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Abstract

Crystal Field (CF) Theory is a standard tool for analyzing thermal, spectroscopic,
magnetic and related properties in solids containing transition ions. In the case of rare
earth ions, the CF eigenvalues were the object of a systematic study for cubic and hexag-
onal symmetry; the results were computed numerically and displayed in table or graphic
form. This paper discusses the use of Computer Algebra (CA) to obtain analytical re-
sults of interest for the studies of magnetic behavior of rare-earth intermetallic compounds,
where the CF has hexagonal symmetry. In the �rst part, CA techniques are applied to
obtain the characteristic polynomials of the CF hamiltonian. A remarkable result is that
for most J's the characteristic polynomials are entirely factored, allowing the analytical
derivation of the eigenvalues as a function of the CF parameters. A comparison with the
values obtained numerically is made for two cases, showing, as expected, excellent agree-
ment. In the second part, a model hamiltonian containing the CF term and exchange is
used, and an expression for the high temperature susceptibility (HTS), suitable for alge-
braic computation is derived. We compute the HTS expressions using results of the �rst
part plus the partially factored polynomials of the model hamiltonian. In the molecular
�eld approximation, we re-obtain results of the literature for HTS in the parallel and
perpendicular directions. This treatment may be extended to other high anisotropy sys-
tems, both hexagonal and rhombohedral, as the nitridedR2Fe17 intermetallic compounds.
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1. Introduction

In two recent papers1;2 we have used a computer algebra approach to obtain 1) an-
alytical eigenvalues of the Crystal Field Hamiltonian for cubic symmetry; 2) magnetic
quantities derived from a model Hamiltonian which includes Crystal Field (CF) and Ex-
change Interactions. Applications to magnetic properties of some rare-earth intermetallic
compounds, which crystallize in the cubic Laves phase structure (C15), of formula RX2

(R=rare-earth ion, X=non-magnetic ion) were also considered.
The present work is a sequel of the ideas and methods discussed in the above mentioned

references1;2, for the case of a CF Hamiltonian with hexagonal symmetry. The paper is
divided in the following way: in Section 2 the CF Hamiltonian and the method used to
obtain (via Computer Algebra (CA) ) the analytical eigenvalues are presented; in Section
3, we list CF analytical eigenvalues for rare-earth ions of J= 4, 6, 8, 5/2, 7/2, 9/2 and
15/2 in hexagonal symmetry. In Section 4 the splitting of the rare-earth ion multiplet due
to a combined action of the crystal �eld and of an e�ective magnetic �eld applied in the
directions (0,0,1) and (1,0,0) is formulated; the characteristic polynomials are factored
into simpler polynomials which are divided into classes. In Section 5, making use of the
results obtained in Section 4, we make a direct computation of the inverse susceptibility
at high temperature, for directions (0,0,1) and (1,0,0).

2. Crystal Field Hamiltonian

For the case of hexagonal symmetry we have:

Hhex
CF = B0

2O
0
2 +B0

4O
0
4 +B0

6O
0
6 +B6

6O
6
6 (1)

where On
m are the Stevens operators, expressed in powers of the components of Jz, J+ and

J� of the angular momentumoperator3; B0
2, B

0
4, B

0
6 and B

6
6 are adjustable CF parameters.

Eq. 1 applies in a coordinate system (x; y; z) in which the z-axis is parallel to the c-axis of
the orthohexagonal cell; z is also assumed as the direction of quantization. Taking jJ;m>
as eigenfunctions of Jz (J and m are respectively the angular momentum and magnetic
quantum numbers), the eigenvalues of HCF are the roots of the polynomial equation in
the variable y

det j< n; J j HCF � y�n;m j J;m >j = 0 (2)

At this point we make use of REDUCE (a well known computer language) to obtain:
1 ) the polynomial of degree 2 J + 1 ; 2 ) the analytical factors of the corresponding
polynomials. It turns out that with the exception of J= 15=2 and J= 8 the eigenvalues
of Hhex

CF are analytically expressible in terms of Bm
n . For J= 15=2, twelve values are roots

of polynomials of the third degree; the remaining four values are roots of second degree
polynomials. For J= 8, twelve values are again roots of third degree polynomials; two
roots of second degree polynomials and three are analytical roots. They are listed in the
next section.

