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Abstract

We propose a general method of quantization of non-Hamiltonian physical

systems. Applying it, for example, to a dissipative system coupled to a

thermal reservoir described by the Fokker-Planck equation, we are able to

obtain the Caldeira-Leggett master equation, the non-linear Schr�odinger-

Langevin equation and the Caldirola-Kanai equation ( with an additional

term ), as particular cases.
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I. INTRODUCTION

Our underlying aim in this paper is to begin to visualize a general answer to the

following question: Given a non-relativistic physical system initially described by the laws

of classical mechanics, how to describe it in terms of the laws of quantum mechanics?

The most widely accepted answer to this question is given by the Dirac algebraic

rules, so-called canonical or standard quantization [1]: First, the physical system is to

be described by a Hamiltonian formalism, next the classical dynamical variables p (mo-

mentum), q (position), and functions of them A(p; q), should be risen to the category

of linear operators p̂, q̂, and Â = A(p̂; q̂), respectively. Thus, the symplectic structure

of classical phase space induced by the Poisson brackets between classical observables

A(p; q), B(p; q) corresponds to the algebraic structure given by the commutators of the

corresponding quantum observables Â,B̂ divided by {�h :

fA;Bg =
@A

@p

@B

@p
�
@A

@q

@B

@q
=)

[Â; B̂]

{�h
=
ÂB̂ � B̂Â

{�h
: (1)

Along the last seventy years a more critical analysis of the Dirac quantization has been

in evidence at least four crucial objections to the suitability of this method to connect

the classical and quantum theories, namely

a) In general, the correspondence between classical functions A(p; q) and operators

A(p̂; q̂) is not unambiguous [1,2,3]. This gives rise to the proliferation of various ordering

rules of operators [4] in order to circunvent this di�culty;

b) Even in the cases where there is no ambiguity in the operator ordering, the canonical

quantization does privilege the Cartesian frame. For example, the quantization of the

Hamiltonian H(p; q) directly in terms of the angle-action variables H(�; J) is not well-

de�ned [5];

c) The existence of the Hamiltonian function generating the classical equations of

motion is not su�cient to avoid contradictory physical outcomes by using the canonical
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quantization [6]. Therefore, it is necessary the Hamiltonian to be identi�ed with the

total energy of the physical system [7,8] in order the quantum system to be physically

unique. This condition restricts the applicability of the canonical quantization procedure.

It is worth noticing yet that even its application to the quantum mechanical description

of classically chaotic Hamiltonian systems (e.g., the kicked harmonic oscillator) leads to

very controversial physical and epistemological results [9];

d) Besides its lack of generality, the canonical rules of quantization stress the concep-

tual abysm between classical and quantum mechanics. The operators A(p̂; q̂), obtained

unambigously from a classical formalism where H = E ( kinetic energy+potential energy

), act upon wave functions  whose physical interpretation still is problematic [10].

Despite the Dirac quantization rules being neithermathematicallywell-de�ned [2], nor

in general physically consistent, nor conceptually unblurred, we �nd in the literature its

extrapolation to the quantum mechanical study of dissipative systems (non-Hamiltonian

systems): Caldirola[11] and Kanai[12], by quantizing an explicitly time dependent Hamil-

tonian of a damped harmonic oscillator, arrived at a Schr�odinger equation depending

also on the time explicitly that violates the Heisenberg uncertainty relations[13,14] and

does not predict the vacuum uctuation energy as t(time) ! 1 [14,15]. Dekker[16], in

turn, has proposed a generalization of the Dirac rules for dissipative systems by treating

a damped harmonic oscillator in classical mechanics in terms of a complex Hamiltonian

other than the total energy of the system in the limit of vanishing damping, and which

also is not unique[17], hence the canonical quantization becomes ambiguous. Recently,

Tarasov[18] has investigated a generalization of the least action principle for dissipative

processes ( the Sedov variational principle ) obtaining a Hamiltonian formulation that,

being canonically quantized, leads to a quantum description of dissipative systems whose

operator algebra does not obey the Jacobi identity ( nonassociative non-Lie algebra ). Al-

though Tarasov had assumed his Hamiltonian to be canonically conjugate to the energy,

his approach does not overcome the di�culties arising from the operator ordering when
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quantizing a harmonic oscillator with friction, for instance.

