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1 Introduction:

Systems of hydrodynamic type [1]-[5] have been studied extensively over the last several
years. Such systems manifest, among others, in string theories, membrane theories and
topological �eld theories [6]. The polytropic gas equations [7] belong to this general class
of systems and are described by

ut + uux + v
�2vx = 0; vt + (uv)x = 0 (1)

where u; v denote the two dynamical variables. For di�erent values of the exponent, 
,
these equations describe di�erent physical systems, which are dispersionless and integrable
[8].

Being dispersionless integrable systems, hydrodynamic systems can be described by a
Lax equation on the classical phase space [8]. The Lax description that has been obtained
so far for the polytropic gas equations [9]-[10], however, is what is called a non-standard
representation, which is not very useful in generalizing this system to other cases, such
as the supersymmetric polytropic gas equations [11]. Nevertheless, the non-standard Lax
description has been quite useful [9]-[10]. It has led naturally to the two in�nite sets
of conserved charges of the system (by the standard construction, although the two sets
are obtained by expanding the residues at di�erent points). The Lax description also
immediately leads to the involution of the charges and clari�es why both the polytropic
gas equations and the elastic medium equations share the same set of conserved charges
(basically because they are both described by the same Lax function). One can also
construct the Hamiltonian structures from this description, although a more convenient
construction is through the Moyal-Lax representation of the system [12].

Many integrable systems can have both a standard as well as a non-standard Lax
representation and, as we have already mentioned, a standard representation is much
more useful. Nonetheless, such a description is lacking so far and, in this paper, we
construct such a representation for the polytropic gas equations. Interestingly, such a
description involves the use of Fibonacci and Lucas polynomials and their properties [13].
Although a standard Lax representation has unique residues, we show that such a Lax
description, nevertheless, leads to the two in�nite sets of conserved charges coming from
two distinct families of fractional powers of the Lax function. The same Lax function also
provides a standard Lax representation for the elastic medium equations [7, 9, 10].

The paper is organized as follows. In section 2, we review, very brie
y, the de�nitions
and some essential properties of the Fibonacci and Lucas polynomials [13]. In section 3, we
derive some identities satis�ed by two auxiliary functions dependent on these polynomials.
Using these, we construct, in section 4, the standard Lax representation for the polytropic
gas equations. In section 5, we construct the two in�nite sets of conserved charges for this
system, which coincide with the earlier known results [9]. The involution of these charges is
automatic, since they come from a Lax description. In section 6, we attempt to construct
some dispersive equations, whose dispersionless limit may lead to these equations. This
question is extremely di�cult and we present only some partial results on this issue. We
end with a brief conclusion in section 7. In the appendix, we show how the same Lax
function that leads to a standard Lax description for the polytropic gas equations also
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describes the elastic medium equations. This also shows that the two systems share the
two in�nite sets of conserved charges.

2 De�nition and properties of the Lucas and Fibonacci

polynomials:

The Lucas polynomials are de�ned recursively as follows:

ln+1(x) = x ln(x) + ln�1(x) (2)

with l0(x) = 2 and l1(x) = x. Their explicit form for n � 1 is:

ln(x) =

bn
2
cX

k=0

n

n� k

 
n � k

k

!
xn�2k (3)

where bxc is the largest integer smaller than or equal to x and

 
n

m

!
is the binomial

coe�cient.
The Fibonacci polynomials are de�ned by the same recursion relation:

fn+1(x) = x fn(x) + fn�1(x) (4)

but with f0(x) = 0 and f1(x) = 1. Their explicit form for n � 1 is:

fn(x) =

bn�1
2

cX
k=0

 
n� k � 1

k

!
xn�2k�1 (5)

A good presentation of these two families of polynomials and the many relations
involving them can be found in [13]. However, for convenience, we list below some of the
relations which we are going to use throughout the paper:

ln(x) = fn+1(x) + fn�1(x) (6)

(x2 + 4) fn(x) = ln+1(x) + ln�1(x) (7)

l2n(x)� (x2 + 4) f2n(x) = 4(�1)n (8)

l0n(x) = n fn(x) (9)

