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Abstract

We discuss three-dimensional �'4 + �'6 theory in the context of the 1=N expansion

at �nite temperature. We use the method of the composite operator (CJT) for summing

a large sets of Feynman graphs. We analyse the behavior of the thermal square mass and

the thermal coupling constant in the low and high temperature limit. The existent of the

tricritical point at some temperature is found using this non-pertubative method.
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1 Introduction

The conventional perturbation theory in the coupling or loop expansion can only be used

for the study of small quantum corrections to classical results. When discussing truly

quantum mechanical e�ects to any given order in such an expansion, one is not usually

able to justify the neglect of yet higher order. In other way, for theories with a large N

dimensional internal symmetry group there exist another perturbation scheme, the 1=N

expansion, which circumvents this criticism. Each term in the 1=N expansion contains an

in�nite subset of terms of the loop expansion. The 1=N expansion has the nice property

that the leading-order quantum corrections are the same order as the classical quantities.

Consequently, the leading order which adequately characterizes the theory in the large N

limit preserves much of the nonlinear structure of the full theory. In the next section we

derive the e�ective action to leading order in 1=N for three dimensions and consequently

the e�ective potential. In this paper we compute e�ective thermal mass which depend on

the temperature for the �eld theory with '6 interaction on D = 3 Euclidean dimensions.

Its is known that, in D > 4, such theories with '4 interaction are in fact free �eld theory,

while in D < 4 they have a non-trivial continuum limit as an interacting �eld theory.

Since both the six-point coupling of (�'6)D=3 and the four-point coupling of (�'4)D=4

are dimensionless one expected that have the same continuum limit. However it has

been shown that, in the large N limit, the (�'6) theory has a UV �xed point for D = 3

and therefore must have a second infra-red �xed point [1]. At least for large N the '6

theory is known to be qualitatively di�erent from (�'4)D=4 theory. We study the large N

expansion, using the methods of composite operator [2]. The organization of the letter is

the following. In section II we briey discuss the composite operator (CJT) formalism. In

section III the thermal gap equation is derived. In section IV the tricritical phenomenon
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is presented. Conclusions are given in section V. In this paper we use c = kB = �h = 1.

2 The e�ective Potential( The CJT Formalism)

We are interested here in the most general renormalizable scalar �eld theories �'4 + �'6

possessing an internal symmetry O(N), in three dimensions. For simplicity we will call

a '6 model. We use the method of composite operator developed by Cornwall, Jackiw

and Tomboulis [2, 3] for summing large sets of Feynman graphs by considering only two-

particle irreducible (2PI) graphs express in terms of the exact propagators. This technique

lead to the formulation of the e�ective action and e�ective potential which is functional the

vacuum expectation value of both the quantum �eld '(x) and the time ordered product

Tf'(x)'(y)g of the �elds. Using this method Townsend derived the e�ective potential of

'6 theory to leading order in the 1
N

expansion for D � 3 [5] and proof that 1
N

expansion

is consistent for '6 to leading order in 1
N
. The Lagrangian density of the O(N) symmetry

'6 theory is :

L(') =
1

2
(@�')

2 �
1

2
m2

0'
2 �

�0
4N !

'4 �
�0

6!N2
'6; (1)

where the quantum �eld is an N -component vector in the N -dimensional internal symme-

try space. For de�niteness, we work at zero-temperature; however, the �nite temperature

generalizations can be easily obtained [4]. We are interested in the e�ective action �(�)

which governs the behavior of the expectation values 'a(x) of the quantum �eld where �

is given by

�(x) �
�W (J)

�J(x)
=< 0j'j0 >; (2)

where W (J) is the generating functional for connected Green's functions.

�(�) can be show to be the sum of one-particle irreducible (1PI) Feynman graphs with

a factor �a(x) on the external line. We may use of the formalism of composite operator
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who reduce the problem to summing two particle irreducible (2PI) Feynman graphs by

de�ning a generalized e�ective action �(�;G) which is a functional not only �a(x), but

also of the expectation values Gab(x; y) of the time ordered product of quantum �elds

Tf'(x)'(y)g.

�(�;G) = I(�) +
i

2
Tr lnG�1 +

i

2
TrD�1(�)G + �2(�;G) + : : : : (3)

where I(�) =
R
dxDL(�) , G is a shorthand for the Gab(x; y) and D is de�ned by

iD�1 =
�2I(�)

��(x)��(y)
; (4)

and is shorthand for Dab(�;x; y), �2(�;G) is computed as follows. In the classical action

I(') shift the �eld ' by �. The new action I('+ �) posses term cubic and higher in ';

this de�ne an interaction part Iint('; �) where the vertices depend on �. �2(�;G) is given

by sum of all (2PI) vacuum graphs in a theory with vertices determined by Iint('; �) and

the propagators set equal to G(x; y). The trace and logarithm in eq.(3) are functional.