From di�culties and limitations in the use of the canonical quantization rules for

dissipative systems, above outlined, one can conclude that, in general, they are ambiguous,

and hence it is even impossible to obtain a quantum description of these systems from

the Lagrangian and Hamiltonian formalisms[ 7,14,17,19].

A way of trying to save the canonical quantization procedure is to couple a thermal

reservoir (system B) to the dissipative system (system A), so that the system A + B as a

whole is considered as conservative [20,21,22,23], nevertheless the resultant Hamiltonian

can not be identi�ed with the total energy of the system[24] and therefore this approach

is not free of physical inconsistencies[25] when one assumes more general physical models

to describe the interaction between the dissipative system and the thermal bath[26].

In order to overcome the several problems arising from the Dirac quantization, di�er-

ent quantization methods of dissipative systems have been proposed, namely: Razavy[17]

using the Schr�odinger method of quantization [27] to the generalized Hamilton-Jacobi

equation, obtained the non-linear Schr�odinger-Langevin equation[21]; Pal [28], follow-

ing the same method, has arrived at a linear dissipative Schr�odinger equation; Skager-

stam[29] and Yasue[30] have also derived the non-linear Schr�odinger-Langevin equation,

but rather using the Nelson stochastic quantization procedure[31]; and Geicke[32], propos-

ing a (quasi-canonical) quantization method by replacing p by �{�h@=@q and E by {�h@=@t

into the expression of the classically conserved energy E = p2=2m+ V (q) + �
R
(p=m)ndq

which governs the motion of the dissipative system, found a linear dissipative Schr�odinger

equation. Finally, Enz[33] has, recently, suggested a quantization procedure for a dissipa-

tive system by remarking a formal resemblance between the classical equations of motion

in a generalized Hamiltonian description and the generalization of the Schr�odinger equa-

tion in terms of a dynamical matrix; Tzani[34], in turn, has made use of a stochastic

quantization method for systems with dissipation, starting from the complex Langevin
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equations. This brief sketch of the various existent quantization methods of dissipative

systems reveals that the quantization of more complex non-Hamiltonian systems holds

still as a terra incognita .

However, in order to explore this terra incognita , in Section 2 we propose formally a

general procedure of quantization of non-Hamiltonian systems by introducing the Wigner

representation of classical mechanics in phase space, recently suggested by Olavo[35]. In

Section 3 we apply it to the quantization of a dissipative system coupled to a thermal

reservoir described by the Langevin equations or equivalently by the Fokker-Planck equa-

tion and obtain the master equation of Caldeira-Leggett[23], the non-linear Schr�odinger

equation obtained �rstly by Kostin[21] and the Caldirola-Kanai equation[11] with an ad-

ditional term, as particular cases. In Section 4 we make our concluding remarks.

II. GENERAL METHOD OF QUANTIZATION

Let us consider a classical physical system with mass m, momentum p and position q

described by the general non- Hamiltonian Liouville equation

@F

@t
+
@H

@p

@F

@q
�
@H

@q

@F

@p
+ 
(p; q; t;�)F = 0; (2)

being H � H(p; q; t) a general Hamiltonian function, and F � F (p; q; t) a probability

distribution function, with the following marginal relations

f(q; t) =

Z
Fdp; f(p; t) =

Z
Fdq; (3)

such that the average value of any physical quantity A(p; q; t) be given by

hAi =

Z
AFdpdq: (4)


(p; q; t;�)F (p; q; t) is a set of terms depending on the parameter of non-Hamiltonianess �,

so that as �! 0, we recover the Hamiltonian classical mechanics. Let us now introduce
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the Wigner representation of classical mechanics, suggested recently by Olavo[35], by

means of the classical Wigner transformations

�(q +
`�

2
; q �

`�

2
; t) =

Z
Fexp({p�)dp (5)

or

�(p+
`�

2
; p �

`�

2
; t) =

Z
Fexp({q�)dq; (6)

where `, � and � have dimensions of angular momentum, (linear momentum)�1 and

(length)�1, respectively.