3 Various useful identities:

In addition to the Lucas and Fibonacci polynomials, the following two families of poly-
nomials are also useful in deriving some of our results:

gn(x) =

bn
2
cX

k=0

n

n� k

 
n� k

k

!
xk (10)
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hn(x) =

bn
2
cX

k=0

 
n� k

k

!
xk (11)

If x 6= 0, one can easily see from (3) and (5) that:

ln(x) = xngn

�
1

x2

�
(12)

for n � 0 and:

fn(x) = xn�1hn�1

�
1

x2

�
(13)

for n � 1. Using this connection with the Lucas and Fibonacci polynomials, we can prove
that

Proposition 1 For any n � 2, the polynomials gn and hn satisfy the following relations:

(i) hn(z) = hn�1(z) + z hn�2(z)

(ii) gn(z) = gn�1(z) + z gn�2(z)

(iii) gn(z) = hn(z) + z hn�2(z) = hn�1(z) + 2 z hn�2(z)

(iv) g0n(z) = nhn�2(z)

(v) gn+1(z)� 2
n+1

z g0n+1(z) = gn(z)� 1
n
z g0n(z)

(vi) 1
n+1 gn(z) g

0
n+1(z)� 1

n
g0n(z) gn+1(z) = (�z)n�1

Proof. To prove (i), we use (13) to rewrite (4) as

hn

�
1

x2

�
= hn�1

�
1

x2

�
+

1

x2
hn�2

�
1

x2

�

for x 6= 0. If we now let z = x�2 we �nd that (i) holds for z 6= 0. Since both sides of (i)
are polynomial, it follows by continuity that it must also hold at z = 0. In a similar way
(ii) follows from (2), (iii) follows from (6) and (iv) follows from (9). Let us note from (iii)
and (iv) that

gn+1(z)� 2

n+ 1
z g0n+1(z) = hn(z) + 2 z hn�1(z)� 2 z hn�1(z) = hn(z)

as well as

gn(z)� 1

n
z g0n(z) = hn(z) + z hn�2(z)� z hn�2(z) = hn(z)

so that (v) holds. Finally, for (vi) we proceed by induction. For n = 2 the relation
obviously holds. Now suppose that it holds for some n and notice that:

1

n+ 2
gn+1(z) g

0
n+2(z)�

1

n+ 1
g0n+1(z) gn+2(z)

= gn+1(z)hn(z)� hn�1(z) gn+2(z)

= gn+1(z) (hn�1(z) + z hn�2(z))� hn�1(z) (gn+1(z) + z gn(z))

= (�z) (hn�1(z) gn(z)� gn+1(z)hn�2(z))

= (�z)
�

1

n + 1
g0n+1(z) gn(z)�

1

n
gn+1(z) g

0
n(z)

�
= (�z)n
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The relation therefore holds for n+ 1, which completes the proof.

Let �(z) be a function which is analytic in a disc D = fz : jzj < rg and let

�(z) =
1X
n=0


n z
n

be its Taylor expansion around z = 0. We will denote by [�]m(z) the polynomial consisting
of terms in the Taylor expansion of � around z = 0 up to zm. Let P (z) = a0+a1 z+ : : :+
an z

n be a polynomial. We will denote by �P the polynomial �P (z) = an+an�1 z+: : :+a0 zn

and we de�ne P
m

n

+ (z) = zm
h
�P
m

n

i
m
(z�1) for any positive integer m. With these notations

in place, we can now state the following:

Proposition 2 The following two relations hold for any n � 2:

(i)
�
g
n+1

n
n

�
n�1

(z) =
�
g
n+1

n
n

�
bn+1

2
c
(z) = gn+1(z)

(ii)
�
g
n�1

n
n

�
n�2

(z) =
�
g
n�1

n
n

�
bn�1

2
c
(z) = gn�1(z)

Proof. For (i) notice that g
n+1

n
n solves the di�erential equation

1

n+ 1
gn(z)�

0(z)� 1

n
g0n(z)�(z) = 0

with initial condition �(0) = 1. From (vi) of Proposition 1 we see that gn+1 solves the
di�erential equation

