� gauge-�eld
no longer respects the gauge-�xing condition (4).
In the active transformation viewpoint only �elds
are entitled to transform, not the space-time co-
ordinates themselves. A� plays the role of a �c-
titious �eld, inserted to take into account the de-
pendence of the action S on the space-time co-
ordinates caused by the non-trivial background.
Therefore, the overall in�nitesimal transforma-
tion �A� should be vanishing. This result can
be reached if an in�nitesimal gauge transforma-
tion (3) �g(A�) can be found in order to compen-
sate for the in�nitesimal Poincar�e transformation
�P (A�), i.e.

�(A�) = �P (A�) + �g(A�) = 0: (6)

Only those Poincar�e generators which admit
a compensating gauge-transformation satisfying

the (6) condition provide a symmetry of the S
action (and therefore enter the residual symme-
try algebra). This is a plain consequence of the
original assumption of the Poincar�e and manifest
gauge invariance for the action S coupled to the
gauge-�eld A�.
Notice however that the original Poincar�e gen-

erators are deformed by the presence of extra-
terms associated to the compensating gauge
transformation. Let p denote a generator of (1)
which \survives" as a symmetry in the presence of
the external background. The e�ective generator
of the residual symmetry is

p̂ = p+ : : : ;

where : : : denotes the terms arising from the com-
pensating gauge transformation associated to p.
Such extra terms : : : are gauge-�xing dependent.
The \residual symmetry generator" p̂ can only be
expressed in a gauge-dependent manner. How-
ever, two gauge-�xing choices are related by a
gauge transformation g. It can be easily seen
that the same residual symmetry generator ex-
pressed in the new gauge-�xing and denoted as ~p,
is related by an Adjoint transformation

~p = gp̂g�1 (7)

to the previous one. Therefore the residual sym-
metry algebra does not dependent on the choice
of the gauge �xing and is a truly physical charac-
terization of the action S.
The extra-terms : : : are necessarily linear in the

space-time coordinates when associated with a
translation generator, and bilinear when associ-
ated to a surviving Lorentz generator. They are
the reason for the arising of the central term in
the commutator of the deformed translation gen-
erators.
The scheme being clear, it is just a matter

of straightforward computation to perform the
analysis of the residual symmetries in di�erent
contexts and starting from di�erent symmetry al-
gebras. In the next section the results for the
residual symmetry of the Poincar�e invariance in
(2 + 1) dimensions are furnished.
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3. The residual symmetry for the (2 + 1)
Poincar�e case.

The framework and the conventions have been
illustrated in the previous section, here just the
results are quoted. The residual symmetry alge-
bra of the (2+1)-Poincar�e theory involves, besides
the global U (1) generator Z, the three deformed
translations and just one deformed Lorentz gener-
ator (the remaining two are broken, not providing
a symmetry).
With the (4) gauge-�xing choice the deformed

translations are explicitly given by

P0 = �i@t � eEx;

P1 = �i@x � e

2
By;

P2 = �i@y + e

2
Bx: (8)

The deformed generator of the residual Lorentz
symmetry is explicitly given, in the same gauge-
�xing and for E 6= 0, by

M = i(x@t + t@x)� i
B

E
(y@x � x@y) +

e

2
(Et2 + Ex2 � Bty): (9)

The residual symmetry algebra is given by the
following commutation relations

[P0; P1] = iEZ;

[P0; P2] = 0;

[P1; P2] = iBZ; (10)

together with

[M;P0] = �iP1;
[M;P1] = �iP0 � i

B

E
P2;

[M;P2] = i
B

E
P1: (11)

The U (1) charge Z is no longer decoupled from
the other symmetry generators, but it appears in
(10) as a central charge.
The residual symmetry algebra of the (1 + 1)

dimensions of ref. [3] is recovered from the
P0; P1;M;Z subalgebra and corresponds to the
centrally extended 2D Poincar�e algebra thor-
oughly studied in [5]. This is, however, the resid-
ual symmetry algebra for any (1+1)-dimensional

theory coupled with an external constant electric
background, not only the symmetry algebra of
the speci�c model studied in [3].
The 5-generator solvable, non-simple Lie alge-

bra of residual symmetries admits a canonical
presentation, obtained by a careful choice of the
generators in its presentation.
At �rst it should be noticed that

~Z =def BP0 + EP2 (12)

commutes with all the other � generators
[ ~Z; �] = 0; (13)

so that the residual symmetry algebra is given
by a direct sum of u(1) and a 4-generator al-
gebra. The latter algebra is isomorphic to the
centrally extended two-dimensional Poincar�e al-
gebra. Such an algebra is of Minkowskian or
Euclidean type according to whether E > B or re-
spectively E < B (the case E = B is degenerate).
This point can be intuitively understood due to
the predominance of the electric or magnetic ef-
fect (in the absence of the electric �eld the the-
ory is manifestly rotational invariant, so that the
Lorentz generator is associated with the Euclid-
ean symmetry). We have explicitly, for B > E,
that the algebra

[M;S1] = iS2;

[M;S2] = �iS1 (14)

is reproduced by

M = EM
1p

B2 � E2
;

S1 = P0 +
B

E
P2;

S2 =

p
B2 � E2

E
P1; (15)

while for E > B the algebra

[M;T1] = iT2;

[M;T2] = iT1 (16)

is reproduced by

M =
1p

E2 �B2
M;

T1 = P0 +
B

E
P2;