Without any loss of generality, let us suppose that the Hamiltonian in (2) is given by

H = p2=2m + V (q; t). Applying, then, the transformation (5) on (2) and changing the

variables q + `�
2 = q1 and q �

`�
2 = q2, we obtain

{`
@�

@t
= �

`2

2m
(
@2�

@q21
�
@2�

@q22
) + (V (q1; t)� V (q2; t) +O(q1; q2; t))�� {`I(q1; q2; t;�)�; (7)

being � � �(q1; q2; t),

I(q1; q2; t;�)� =

Z

(p; q; t;�)Fexp({p�)dp (8)

and

O(q1; q2; t) = �

1X
n=3;5;7;:::

2

n!
(
q1 � q2

2
)n(

@

@q1
+

@

@q2
)nV (

q1 + q2
2

; t): (9)

Eq.(7) is a di�erential equation fully equivalent to (2) due to the existence of the inverse of

(5). We now de�ne the quantization process of non-Hamiltonian systems (2), via Eq.(7),

by taking into account the following condition

O(q1; q2; t)! 0; (10)

and taking the quantum limit

`! �h =
h

2�
; (11)
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where ` has dimensions of angular momentum and changes continuously while h has di-

mensions of action and is a universal constant ( Planck's constant ). Thus, the quantized

version of Eq.(7) becomes the generalized von Neumann equation in coordinate represen-

tation

{�h
@�

@t
=
��h2

2m
(
@2�

@q21
�
@2�

@q22
) + [V (q1; t)� V (q2; t)]�� {�hI(q1; q2; t)� (12)

describing a non-Hamiltonian quantum system. By going from (7) to (12) we have ex-

changed �(q1; q2; t), solution of a classical equation, by �(q1; q2; t), solution of a quantal

equation.

By quantizing a classical system described by the Liouville equation (2), with


(p; q; t;� = 0)F = 0, we obtain obviously Eq.(12) without the non-Hamiltonian term

I(q1; q2; t;�)

{�h
@�

@t
=
��h2

2m
(
@2�

@q21
�
@2�

@q22
) + [V (q1; t)� V (q2; t)]� (13)

which in turn can be derived from the Schr�odinger equation at point q1

{�h
@ (q1; t)

@t
=
��h2

2m

@2 (q1; t)

@q21
+ V (q1; t) (q1; t) (14)

and its complex conjugate at point q2. Note that the Hamiltonian that generates the

Newtonian equations of motion in phase space does not need necessarily be identi�ed

with the total energy of the system [6].

For the particular case I(q1; q2; t;�) = I(q1; �) + I(q2; �), Eq.(12) is reducible to any

generalized Schr�odinger equation, i.e., �(q1; q2; t) =  �(q2; t) (q1; t):

{�h
@ (qk; t)

@t
=
��h2

2m

@2 (qk; t)

@q2k
+ V (qk; t) (qk; t)� {�hI(qk; t;�) (qk; t); (k = 1; 2): (15)

However, in general, the quantization of non-Hamiltonian systems leads to master equa-

tions where the density matrix � can not be factorized � 6=  � .
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After these general considerations about the formal peculiarities of the master equation

(12), in next Section we shall take into account a speci�c example of non-Hamiltonian

system: Dissipation aroused by the interaction between a particle and a thermal reservoir

described by the Langevin equations or equivalently by the Fokker-Planck equation.

III. APPLICATION: THE FOKKER-PLANCK EQUATION

Let us consider a particle of mass m, momentum p and position q immersed in a

reservoir whose temperature at thermal equilibrium is T . The one-dimensional movement

of this particle is described by the Newton equation

dp

dt
= F1 + F2 + F3 + F4; (16)

with p = mdq
dt

and being

F1 = �
dV

dq
(17)

the force derived of a external potential V = V (q; t) applied to the particle, and

F2 = �2m
dq

dt
� 2

`

m

@Z

@q
(18)

the friction force dependent of the speeds dq
dt

and v = `
m

@Z
@q
, being v derived of a function

Z = Z(q; t). In (18) 2 is the friction coe�cient and ` a physical variable with dimensions

of angular momentum. In (16) F3 = F (t) and F4 = �
@VR
@q

are forces due to the reservoir,

VR(q; t) is a general random potential. These stochastic forces give rise uctuations in

the particle motion. Supposing that the particle follows a Markovian evolution, i.e., the

friction term (18) does not contain memory e�ects, and having the uctuating force F (t)

the following statistical properties

hF (t)i = 0; (19)

hF (t)F (t0)i = 4mkBT�(t� t
0); (20)
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where h:::i denotes the average value, kB the Boltzmann constant and � the Dirac delta

function, (16) gives us the Langevin equations

dp = �[
dV

dq
+ 2p + 2

`

m

@Z

@q
+
@VR
@q

]dt+ (4mkBT )
1=2dW (t) (21)

dq =
p

m
dt; (22)

being dW (t) = (4mkBT )�1=2F (t)dt the Wiener process, with hdW (t)i = 0 and

hdW (t)dW (t0)i = �(t � t0)dt. Thus, the particle described by the Langevin equations