1

n+ 1
gn(z)�

0(z)� 1

n
g0n(z)�(z) = (�z)n�1 (14)

with initial condition �(0) = 1. It follows from this that  = gn+1 � g
n+1

n
n solves (14) with

initial condition �(0) =  (0) = 0. If we now evaluate both sides in (14) at z = 0, with
the identi�cation � =  , we get that  0(0) = 0. Di�erentiating (14) and evaluating at
z = 0 (again with the substitution � =  ) we get  00(0) = 0. Repeating the process n� 2
times we get

 (0) =  (1)(0) = : : : =  (n�1)(0) = 0

It follows from this that
gn+1(z) =

h
g
n+1

n

i
n�1

(z)

Since gn+1 has degree bn+12 c and bn+12 c � n� 1 when n � 2, it follows that

h
g
n+1

n

i
n�1

(z) =
h
g
n+1

n

i
bn+1

2
c
(z)

The proof for (ii) is similar.
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Proposition 3 For any integers n � 3 and k � 0 let rn;k be the coe�cient of zkn+2 in

the Taylor expansion of (gn(z2))k+
1

n around z = 0 and ~rn;k the coe�cient of zkn in the

expansion of (gn(z2))k�
1

n . Then,

rn;k =

8>>><
>>>:

(�1)nl

nll!

2 lQ
m=l+1

(mn+ 1); k = 2 l

0; k = 2 l + 1

and

~rn;k =

8>>><
>>>:

(�1)nl

nll!

2 lQ
m=l+1

(mn� 1); k = 2 l

0; k = 2 l + 1

Proof. We are only going to prove the formula for rn;k , since the proof for ~rn;k is almost
identical.

For k = 0, it is easy to see (using (iv) of Proposition 1) that

rn;0 =
d

dz

�
g
1

n
n (z)

�
z=0

=
1

n
nhn�2(0)

�
g
1

n
�1

n (0)
�
= 1

For k = 1, rn;1 is the coe�cient of zn+2 in the Taylor expansion of g
1+ 1

n
n (z2). If n

is odd this is obviously 0, because the Taylor series contains only even powers. If n is
even, namely n = 2m , then r2m;1 is equal to the coe�cient of zm+1 in the Taylor series of

g
1+ 1

2m

2m (z), which is 0 according to Proposition 2, if n � 3. Hence, for any n � 3 , rn;1 = 0.
>From the residue theorem and the fact that gn(z2) = zn ln(z�1) it follows that:

rn;k =
1

2�i

Z
�

1

zkn+3

�
zn ln(z

�1)
�k+ 1

n

dz

=
1

2�i

Z
�

1

z(k�1)n+3
ln(z

�1)
�
zn ln(z

�1)
�k�1+ 1

n

dz

=
1

2�i

Z
�

1

z(k�2)n+3
l2n(z

�1)
�
zn ln(z

�1)
�k�2+ 1

n dz (15)

where the contour of integration � is contained in a neighborhood of z = 0 where
(gn(z2))k+

1

n is analytic. From (15) we obtain after integrating by parts:

rn;k = � 1

kn+ 2

1

2�i

Z
�

d

dz

�
1

zkn+2

� �
zn ln(z

�1)
�k+ 1

n

dz

=
kn + 1

kn + 2

1

2�i

Z
�

1

z(k�1)n+3

�
ln(z

�1) + z�1 fn(z
�1)
� �

zn ln(z
�1)
�k�1+ 1

n

dz

=
2kn + 2

kn + 2

1

2�i

Z
�

1

z(k�1)n+3
fn�1(z

�1)
�
zn ln(z

�1)
�k�1+ 1

n dz

where we have also used (6) and (4). We can rewrite this last result as:

kn+ 2

2kn + 2
rn;k =

1

2�i

Z
�

1

z(k�1)n+3
fn�1(z

�1)
�
zn ln(z

�1)
�k�1+ 1

n

dz (16)
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Moreover, it also follows from (15) that

rn;k =
1

2�i

Z
�

1

z(k�1)n+3
ln(z

�1)
�
zn ln(z

�1)
�k�1+ 1

n

dz

=
1

2�i

Z
�

1

z(k�1)n+3

�
fn+1(z

�1) + fn�1(z
�1)
� �

zn ln(z
�1)
�k�1+ 1

n

dz

=
kn+ 2

2kn + 2
rn;k +

1

2�i

Z
�

1

z(k�1)n+3
fn+1(z

�1)
�
zn ln(z

�1)
�k�1+ 1

n dz

and, therefore, we have

kn

2kn + 2
rn;k =

1

2�i

Z
�

1

z(k�1)n+3
fn+1(z

�1)
�
zn ln(z

�1)
�k�1+ 1

n

dz (17)