For each J the results are labeled using the �
0

s irreducible representation of the hexag-
onal point group D6h.
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3. Eigenvalues of Hhex
CF

In the case of semi-integer J, the DJ representation of the rotation group can be
reduced to doublets; this can be expressed by irreducible representations of the hexagonal
point group D6h: �7, �8 and or �9.

Results for J semi-integer

J= 5=2 ( D5=2 = 2�7 + �8 ), ( Ce
3+, Sm3+ )

E(�(1)7 ) = �2(2b2;0 � b4;0)

E(�(2)7 ) = �b2;0 � 3b4;0

E(�8) = 5b2;0 + b4;0

J= 7=2 ( D7=2 = 2�7 + 2�8 ), ( Yb3+ )

E(�(1)7 ) = �5b2;0 + 9b4;0 � 5b6;0

E(�(2)7 ) = �3(b2;0 + b4;0 � 3b6;0)

E(�
(1)
8 ) = 4b2;0 � 3b4;0 � 2b6;0 �

p
M

E(�
(2)
8 ) = 4b2;0 � 3b4;0 � 2b6;0 +

p
M

M = 3b2;0(3b2;0 + 20b4;0 + 6b6;0) +

20b4;0(5b4;0 + 3b6;0) + (3b6;0)
2 + 7(b6;6)

2

J= 9=2 ( D9=2 = �7 + 2�8 + 2�9 ), ( Nd3+ )

E(�7) = �2(2b2;0 � 9b4;0 + 4b6;0)

E(�
(1)
8 ) = (b2;0 � 39b4;0 � b6;0 +

p
N )=2

E(�(2)8 ) = (b2;0 � 39b4;0 � b6;0 �
p
N )=2

E(�(1)9 ) = (3b2;0 + 21b4;0 + 9b6;0 +
p
M)=2

E(�(2)9 ) = (3b2;0 + 21b4;0 + 9b6;0 �
p
M )=2

N = 3b2;0(3b2;0 � 10b4;0 � 42b6;0) +

5b4;0(5b4;0 + 42b6;0) + (21b6;0)
2 + (14b6;6)

2

M = 3[9b2;0(3b2;0 + 10b4;0 � 2b6;0) +

15b4;0(5b4;0 � 2b6;0) + 3(b6;0)
2 + 7(2b6;6)

2]

J= 15=2 ( D15=2 = 3�7 + 2�8 +3�9 ), ( Dy
3+, Er3+ ). The D15=2 representation of the

rotation group can be reduced to eight doublets:
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D15=2 = 3�7 + 2�8 + 3�9

where the �
0

s are the irreducible representation of the hexagonal point group D6h. The
doublets in �7 and �9 are the roots of the third degree polynomials. The two doublets in
�8 are

E(�
(1)
8 ) = �12b2;0 � 39b4;0 + 66b6;0 �

p
N

E(�
(2)
8 ) = �12b2;0 � 39b4;0 + 66b6;0 +

p
N

N = 3b2;0(3b2;0 � 124b4;0 + 42b6;0) + 124b4;0(31b4;0 � 21b6;0) +

(21b6;0)
2 + 55(42b6;6)

2

In the case of integer J, the DJ representation of the rotation group can be reduced
to a combination of singlets (�1, �2, �3 and �4) and doublets (�5, �6).

Results for J integer

J= 4 ( D4 = �1 + �3 + �4 + 2�5 + �6 ), ( Pr3+, Pm3+ )

E(�1) = �2(10b2;0 � 9b4;0 + 10b6;0)

E(�3) = 7b2;0 � 21b4;0 � 17b6;0 + 7b6;6

E(�4) = 7b2;0 � 21b4;0 � 17b6;0 � 7b6;6

E(�
(1)
5 ) = (20b2;0 + 3b4;0 + 26b6;0 +

p
M)=2

E(�
(2)
5 ) = (20b2;0 + 3b4;0 + 26b6;0 �

p
M)=2

E(�6) = �17b2;0 + 9b4;0 + b6;0

M = 72b2;0(18b2;0 + 25b4;0 � 18b6;0) +

25b4;0(25b4;0 � 36b6;0) + (18b6;0)
2 + 7(4b6;6)