(21) and (22) realizes a stochastic process of the Brownian type that may also be de-

scribed equivalently by the Fokker-Planck equation in phase space [36]

@F

@t
= [�

@D
(1)
1

@q
�
@D

(1)
2

@p
+
@2D(2)

@p2
]F: (23)

F = F (p; q; t) is the probability density evaluated from the initial conditions F (p; q; t =

0) = �(p�p0)�(q�q0),( p0 = p(t = 0), q0 = q(t = 0)), D
(1)
1 and D

(1)
2 are the drift coe�cients

D
(1)
1 =

p

m
(24)

D
(1)
2 = �[

dV

dq
+ 2p + 2

`

m

@Z

@q
+
@VR
@q

]; (25)

and

D(2) = 4mkBT (26)

the di�usion coe�cient.

Performing now the classical Wigner transformation (5) on (23), changing the variables

q+ `�
2 = q1, q�

`�
2 = q2, next quantizing via Eqs.(10) and (11), we obtain the generalized

quantum von Neumann equation

{�h
@�

@ t
= �

�h2

2m

�
@2�

@ q21
�
@2�

@ q22

�
+ fV (q1; t)� V (q2; t)g�

+ fVR(q1; t)� VR(q2; t)g�+
2�h

m
fZ(q1; t)� Z(q2; t)g �

�{�h(q1 � q2)

�
@�

@ q1
�

@�

@ q2

�
�

2{mkBT

�h
(q2 � q1)

2� (27)
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with the initial conditions �(q1; q2; t = 0) = �( q1+q2
2 �

q0

1
+q0

2

2 )[1+ {p0

�h (q1� q2)�
p02

�h2
(q1� q2)2].

Eq.(27) reduces, in form, to the master equation found by Caldeira and Leggett[23],

making VR, Z = 0. In contrast to the Caldeira-Leggett approach, our Eq.(27) is valid for

any temperature and no coupling-induced renormalization of the external potential was

introduced here. Furthermore, assuming the reservoir to be at thermal equilibrium at the

initial time t = 0, requirements of translational and time reversal invariance imply that

the initial coordinates of the reservoir are given by Q0

eq =
q0

1
+q0

2

2
[37]. So in our approach,

the process of quantization of the system particle + reservoir is performed on the particle

variables alone, whereas the reservoir variables enter only through their initial values[38]:

�(q1; q2; t = 0) = �(
q1 + q2

2
�Q0

eq)[1 +
{p0

�h
(q1 � q2)�

p02

�h2
(q1 � q2)

2]: (28)

These initial conditions (28) correlate the particle with the thermal reservoir. This rele-

vant physical detail is neglected in the Caldeira-Leggett theory based on the factorization

assumption.

Making the approximation q1 � q2 � 1 into (27), we �nd

{�h
@�

@t
= �

�h2

2m

�
@2�

@q21
�
@2�

@q22

�
+ fV (q1; t)� V (q2; t)g �

+ fVR(q1; t)� VR(q2; t)g �+
2�h

m
fZ(q1; t)� Z(q2; t)g �: (29)

which can be obtained, by introducing  = (�)1=2exp({Z), from the generalized

Schr�odinger equation

{�h
@ (q1; t)

@t
= �

�h2

2m

@2 (q1; t)

@q21
+ fV (q1; t) + VR(q1; t)g (q1; t)�

{�h

m
log[

 (q1; t)

 �(q1; t)
] (q1; t)

(30)

at point q1 and its complex conjugate at point q2. Eq.(30) is called the Schr�odinger-

Langevin equation originally derived by Kostin[21] from the Heisenberg-Langevin equation

for a Brownian particle interacting with a thermal enviroment. In our derivation the

condition q1 � q2 � 1 means that (30) describes a deterministic process, i.e. , a without
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di�usion process, from the initial conditions  (q1; t) = �(q1 � Q0

eq), and also without

dissipation due to friction forces depending on the velocity dq=dt, in contrast to the

Nelson stochastic quantization procedure followed by Skagerstam[29] and Yasue[30] on

deriving Eq.(30).