Now if we multiply (16) by n� 1 and (17) by n+ 1 and add them we get:

kn2 + n� 1

kn+ 1
rn;k =

1

2�i

Z
�

1

z(k�1)n+3

�
(n+ 1) fn+1(z

�1) + (n � 1) fn�1(z
�1)
�
�

�
�
zn ln(z

�1)
�k�1+ 1

n dz

=
1

2�i

Z
�

1

z(k�1)n+1
d

dz

�
ln+1(z

�1) + ln�1(z
�1)
� �

zn ln(z
�1)
�k�1+ 1

n

dz

= � 1

2�i

Z
�

�
ln+1(z

�1) + ln�1(z
�1)
� d

dz

�
1

z(k�1)n+1

�
zn ln(z

�1)
�k�1+ 1

n

�
dz

= �((k � 1)n + 1)
1

2�i

Z
�

1

z(k�1)n+2

�
z�2 + 4

�
fn(z

�1)
�
zn ln(z

�1)
�k�1+ 1

n

dz

+ ((k � 1)n+ 1)
1

2�i

Z
�

1

z(k�2)n+2

�
z�2 + 4

�
fn(z

�1) ln(z
�1)

�
zn ln(z

�1)
�k�2+ 1

n

dz

� ((k � 1)n+ 1)
1

2�i

Z
�

1

z(k�2)n+3

�
z�2 + 4

�
f2n(z

�1)
�
zn ln(z

�1)
�k�2+ 1

n dz

so that

kn2 + n� 1

(kn+ 1)((k � 1)n + 1)
rn;k = � 1

2�i

Z
�

1

z(k�2)n+3

�
z�2 + 4

�
f2n(z

�1)

= �
�
zn ln(z

�1)
�k�2+ 1

n

dz (18)

Finally, adding (17) and (18) we get:

4 (�1)n rn;k�2 =
1

2�i

Z
�

1

z(k�2)n+3

h
ln(z

�1)�
�
z�2 + 4

�
f2n(z

�1)
i

�
�
zn ln(z

�1)
�k�2+ 1

n dz

=
kn (kn + 2)

(kn+ 1) ((k � 1)n+ 1)
rn;k

In other words:

rn;k = 4 (�1)n (kn+ 1) ((k � 1)n+ 1)

kn (kn+ 2)
rn;k�2 (19)

and the desired result follows by induction.
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4 The Lax function and the Lax equation:

In this section we show that, for n � 3, the Lax function

Ln =
(
p�v)n
n

ln

0
@ n 1

n pp�v

1
A + u (20)

provides a standard Lax description for the polytropic gas with parameter 
 = n + 1,
namely

@ Ln

@ t
=

n

n+ 1

(�
L
1+ 1

n
n

�
+
; Ln

)
(21)

where ()+ denotes the part of the polynomial that contains only non-negative powers of
the variable, leads to the dynamical equations of motion

ut + uux + v
�2 vx = 0 (22)

vt + (u v)x = 0 (23)

which are the polytropic gas equations.
First, let us introduce the following simplifying notations:

w = �v; �n = n
1

n p; ~Ln = Ln � u

fA;Bg
n
= @ A

@ w

@B

@ �n
� @ A

@ �n

@ B

@ w
=
�
n

1

n wx

��1 fA;Bg
where fA;Bg denotes the conventional Poisson bracket of A;B. With these notations,
we can now rewrite (20) as

Ln =
1

n

�p
w
�n

ln

��p
w
��1

�n

�
+ u =

1

n
�nn gn

�
w��2n

�
+ u (24)

>From this we see that

�
L
1+ 1

n
n

�
+

=
�
1

n

�1+ 1

n

�n+1n

��
gn(w z

2) + nu zn
�1+ 1

n

�
n+1

(z = ��1n )

=
�
1

n

�1+ 1

n

�n+1n

 ��
gn(w z

2)
�1+ 1

n

�
n+1

(z = ��1n ) + (n+ 1)u��nn

!

