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Abstract

We obtain a generalized Planck law within the framework of nonextensive statistics

making use of a deformed oscillator system. Our results are used to �t the data from the

COBE (Cosmic Background Explorer satellite). Best �t values for the entropy parameter

q, the deformation parameter r and for the temperature are found.
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The Boltzmann-Gibbs Statistical Mechanics (BGSM) is one of the most successful

theories of Physics. Its particular cases, the Fermi-Dirac and Bose-Einstein quantum

statistics (and their common high temperature asymptotic limit, the Maxwell-Boltzmann

statistics), give an excellent description of physical systems characterized by extensive

statistical mechanics. Nevertheless, extensivity is not an universal property, and BGSM

cannot give an accurate description of the problem. Well-known examples of nonextensive

statistical mechanics appears in cosmology, gravitation and astrophysics [1]. The source

for the nonextensive behavior of those systems is the presence of long range interactions

or, conversely, if the elements of the system interact across distances comparable to or

larger than the linear size of the system.

A succesful proposal for the investigation of nonextensive statistical mechanics has

been formulated by Tsallis [2], within the framework of Information Theory and multi-

fractals. He coined a generalized form for the entropy

Sq = k
1�

PW
i=1 p

q
i

q � 1
: (1)

as a starting point for generalizing BGSM. In the limit q ! 1 the Shannon entropy,

�kB
P

s pslnps is recovered. Eq.(1) is also concave (convex) for q > 0(q < 0) and all pi,

but it is nonextensive, i.e.,

Sq(�1U�2) = Sq(�1) + Sq(�2) + (1� q)Sq(�1)Sq(�2); (2)

where �1 and �2 are two non-interacting systems. From this entropy, the ensembles (Mi-

crocanonical, Canonical and Grand Canonical)and the corresponding partition functions

can be derived [3]. This formulation has been successfully applied to many concepts of

statistical mechanics, such as mean-�eld Ising model [4], Langevin and Fokker-Planck

equations [5], Boltzmann H-theorem [6], Ehrenfest theorem [7], Bogolyubov inequality [8]

and others.

Recently, it has been shown that his formalism has connections [9] with quantum

groups[10{14] through deformed oscillator algebras, where a parameter r [15] is introduced

such that, in the limit r ! 1, the corresponding oscilator algebra is recovered. These

deformed systems turn out to be nonextensive, and provide a natural ground to apply the

Tsallis generalized statistical mechanics.

Both formalisms have been separately used to generalize the Planck radiation law

[16, 17, 18]. Particularly in [16] it was assumed that due to long range gravitational
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interaction one could assume that nonextensivity causes slight deviations from the usual

Planck's blackbody radiation law. We shall deal with that question by describing the

radiation law through deformed harmonic oscillators and studying this nonextensive sys-

tem within the framework of the generalized statistical mechanics. Then, we refer the

corresponding radiation law to the cosmic background radiation data from Mather et al

[19], obtained from the COBE - Cosmic Background Explorer satellite, assuming that its

internal reference has a Planck spectrum.

The r-deformed oscillators algebra is generated by the elements a, ay that act on a

Fock space with base jni , n = 0, 1, 2, ... and

aj0i = 0 (3)

and the excited states

jni =
(ay)np
[n]a!

j0i (4)

where

[n]a! = [n]a[n� 1]a:::[1]a; [n]a =
rn � r�n

r � r�1
: (5)

From the above equations one can infer that

aay = [N + 1] (6)

and

aya = [N ] (7)

and the number operator N is such that

N jni = njni: (8)

So, one have the following commutation relations:

[N; ay] = ay (9)

[N; a] = �a (10)

[a; ay]r = aay � raya = r�N (11)

For our purposes, a more appropriate basis is given by [14]

A = rN=2a; Ay = ayrN=2 (12)
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which have the following commutation relation:

[A;Ay]q = AAy � r2AyA = 1 (13)

In terms of these new operators, the Fock representation is

Aj0i = 0 (14)

and

jni =
(Ay)np
[n]A!

j0i (15)

which are eigenstates of the number operator N

N jni = njni: (16)

We also have

AAy = [N + 1]A; AyA = [N ]A (17)

The change of operators, from A to a implies a change in the de�nition of [n]

[n]A =
r2n � 1

r2 � 1
= rn�1[n]a (18)

We shall investigate the Planck radiation law in the framework of the generalized

statistics, making use of an r-ideal deformed system described by the Hamiltonian [14] :

H = h�[n]A; (19)

where � is the photon fequency. Note that in the limit r! 1, [n] aproaches n, the bosonic

particle number operator. To obtain the photon energy density per unit volume, i.e., the

Planck radiation law, we must know the generalized canonical partition function. From

the de�nition of the Tsallis entropy, we have that the density operator is [3]

� =
[1� (1� q)�H]1=(1�q)

Zq
; (20)

where Zq is the generalized canonical partition function, given by

Zq = Tr[1� (1� q)�H]1=(1�q): (21)

When the departure from extensivity is small (q ! 1), the mean value of an observable

O is given by [3, 16]

< O >q= Tr�qO =< �q�1O >; (22)
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and, in the limit �(1� q)! 0, becomes

Zq ' Zf1�
1

2
(1 � q)�2 < H2 >g; (23)

where Z is the canonical partition function (q = 1). Now, using equations (20) and (23)

in (22) the mean value of O is obtained in terms of the usual Boltzmann-Gibbs one:

< O >q' Z1�q < O >

�
1 + (1 � q)�

�
< OH >

< O >
+
�

2

�
< H2 > �

< OH2 >

< O >

���
(24)