Lint('; �) = �
1

2

�
�0�a
3N

+
�0�

2�a
30N2

�
'a'

2 �

�
8�0�a�b�c

6N2

�
'a'b'c �

1

4!N

�
�0 +

�0�
2

10N

�
'4

�

�
12�0�a�b
6!N2

�
'a'b'

2 �
1

5!

�
�0�a
N2

'a'
4

�
�

�0
6!N2

'6: (5)

The e�ective action as usually de�ned is found by solving for Gab(x; y) in the equation

��(�;G)

�Gab(x; y)
= 0 (6)

and substituting in the generalized e�ective action �(�;G).

The vertices in the above equation contains factor 1=N or 1=N2, but a ' loop gives

a factor of N provided the O(N) isospin ows around it alone and not into another part

of the graph. We usually call such loops bubbles. Then the leading order in 1=N the

vacuum graphs are bubbles trees with two or three bubbles at each vertex. The (2PI)

graphs are shown in �gure.(1). It is straightforward to obtain
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Figure 1: The 2PI vacuum graphs

�2(�;G) =
�1

4!N

Z
dDx

�
�0 +

�0�
2

10N

�
[Gaa(x; x)]

2�
�0

6!N2

Z
dDx[Gaa(x; x)]

3: (7)

Therefore eq.(6) becomes

��(�;G)

�Gab(x; y)
=

1

2
(G�1)ab(x; y) +

i

2
D�1(�)�

1

12N

�
�0 +

�0�
2

10N

�
[�abGcc(x; x)]�

D(x� y)

�
3�0
6!N

�ab[Gcc(x; x)]
2�D(x� y) = 0: (8)

Rewriting this equation , we obtain the gap equation

(G�1)ab(x; y) = D�1(�) +
i

6N

�
�0 +

�0�
2

10N

�
[�abGcc(x; x)]�

D(x� y) +

i�0
5!N2

�ab[Gcc(x; x)]
2�D(x� y): (9)

Hence

i

2
TrD�1G =

1

12N

Z
dDx

�
�0 +

�0�
2

10N

�
[Gaa(x; x)]

2+
2�0
6!N2

Z
dDx[Gaa(x; x)]

3+cte: (10)

Using eqs. (9) and (10) in (7) we �nd the e�ective action

�(�) = I(�) +
i

2
Tr lnG�1 +

1

4!N

Z
dDx

�
�0 +

�0�
2

10N

�
[Gaa(x; x)]

2+

2�0
6!N2

Z
dDx[Gaa(x; x)]

3; (11)

where Gab is given implicitly by eq.(9). The last two term on the r.h.s of eq.(11) is the

leading two-loop contribution to the e�ective action for composite operators in ��4+ ��6
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theory. As usual we may simplify by separating Gab into transverse and longitudinal

components, so

Gab = (�ab �
�a�b
�2

)g +
�a�b
�2

�

g ; (12)

in this form we can invert Gab,

(G)�1ab = (�ab �
�a�b
�2

)g�1 +
�a�b
�2

�

g
�1

: (13)

Now we can take the trace respect the indices,

Gaa = Ng +O(1); (G)�1aa = Ng�1 +O(1) : (14)

From this equation to leading order in 1
N
, Gab is diagonal in a; b. Substituting eq.(14)

into eq.(11) and eq.(9) and keep only the leading order one �nds the daisy and superdaisy

resumed e�ective potential for the ��4 + ��6 theory is given by:

�(�) = I(�) +
iN

2
Tr ln g�1 +

N

4

Z
dDx

�
�0 +

�0�
2

10N

�
g2(x; x) +

2N�0
6!

Z
dDxg3(x; x) +O(1); (15)

and the gap equation

g�1(x; y) = i

�
2+m2

0 +
�0
6
(
�2

N
+ g(x; x)) +

�0
5!
(
�2

N
+ g(x; x))2

�
�D(x� y) +O(

1

N
) (16)

Now it is convenient to continue all momenta to Euclidean values (p0 = ip4) and take the

following Ansatz for g(x; y),

g(x; y) =

Z
dDp

(2�)D
expi(x�y)p

p2 +M2(�)
(17)

and substituting this in eq.(16) we get the expression for the gap equation:

M2(�) = m2
0 +

�0
6

�
�2

N
+ F (�)

�
+
�0
5!

�
�2

N
+ F (�)

�2

; (18)
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where F (�) is given by

F (�) =

Z
dDp

(2�)D
1

p2 +M2(�)
; (19)

and the e�ective potential in Euclidean-space can be express,

V eff(�) = V0(�)+
N

2

Z
dDp

(2�)D
ln
�
p2 +M2(�)

�
�
N

4!
(�0+

�0�
2

10N
)F (�)2�

2N�F (�)3

6!
: (20)

where V0(�) is the classical potential.