=
�
1

n

�1+ 1

n

�n+1n

�h
(gn(z))

1+ 1

n

i
bn+1

2
c
(z = w ��2n ) + (n + 1)u��nn

�

=
�
1

n

�1+ 1

n

�n+1n gn+1
�
w��2n

�
+ (n + 1)

�
1

n

�1+ 1

n

u�n

=
�
~L
1+ 1

n
n

�
+
+ (n+ 1)

�
1

n

�1+ 1

n

u�n

=
�
~L
1+ 1

n
n

�
+
+
n+ 1

n
u p (25)
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where we have used Proposition 2. Using the above relation, the Poisson bracket on the
right hand side of the Lax equation (21) becomes:

(�
L
1+ 1

n
n

�
+
; Ln

)
=

(�
~L
1+ 1

n
n

�
+
; ~Ln

)
� ux

@

@ p

�
~L
1+ 1

n
n

�
+

+
n+ 1

n

 
ux p

@ ~Ln

@ p
� u

@ ~Ln

@ x
� uux

!
(26)

Now, with (v) of Proposition 1 we obtain:

@

@ p

�
~L
1+ 1

n
n

�
+

=
@ �n

@ p

@

@ �n

�
n�(1+

1

n
) �n+1n gn+1(w�

�2
n )

�

=
n+ 1

n
�nn

�
gn+1(w �

�2
n )� 2

n+ 1
(w��2n ) g0n+1(w �

�2
n )

�

=
n+ 1

2n

�
2�nn gn(w�

�2
n )� 2

n
w �n�2n g0n(w�

�2
n )

�

=
n+ 1

2n

 
�n

@ ~Ln

@ �n
+ n ~Ln

!

=
n+ 1

2n

 
p
@ ~Ln

@ p
+ n ~Ln

!

(27)

Furthermore, using (vi) of the same proposition we notice that:

(�
~L
1+ 1

n
n

�
+
; ~Ln

)
=

�
n

1

n wx

� (�
~L
1+ 1

n
n

�
+
; ~Ln

)
n

= n�2 wx

n
�n+1n gn+1(w �

�2
n ); �nn gn(w�

�2
n )

o
n

=
n+ 1

n
wx �

2n�2
n

�
1

n+ 1
g0n+1(w�

�2
n ) gn(w�

�2
n )�

� 1

n
gn+1(w �

�2
n ) g0n(w�

�2
n )

�

= �n+ 1

n
vn�1 vx (28)

Putting together (26), (27) and (28) we see that the Lax equation (21) is equivalent to

@ Ln

@ t
=

1

2

 
p
@ Ln

@ p
� n (Ln � u)

!
ux � @ Ln

@ x
u� vn�1 vx (29)

Equating coe�cients of powers of p in (29) we see that it holds if and only if the equations
of motion (22) and (23) hold.

This shows that the Lax function in (20) does provide a standard Lax description
for the polytropic gas dynamics. The same Lax function also provides a standard Lax
description for the elastic medium equations, which we show in the appendix. For 
 =
3 (n = 2), the polytropic gas equations, under a rede�nition of variables, is known to
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describe two decoupled Riemann equations. This case is slightly tricky, since in this
case, both the dynamical variables, u; v have the same dimension. We describe the Lax
description for this separately, which does not fall into the above category. Consider the
Lax function

L = p2 +
2

3
u+

1

6
v2p�2 (30)

The presence of the p�2 gives it a di�erent character from the earlier construction. How-
ever, it is straightforward to check that the Lax equation

@L

@t
=
��
L

3

2

�
+
; L

�
(31)

leads to

ut = �uux � vvx

vt = �(uv)x (32)

which are the polytropic gas equations for 
 = 3. The two sets of conserved charges, in
this case, are obtained from the two possible ways of de�ning the residues of Ln+ 1

2 around
p = 0;1 respectively. We also note here that, for the case 
 = 2 (n = 1), the polytropic
gas equations only have a nonstandard Lax description.