We also want a slightly deformed system, i.e., 1 � r ! 0. Doing so, the Hamiltonian

becomes

H = h�fn + n(n� 1)(1 � r)g: (25)

Retaining �rst order terms and making O = H, we arrive at the generalized Planck

radiation law:

Dq;� ' D(�)(1 � e�x)q�1
�
1 + (1 � q)x

�
1 + e�x

1 � e�x
�
x

2

1 + 3e�x

(1� e�x)2

��

�D(�)
4xe�x

(1 � e�x)2
(1 � e�x)q�1(r � 1); (26)

where x = h�=kT and

D(�) =
8�h�3

c3(eh�=kT � 1)
(27)

is the usual Planck radiation law. Normalizing the expression, we have

Dq;�(�)h2c3

8�(kBT )3
'

x3

ex � 1
D(�)(1 � e�x)q�1

�
1 + (1� q)x

�
1 + e�x

1� e�x
�
x

2

1 + 3e�x

(1� e�x)2

��

�
x3

ex � 1
D(�)

4xe�x

(1 � e�x)2
(1� e�x)q�1(r � 1) (28)

The FIRAS (far infrared absolute spectrophotmeter) instrument on the COBE (Cos-

mic Background Explorer) satellite has provided the most accurate data on the cosmic

background microwave radiation [19]. The FIRAS was designed to measure the spectrum

of the radiation to high precision, making di�erential measurements, which means that it

measures the di�erence between the cosmic background and an internal reference, whose

temperature is adjusted to be about 2.7 K. In Fig. 1, we have a plot of the brightness,

with the FIRAS-measured CMBR residuals. Fitting these data with a Planck spectrum

gives a �2 a factor of 4 greater than the number of degrees of freedom [16]. This deviation,

as pointed out by Mather et al [19], may be due entirely to instrumental e�ects, which
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are large at low frequencies. Upper limits on the distortions can be found taking into

account additional input of energy into the cosmic background [19].

We assume here [16] that the internal reference of the FIRAS has a Planck spectrum,

with a temperature of (2:72584 � 0:005)K and, using the residuals shown in �gure 2 and

Eq. (29), we �nd the best �t values for q � 1, r � 1 and �T , the temperature shift.

Note that we can only �nd di�erences in the parameters between the cosmic background

and the internal reference spectrum, because the data we have came from di�erential

measurements. The internal reference spectrum has q = r = 1.

To �t the data for the parameters above, we must �rst remove the factor of 2 increase

in the errors Mather et al applied to account for unexplained errors. Then, the point at

10.76 cm�1 is removed, because of a vibration in the instrument [19]. We also removed

the last point, at 20.95 cm�1, which left us with 32 degrees of freedom. We studied

three cases: r = 1, �xed, and q � 1 and �T varying, which means nonextensivity but no

deformed oscillators; q = 1, �xed, and r � 1 and �T varying, which means deformation

and extensivity; and, �nally, we let all parameters vary. In the �rst case, we got

q � 1 = (�0:82 � 1:22) � 10�5

�T = (�0:27� 1:78) � 10�5K (29)

The �2 is 109 with 32 degrees of freedom. To �nd an upper limit for q� 1 it is necessary

that the �2 be equal to the number of degrees of freedom. This can be achieved by

inating the errors bars by a factor of 1.85, and the result is

jq � 1j < 0:89 � 10�4: (30)

In the second case, we got

r � 1 = (�8:83 � 3:10) � 10�5

�T = (�0:27� 0:88) � 10�5K (31)

The �2 is again 109 for 32 degrees of freedom. The upper limit for r � 1 is found after

multiplying the errors bars by 1.85 :

jr � 1j < 4:49 � 10�4: (32)

In the third case, we let both parameters vary, and we got

q � 1 = (�4:84 � 1:68) � 10�5
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r � 1 = (�1:82 � 0:48) � 10�4

�T = (2:18 � 0:28) � 10�4 (33)

The �2 is again 109 for 32 degrees of freedom. To �nd the upper limits, again we make

the �2 equal to the number of degrees of freedom by multiplying the errors bars by 1.85

and the results are

jq � 1j < 3:56 � 10�5

jr � 1j < 2:54 � 10�4 (34)

As we saw, the �t of the FIRAS' data taking into account deformed oscillators give

excellent results. If we compare with the previous atempts [16, 21], we see that the

introduction of deformed oscillators makes a better �t, mainly in the low frequency region

(see Fig. 1). The temperature shift, which in the case without deformed oscillators is

a quantity with comparable errors, also gets a better estimative, since the introduction

of deformed oscillators shortens its errors. Then, if one assume, within the systematic

errors, that the FIRAS-COBE data used here [19] are precise enough, the generalized

Planck spectrum proposed really can account for these data, which gives an interesting

insight on the structure of space-time and the interaction between radiation and matter.

The results we �nd here are consistent with the results from Tsallis et al and Plastino

et al [16, 21]. They found, respectively, upper limits of jq � 1j < 3:6 � 10( � 5) and

jq � 1j < 5:3 � 10�5 from the FIRAS-COBE data. Plastino et al also calculated the

upper limit of jq � 1j from the experimental value of the Stefan-Boltzmann constant:

0:67�10�4 . Tsallis used 31 degrees of freedom, removing the point at 10:76cm�1 and the

last two points. Nevertheless, our result, jq�1j < 8:9�10�5, is in pretty good agreement

with the others, showing that the e�ect of nonextensivity, as well as deformation, on the

cosmic background radiation, although small (� 10�4), may prove to be non-negligible

and possible to be detected via experiments.
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