3 The Gap-Equation for the model (�'4+ �'6)D=3 at

Finite Temperature

Let us suppose that our system is in equilibrium with a thermal bath. At the one-

loop approximation the thermal mass and coupling constant for the �'4 model in a

D-dimensional Euclidean space have been obtained in a previous work [6] and for the

the theory (�'4)D is obtained using the composite operator method [7]. It is clear that

for D = 3 the (��4)D model is not the most general perturbative renormalizable model

and we are able to introduce a �6 term preserving the renormalizability of theory. For

D = 3 the �'4 + �'6 model is the most general O(N) symmetric model which preserves

the perturbative renormalizability. Most general models with cubic symmetry can be also

studied. In the conclusion we will briey discuss this model.

To study the temperature e�ects in quantum �eld theory the most used methods is

the imaginary time Green function approach [4], which amounts to replace the continuous

four momenta k4 by discrete !n an integration by a summation (� = 1
T
):

k4 ! !n =
2�n

�
; n = 0;�1;�2; :::Z

dDk

(2�)D
!

X
n

1

�

Z
dD�1k

(2�)D�1
: (21)
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Then the gap equation at �nite temperature for the theory �'4+ �'6 is given by (see

eq.(18)),

M2
�(�) = m2

0 +
�0
6

�
�2

N
+ F�(�)

�
+
�0
5!

�
�2

N
+ F�(�)

�2

; (22)

where

F�(�) =
1

�

1X
n=�1

Z
dD�1p

(2�)D�1
1

!2
n + p2 +M2

�(�)
: (23)

In order to regularized this expression we use a mixing between dimensional regularization

and analytic regularization. For this purpose we de�ne the expression I�(d; s) as :

I�(D; s;m) =
1

�

1X
n=�1

Z
dD�1k

(2�)D�1
1

(!2
n + k2 +m2)s

: (24)

Using analytic extension of the inhomogeneous Epstein zeta function it is possible to

obtain the analytic extension of I�(D; s;m�);

I�(D; s;m) =
mD�2s

(2�1=2)D�(s)

"
�(s�

D

2
) + 4

1X
n=1

�
2

mn�

�D=2�s

KD=2�s(mn�)

#
(25)

where K�(z) is the modi�ed Bessel function of third kind. Fortunately for D = 3 the

analytic extension of the function I�(D; s;m�) is �nite and can be express in a closed

form [8] (note in D = 3 we have no pole, at least in this approximation), and particular

F�(�) = I�(3; 1;M�(�)) = �
M�(�)

4�

�
1 +

2 ln(1� e�M�(�)�)

M�(�)�

�
: (26)

If we have no spontaneous symmetric breaking, we de�ne the thermal e�ective mass as

@2V eff(�)

@�2a

����
�=0

= m2
� (27)

and is not di�cult to show that,

m2
� =M2

� (0) = m2 +
�

6
F�(0) +

�

5!
F�(0)

2 (28)

and

F�(0) = �
m�

4�

�
1 +

2 ln(1� e�m��)

m��

�
: (29)
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where the m2,� and � are the �nite parameter of the theory at tree-level. So eq.(28) and

eq.(29) determined the behavior of the e�ective mass with the temperature and from this

relations it is possible to show that the mass increase with the temperature.

And the expression for the e�ective coupling constant can be derived from the relation

given by:

@4V eff(�)

@�4a

����
�=0

= 3
@2M2

�(�)

@2�a

����
�=0

(30)

where M2
�(�) is given by eq.(18), so after some algebra we �nd that,

�� =
�+ �

10
F�(0)

1 �
�
�0
6
+ 2�0

5!
F�(0)

� @F�(0)

@m2

�

; (31)

This is the thermal e�ective coupling constant at leading order. In order to found the

behavior of the thermal e�ective coupling constant with the temperature, we used the

solution for the eq.(28) and replace in eq.(31). From this we conclude that the e�ective

thermal coupling constant increase with the temperature. In the next section we discuss

the existence of the tricritical phenomenon in this model at �nite temperature.

4 The tricritical phenomenon

In the last section we obtained the thermal correction to the square mass m2
� an the

coupling constant �� in absence of spontaneous symmetry breaking. The tricritical phe-

nomenon occurs when �� = m2
� = 0. If it happens we conclude that spontaneous symme-

try breaking must be occur. At tree level this happen when the classical potential V0(�),

develops an absolute minimum for �2 6= 0. If we consider quantum e�ects, then from

eq.(20) we have the relation(we discus at T = 0)

@V

@�a
=

"
m2 +

�

6

�
�2

N
+ F (�)

�
+

�

5!