5 Conserved charges:

A Lax description of an integrable system has the advantage that the conserved charges
can be obtained from residues of fractional powers of the Lax function. The polytropic
gas, on the other hand, is known to have two in�nite sets of conserved charges [9]. In
the non-standard Lax description of the polytropic gas, it is known that the two sets
of charges arise naturally from calculating the residues around two distinct points. In a
standard Lax description, however, the residues are unique. It is interesting, therefore, to
see how the two sets of conserved charges will arise in this description. Let us note that
a simple dimensional analysis shows that we can assign the dimensions [v] = 2; [u] = n so
that [Ln] = n. From the explicit forms of the two sets of known conserved charges [9], it
is clear that if they are obtained from our Lax function at all, they should arise from the
fractional powers k + 1

n
and k � 1

n
respectively, where k = 0; 1; � � � for the �rst set while

k = 1; 2; � � � for the second set.

Let Hn;k = Res
�
L
k+ 1

n
n

�
and Fn;k(u;w; z) = (gn(w z2) + nu zn)

k+ 1

n . Let �n;k(u;w) be

the coe�cient of zkn+2 in the Taylor expansion of Fn;k around z = 0. Then:

Hn;k = n�(k+
2

n
)�n;k(u;w) (33)

Since
@ Fn;k

@ u
(u;w; z) = (k n + 1) zn Fn;k�1(u;w; z) (34)
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it follows that
@ �n;k

@ u
(u;w) =

(
0 if k = 0
(k n+ 1)�n;k�1(u;w) if k > 0

(35)

and, after repeated integration:

�n;k(u;w) =
kX

m=0

1

m!

0
@ kY
l=k�m+1

l n+ 1

1
A �n;k�m(0; w)u

m (36)

Using the fact that �n;2m(0; w) = rn;2mw
mn+1 in conjunction with Proposition 3 we get:

�n;k(u;w) =

b k
2
cX

m=0

(�1)mn

m! (k � 2m)!nm

0
@ kY
l=m+1

l n+ 1

1
A wmn+1 uk�2m (37)

and therefore

Hn;k = �n�(k+ 2

n
)

kY
s=0

(s n+ 1 )

b k
2
cX

m=0

1

m! (k � 2m)!nm

mY
l=0

1

l n+ 1
vmn+1uk�2m (38)

Similarly, if ~Hn;k = Res
�
L
k� 1

n
n

�
then we can show that

~Hn;k = n�k
kY

s=0

(s n� 1 )

b k
2
cX

m=0

1

m! (k � 2m)!nm

mY
l=0

1

l n� 1
vmn uk�2m (39)

The two sets of conserved charges simply correspond to
R
Hn;k dx and

R ~Hn;k dx and co-
incide with the known conserved charges constructed earlier from a nonstandard Lax
representation upto an overall normalization. This construction shows that the two sets
of conserved charges can be obtained from the residues of two distinct families of fractional
powers of the Lax function in this standard description.

6 Generalization to dispersive cases:

It is an interesting question to ask which dispersive integrable models reduce in the dis-
persionless limit to the polytropic gas dynamics. It is, of course, well known that the
two boson equation, in the dispersionless limit, goes to the polytropic gas equation for
n = 1 (
 = 2) and that, for n = 2 (
 = 3), the polytropic gas equation is equivalent to two
decoupled Riemann equations which can be thought of as the dispersionless limit of the
KdV equation. It is, of course, clear that there may be several dispersive models whose
dispersionless limit will give the same equation. However, our interest is to �nd even one
family of such models. Surprisingly, beyond n = 4, we have not found any dispersive
generalization of these systems.