Now going back to Eq.(23) given explicitly by

@F

@t
= �

p

m

@F

@q
+
@V

@q

@F

@p
+ 2F + 2p

@F

@p
+ 2mkBT

@2F

@p2
; (31)

with VR, Z = 0, and performing the following non-canonical transformation (p; q) 7!

(P;Q)

P = e2tp

Q = q (32)

we arrive at

@f

@t
= �

P

m
e�2t

@f

@q
+ e2t

@f

@q
+ e2t

@V

@q

@f

@P
+ 4f + 2P

@f

@P
+ 2mkBTe

4t @
2f

@P 2
; (33)

where f(P; q; t) = e2tF (p; q; t). Introducing the classical Wigner function in the form

�(q +
`�

2
; q �

`�

2
; t) =

Z
f(P; q; t)exp({P �)dP; (34)

de�ning new variables q1 = q+ `�
2
, q2 = q� `�

2
, using (10) and quantizing `! �h, and next

taking into account the approximation q1 � q2 � 1, we obtain the evolution equation for

the matrix density �

{�h
@�

@t
=
��h2

2m
e�2t

�
@2�

@q21
�
@2�

@q22

�
+ e2t fV (q1; t)� V (q2; t)g �� 2{�h� (35)

which is reducible to the following deterministic Schr�odinger equation

{�h
@ 

@t
= [�

�h2

2m
e�2t

@2

@q2
+ e2tV (q; t)� {�h] (36)

at a generic point q of Euclidean space. Apart the term �{�h Eq.(36) is formally equal to

the Caldirola-Kanai equation [11,12], obtained making use of the Dirac canonical quan-

tization procedure from the classical Hamiltonian H(p; q; t) = e�2tp2=2m + e2tV (q; t),
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and that describes exactly an isolated particle dissipating all its energy [14,15] and staying

localizable as t!1 [13,14].

It is straightforward to verify that Eq.(36) does predict the zero point energy. For

instance, for the case of the harmonic oscillator V = 1
2
m!2q2 at the fundamental state

 0 = (
m!

��h
)1=4e�

1

2
(+{
)te�

m
2�h
({+
)q2e2t ; (37)

and ! > , the mean energy hp2=2m +m!2q2=2i is

�h!2

4

(1 + e�4t) (38)

where 
 = (!2 � 2)1=2 is the damped frequency. Consequently, as t!1 Eq.(38) yields

correctly the zero point energy. However, by evaluating the relation 4q4 q we �nd

4q4 q =
�h!

2

e�2t: (39)

This result shows the incompatibility of Eq.(38) with the Heisenberg uncertainty principle

in case t!1.

Therefore, our Eq.(36) describes approximately an isolated dissipative system becom-

ing well-localizable with a determined quantum energy in the limit t!1.

IV. CONCLUDING REMARKS

Based on the Wigner representation of classical mechanics we have proposed a general

method of quantizing non-Hamiltonian systems. We have then obtained a generalized von

Neumann equation irreducible to any Schr�odinger equation. That is, subjacent to the von

Neumann matrix, in general, does not exist a wavefunction. Analysing the speci�c case

of a particle interacting with a thermal bath, we successfully derived three equations of

motion describing quantum dissipative systems, as approximations, namely
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a) The Caldeira-Leggett stochastic equation describing a quantum Brownian motion

caused by the thermal uctuations coming from the reservoir, and the dissipation arising

from the friction force depending on the velocity dq=dt;

b) The deterministic Schr�odinger-Langevin equation whose non-linearity is solely asso-

ciated with the dissipation due to the friction force depending on the velocity v = `
m
@Z=@q;

and

c) The deterministic Caldirola-Kanai equation with an additional term (not introduced

ad hoc) which predicts correctly the zero-point uctuation energy for a particle well-

localizable as t ! 1. Here, the dissipation arises kinematically from a non-canonical

transformation.

To conclude, we would like to remark that the operator structure induced by the

Wigner representation of classical mechanics (Eqs.(5), (6)) and the classical limit �h ! 0

of the dissipative quantum equations of motion shall be examined elsewhere.
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