�
�2

N
+ F (�)

�2
#
�a (32)
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If we have spontaneous symmetry breaking the next relation must be satis�ed in terms

of the renormalized parameter,

"
m2 +

�

6

�
�2

N
+ F (�)

�
+

�

5!

�
�2

N
+ F (�)

�2
#
= 0 : (33)

But form eq.(19) F (�) can be express as (using dimensional regularization)

F (�) = �
1

4�

"
m2 +

�

6

�
�2

N
+ F (�)

�
+

�

5!

�
�2

N
+ F (�)

�2
# 1

2

: (34)

From the last two relations we conclude that F (�) = 0 at the minimum. This implies

that eq.(33) becomes

m2 +
�

6

�
�2

N

�
+

�

5!

�
�2

N

�2

= 0 : (35)

This is the same equations as for the tree approximation, but in terms of the renormalized

parameters. And the e�ective square mass vanishes at the minimum i.e M2(�) = 0, this

is consequence of the Goldstone`s theorem. From eq.(35) provides tree possibilities for

symmetry breaking :

1: � � 0 ; m2 < 0

2: � < 0 ; m2 < 0

3: � < 0 ; m2 � 0:

(36)

If we consider the region 3 at the tree level and for j�j

5�2

8�
> m2 : (37)

su�ciently large we have two real positive zeros for V0(�). In this case for m2 > 0 at

5�2

8� = m2 we have a �rst order transition as shown in �gure.(2). Then the point m2 = 0,

� = 0 is the tricritical point, which the �rst and second order transitions meet here. Of

course the relation in eq.(37) was found by requiring that the minimum of the classical

potential in region 3 be absolute. If we consider quantum corrections this relation must

be modi�ed. At �nite temperature the e�ective parameter m2 and � change with the
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REGION 1

REGION 2

REGION 3

O(N) SYMMETRY 

UNBROKEN

m = 5 λ/ 8 η
2 2

λ

m
2

2 ND ORDER

1 ST  ORDER

Figure 2: The Regions in � , m2 of symmetry breaking for �xed �

temperature as we discussed in the preceding section. At su�ciently high temperature we

guess form eq.(31) that there is no symmetry breaking. Then in order to use the relations

of the last section we �rst started when the symmetry is present and from this we prove

that it can be exist an intermediate temperature �c at which m2
�c
= 0, ��c = 0 .

First we note that the eq.(26) is valid only for m2
� > 0 and this expression is not

useful to �nd the critical temperature. So we regularized this expression in the limit

m2
� = 0; (m2

� > 0) and for D = 3� � we get,

lim I�(3� �; s = 1;m�) =
�( 1��

2
) �(1��)

2(�)3=2��=2�1��c

m� ! 0 (m� > 0)
(38)

the �nite part Ir(�c) given by (we use the expansion of �(z) an �(z) function in order to

�nd the regular part),

Ir(�c) =
1

2��c
ln(

k

��2
c�

2
c

); (39)

where �c � m is the mass parameter and k is a numeric constant. The infrared-induced

uncertainties can be subsumed into single parameter �c [9]. So the tricritical phenomenon
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occurs when

m2
� = 0 = m2 +

�

6
Ir(�c) +

�

5!
Ir2(�c);

�� = 0 = � +
�

10
Ir(�c): (40)

And from this relations we conclude that if the tricritical phenomena occurs we must be

keep the next two following relation:

�2 = 6�m2

5

T 2
c = �2c�

k
exp (���

5�Tc
):

(41)

Where Tc is the critical temperature at which the tricritical phenomenon occurs. Of course

the parameters (m2; �) must be in the region 3 in order to occur the tricritical phenomena

an obey the relation eq.(41).

5 Conclusions

We have done in this paper an analysis of the vector model �'4+��6 in D = 3 Euclidean

dimensions at �nite temperature. The form of the thermal corrections to the mass and

coupling constant have been found using resummation methods in the leading order 1
N
ap-

proximation (Hartree-Fock approximation). We conclude that these parameters increase

with the temperature. This ressult is consistent with previous work [7] in the sense that

we are able to recover in the limit � = 0.

We discussed the existent of the tricritical phenomenon at �nite temperature and we

have been found an expression for the critical temperature at which the thermal e�ective

mass and coupling constant vanishes, and this shown that the tricritical phenomena occurs

at an intermediate temperature Tc.

A natural extension of this work is to study the cubic anisotropic model with the
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following Lagrange density

Lint = �1

NX
i=1

(�i�i)
2 + �1

NX
i=1

(�i�i)
3 + �2

NX
i=1

(�i)
4 + �2

NX
i=1

(�i)
6: (42)

In D = 4 with the ��4 model appear di�erent �xed points (a Gaussian, Heisenberg,

Ising and cubic) [10] and between them the Heisenberg �xed point is the only stable

when M < 4. For M > 4 the cubic �xed point becomes stable. This model is under

investigation by the authors.
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