It is well known that the polytropic gas equations for 
 = 2 (n = 1) can be thought
of as the dispersionless limit of the two boson equation, which is described by the Lax
operator
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L = @ � u+ @�1v (40)

and the nonstandard Lax equation

@L

@t
=

1

2

��
L2
�
�1
; L

�
(41)

We will not discuss this system any further.
The case n = 2 is tricky even at the dispersionless limit, as we have already pointed

out. We note that the Riemann equation is well understood to be the dispersionless limit
of the KdV equation, whose Lax description is one of the �rst to have been studied [14].
However, for n = 2, we have two decoupled Riemann equations in the dispersionless limit.
The dispersive generalization of this system is not at all clear. However, with some work,
we have found that the Lax operator

L = @2 +
1

2
u+

1

2
@�1u@ +

1

4
@�1v@�1v (42)

through the nonstandard Lax equation

@L

@t
= �2

3

��
L

3

2

�
�1
; L

�
(43)

leads to

ut = �2

3
uxxx � uux � vvx

vt = �2

3
vxxx � (uv)x (44)

With a simple rede�nition of variables to u�v, this becomes two decoupled KdV equations,
which, therefore, provides a trivial dispersive generalization of the polytropic gas equations
for 
 = 3 (or n = 2). It is worth pointing out here that this Lax operator also gives through

@L

@t
= �

��
L

1

2

�
�1
; L

�
(45)

leads to

ut = �ux; vt = �vx (46)

which are the elastic medium equations for 
 = 3. Under this description, they do not
seem to pick up any dispersive terms.

For 
 = 4 (n = 3), we expect the dispersive generalization to be related to the Boussi-
nesq hierarchy, simply from the counting of dimensions. In fact, if we choose

L = @3 + v@ + u (47)

the standard Lax equation
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@L

@t
=
��
L

4

3

�
+
; L

�
(48)

leads to

ut =
1

9

�
3uxxxx � 2vxxxxx � 6vxxxv � 12vxxvx + 6(vux)x + 12uux ��4v2vx

�

vt =
1

3

�
2uxxx � vxxxx � (v2)xx + 4(uv)x

�
(49)

These clearly provide a dispersive generalization of the polytropic gas equations for 
 = 4.
These equations are known to admit theW3 algebra as one of the Hamiltonian structures.

Let us further note that the Lax equation

@L

@t
=
��
L

2

3

�
+
; L

�
(50)

leads to the set of equations

ut =
1

3
(3uxx � 2vxxx � 2vvx)

vt = �vxx + 2ux (51)

which provides a dispersive generalization of the elastic medium equations for 
 = 4. In
general, we note that the equations

@L

@t
=
��
L

k

3

�
+
; L

�
(52)

with k = 3m�1 de�nes consistent equations corresponding to the two di�erent hierarchies.
For 
 = 5 (n = 4), consider the Lax operator [15]

L = @4 + v@2 + vx@ + u (53)

This leads to consistent equations through

@L

@t
=
��
L

k

4

�
+
; L

�
(54)

for k = 4m� 1. Thus, for k = 5, the dynamical equations turn out to be

ut =
1

32

�
12uxxxxx � 5vxxxxxxx � 5(2vvxxxx + 4vxvxxx + 3v2xx)x + 20(uxv)xx

+40uux � 5(v2vxx + vv2x)x + 5v2ux
�

vt =
1

32

�
40uxxx � 18vxxxxx � 15(2vvxx + v2x)x + 40(uv)x � 15v2vx

�
(55)

With a simple change of variables, ~u = u � 1
8v

2; ~v = v, it is easy to check that these
equations reduce, in the dispersionless limit, to the polytropic gas equations with 
 = 5.
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Therefore, this model provides a dispersive generalization of these equations. It is worth
noting here that this system of equations admits as a Hamiltonian structure (after suitable
rede�nition of �elds) the nonlinear W algebra, W (2; 4), which is uniquely characterized
by the presence of a spin 2 Virasoro �eld as well as a spin 4 primary �eld.

Similarly, it can be easily checked that, for k = 3, the Lax equation leads to

ut = uxxx � 3

8
vxxxxx � 3

8
(vvxx)x +

3

4
uxv

vt = �5

4
vxxx + 3ux � 3

4
vvx (56)

which, under the same rede�nition of variables, goes over to the elastic medium equations
for 
 = 5 in the dispersionless limit. This system of equations, therefore, gives a dispersive
generalization of both these systems.