T2 = �
p
E2 �B2P1: (17)
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In both cases the commutator between the trans-
lation generators S1, S2, and respectively T1, T2,
develops the central term proportional to Z which
can be conveniently normalized.
The residual symmetry algebra of the (2 + 1)

case for generic values of E and B (the E = B

case is degenerate) is therefore given by the direct
sum

u(1)�Pc(2): (18)

No new residual symmetry algebra is produced
starting from the three-dimensional case (and
in contrast with the 2-dimensional and ordinary
Poincar�e cases).
Three central charges are found, namely Z, ~Z

and the order two Casimir of the centrally ex-
tended Poincar�e algebra (see [5]).
The introduction of a constant EM background

implies, in some sort, that for the peculiar three-
dimensional case the e�ective theory corresponds
to a �eld theory in one dimension less (albeit a
noncommutative one), with respect to the physi-
cal space-time dimension of the formulated prob-
lem. Notice that this is true for (2+1), while it is
not so in the case of (1 + 1) dimensions since the
unique Lorentz generator \survives" as a symme-
try generator. In D = 4 the residual symmetry
algebra admits seven generators (instead of �ve).
Its explicit form will be reported elsewhere.
Some considerations are in order. The above

residual symmetry algebra should be regarded on
the same foot as the ordinary Poincar�e invariance
for theories formulated in a constant background.
Issues such as the spin-statistics connection in the
presence of a non-trivial background could be for-
mulated in terms of the residual symmetry al-
gebra. Furthermore it should be possible, e.g.,
to discuss the consequences of such symmetries
at the level of Feynman diagrams. The notion
of residual symmetry could be helpful in analyz-
ing questions like the renormalization property
for perturbative �eld theories in the presence of
a given background. A vast range of concrete ap-
plications can be found for the realm of residual
symmetries.
I conclude this section with two further re-

marks. The �rst one concerns the noncommu-
tativity. The noncommutativity is implied by

the presence, in the commutator of the deformed
translation generators, of a central extension.
Such deformed symmetry generators are asso-
ciated with the corresponding Noether charges,
which should develop the same central extensions.
In reality we should further check that no extra
anomaly is produced by the quantum Noether
charges. This analysis, however, requires a de-
tailed investigation of the concrete given model
and is less likely being conducted in a model-
independent way. To avoid such kind of prob-
lems, we can just assume working with classical

�eld theories.
The non-commutativity of the momenta is a

converse picture with respect to the noncommu-
tativity of the spacetime coordinates which is usu-
ally discussed in the current literature. At least
in some particular cases, the connection between
the two pictures is well-established. In [9] such a
connection is explained in detail for the case of a
point-particle moving on a plane, in the presence
of a strong, perpendicular to the plane, magnetic
�eld and at the lowest Landau level. It should be
noticed that this particular case can be recovered
by specializing the residual symmetry algebra ob-
tained in this paper and given by the formulas
(10) and (11). Due to the rather complete dis-
cussion of [9] there is no need here to spend more
words on that.
Finally, let me point out another reference,

given by [10], in which the noncommutativity of
a (2 + 1) theory (with just Galilean, instead of
Poincar�e invariance) was discussed.

4. CONCLUSIONS

In this talk I have discussed the issue of the
residual symmetry in the presence of a constant
electro-magnetic background. I worked out in de-
tail the case of the originally (2 + 1)-invariant
Poincar�e theory and shown that its residual sym-
metry is isomorphic to the direct sum

u(1)�Pc(2); (19)

the latter being the centrally extended two-
dimensional Poincar�e algebra. It should be no-
ticed that the u(1) generator does not correspond
to the U (1) global charge generator Z which, in



6

the presence of a constant background, appears
as a central charge in the commutator algebra of
the deformed translation generators. Despite the
fact that the explicit computations presented re-
garded a particular algebra, the method employed
is quite general and can be applied straightfor-
wardly to any initial symmetry algebra. Such
symmetries include Poincar�e invariance in any di-
mension and the conformal transformations, as
well as their supersymmetric extensions. Issues
related with the partial breaking of extended su-
persymmetries can be studied in the light of this
method. All such cases are currently under inves-
tigation and the �nal results will be reported in
a forthcoming paper [11].
The algebra of the residual symmetries, be-

ing not a subalgebra of the symmetry algebra
in the absence of electro-magnetic background,
is interesting in itself. It can de�ne for instance
some dynamical models. It is tempting for in-
stance to use, for more general residual sym-
metries, the approach of [4] in which a gravi-
tational theory based on the centrally extended
two-dimensional Poincar�e algebra is constructed.
For what concerns the residual symmetry of the
(2 + 1)-dimensional Poincar�e invariance, the re-
sults of [4] can be immediately borrowed, due to
the (19) decomposition of such an algebra. In
more complicated cases such as the Minkowskian
(3+1)-dimensional case, decompositions like (19)
no longer apply.
The present talk concerns only the residual

symmetries arising from a constant background
of an abelian U (1) gauge-invariance. Generaliza-
tions can be done in two ways, i.e. considering
the residual symmetries for constant background
in the presence of higher rank antisymmetric ten-
sor �elds. Such backgrounds are relevant in the
string/brane context [12].
Conversely, residual symmetries can be studied

also for non-constant background. In the pres-
ence of a linear homogeneous electric background
it is known that a phenomenon of particle produc-
tion is produced [13]. It is quite tempting to in-
vestigate such a problem in the light of the resid-
ual symmetries of the model. Investigations in
this direction are currently under consideration.
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