For 
 = 6 (n = 5) as well as 
 = 7 (n = 6), we have explicitly veri�ed that there is no
standard Lax equation that leads to consistent equations with two dynamical variables.
For higher values of n (and, therefore, 
), it is unlikely that a standard Lax description
would lead to consistent equations with two dynamical �elds, since the number of consis-
tency conditions increases rapidly. However, we have not checked this explicitly beyond
n = 6. The dispersive generalization of the polytropic gas equations for higher values of

, therefore, remains an open question. It is possible that they arise only as nonstan-
dard equations or that one may have to introduce additional dynamical variables, which,
somehow, disappear in the dispersionless limit.

7 Conclusion:

We have derived a standard Lax description for the polytropic gas dynamics. The Lax
function, in this case, is intimately connected with Lucas polynomials, which are also
related to the Fibonacci polynomials. The two in�nite sets of conserved charges have
been obtained from the residues of two distinct sequences of fractional powers of the
Lax function. We have shown that the same Lax function also provides a standard Lax
description for the elastic medium equations. In addition, we have presented some results
on possible dispersive generalizations of such systems.

This work was supported in part by US Deparment of Energy grant number DE-FG-
02-91ER40685 and by CNPq-Brasil.

A Standard Lax description for elastic medium equa-

tions:

In this appendix, we show how the same Lax function of (20) leads to a standard Lax
description for the elastic medium equations [7],9.

�
L
1� 1

n
n

�
+

= n
1

n
�1 �n�1n

��
gn(w z

2) + nu zn
�1� 1

n

�
n�1

(z = ��1n )
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= n
1

n
�1 �n�1n

��
gn(w z

2)
�1� 1

n

�
n�1

(z = ��1n )

= n
1

n
�1 �n�1n

h
(gn(z))

1� 1

n

i
bn�1

2
c
(z = w��2n )

= n
1

n
�1 �n�1n gn�1(w�

�2
n ) =

�
~L
1� 1

n
n

�
+

(�
L
1� 1

n
n

�
+
; Ln

)
=

(�
~L
1� 1

n
n

�
+
; ~Ln

)
� ux

@

@ p

�
~L
1� 1

n
n

�
+

@

@ p

�
~L
1� 1

n
n

�
+

=
@ �n

@ p

@

@ �n

�
n

1

n
�1 �n�1n gn�1(w�

�2
n )

�

= n
2

n
�1 (n� 1)�n�2n

�
gn�1(w�

�2
n )� 2

n� 1
(w ��2n )g0n�1(w �

�2
n )

�

= n
2

n
�1 (n� 1)�n�2n

�
gn�2(w�

�2
n )� 1

n� 2
(w ��2n )g0n�2(w �

�2
n )

�

= n
2

n
�1 (n� 1)

�p
w
�n�2  

ln�2

 
�np
w

!
� fn�3

 
�np
w

!!

= n
2

n
�1 (n� 1)

�p
w
�n�2

fn�1

 
�np
w

!

= n
2

n
�1 (n� 1)�n�2n hn�2(w�

�2
n )

= n
2

n
�1 (n� 1)

@ ~Ln

@ w

(�
~L
1� 1

n
n

�
+
; ~Ln

)
= n

1

n wx

(�
~L
1� 1

n
n

�
+
; ~Ln

)
n

= n2 (
1

n
�1)wx

n
�n�1n gn�1(w �

�2
n ); �nn(w �

�2
n )

o
n

= n
2

n
�1 (n� 1)wx �

2n�4
n

�
�

1

n� 1
gn(w �

�2
n ) g0n�1(w �

�2
n )� 1

n
g0n(w �

�2
n ) gn�1(w�

�2
n )

�

= (�1)n�1 n 2

n
�1 (n� 1)wn�2 wx

Using these results, the Lax equation

@ Ln

@ t
= �n1� 2

n

1

n� 1

(�
L
1� 1

n
n

�
+
; Ln

)

can be written

wt

@ ~Ln

@ w
+ ut = ux

@ ~Ln

@ w
+ (�1)n wn�2 wx

which holds if and only if (
vt = �ux
ut = �vn�2 vx
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These are none other than the elastic medium equations. Thus, we have shown that
the same Lax function also provides a standard Lax description for the elastic medium
equations.
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