2

J= 6 ( D6 = 2�1 + �2 + �3 + �4 + 2�5 + 2�6 ), ( Tb3+, Tm3+ )

E(�(1)1 ) = (8b2;0 + 183b4;0 � 18b6;0 �
p
M)=2

E(�(2)1 ) = (8b2;0 + 183b4;0 � 18b6;0 +
p
M )=2

E(�2) = 11(2b2;0 + 9b4;0 + 2b6;0)

E(�3) = �5b2;0 � 54b4;0 + 43b6;0 � 84b6;6

E(�4) = �5b2;0 � 54b4;0 + 43b6;0 + 84b6;6

E(�(1)5 ) = �(8b2;0 + 85b4;0 � 30b6;0 +
p
N)=2

E(�
(2)
5 ) = �(8b2;0 + 85b4;0 � 30b6;0 �

p
N )=2

E(�
(1)
6 ) = �(2b2;0 + 2b4;0 + 75b6;0 +

p
G)=2

E(�
(2)
6 ) = �(2b2;0 + 2b4;0 + 75b6;0 �

p
G)=2
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M = 72b2;0(18b2;0 + 15b4;0 + 62b6;0) +

15b4;0(15b4;0 + 124b6;0) +

(62b6;0)
2 + 462(4b6;6)

2

N = 24b2;0(6b2;0 � 107b4;0 � 14b6;0) +

107b4;0(107b4;0 + 28b6;0) +

(14b6;0)
2 + 30(28b6;6)

2

G = 48b2;0(12b2;0 � 130b4;0 � 35b6;0) +

25b4;0(676b4;0 + 364b6;0) +

(35b6;0)
2 + 66(14b6;6)

2

J= 8 ( D8 = 2�1 + �2 + �3 + �4 + 3�5 + 3�6 ), ( Ho3+ ). Six of the roots are on two
third degree polynomials. Where

b2;0 = F 0
2B

0
2 = W (1� jyj)

b4;0 = F 0
4B

0
4 = Wyx

b6;0 = F 0
6B

0
6 = Wy(1� jxj)(1� jzj)

b6;6 = F 6
6B

6
6 = Wyz(1� jxj)

and W, x, y and z are an extension of the Lea et al.4 notation to hexagonal symmetry
(see Andres et al.5 and Wallace and Segal6); the F n

m are given elsewhere7.
One should emphasize that the algebraic diagonalization presented here provides an-

alytical values for the energy levels, valid for any set of Bn
m parameters, whereas the

numerical diagonalization has to be repeated for each set of parameters. In other words,
to obtain the energy levels in the usual procedure, one has to run a computer program us-
ing standard library routines which calculate eigenvalues and eigenvectors (for details see
books on numerical methods). In our case, starting from the analytical results (Section
3), given a set of B's, all one needs is a pocket calculator. In addition the analytical results
are also important in obtaining the HTS's (high-temperature susceptibilities), dealt with
in Section 5.

To illustrate the e�ectiveness of our eigenvalue expressions we have given in Table
1 and Table 2 a comparison of eigenvalues computed from our expressions and from
references (5) and (11). For each rare earth ion, the calculations used the same set of Bn

m

parameters (given in Ref. (5) for Pr and in Ref. (11) for Nd).
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Table 1

Comparison of results obtained from the analytical methods of Computer Algebra (present work)
and numerical procedures for J = 4 applied to PrNi5 (Ref. (5)). Both calculations used the same set of
Bn
m
parameters given in Ref. (5).

Representation Eigenvalues for J = 4
Computer Algebra Numerical

�i Ei=k (K) Ei=k (K)
�15 331.0 332.0
�3 156.5 156.8
�25 48.0 48.2
�6 39.2 39.4
�1 22.8 22.9
�4 0 0

Table 2

Comparison of results obtained from the analytical methods of Computer Algebra (present work)
and numerical procedures for J = 9=2, applied to NdNi5 (Ref. (11)). Both calculations used the same
set of Bn

m
parameters given in Ref. (11).

Representation Eigenvalues for J = 9=2
Computer Algebra Numerical

�i Ei=k (K) Ei=k (K)
�19 241.26 241.3
�18 163.84 163.8
�7 50.38 50.4
�29 18.23 18.2
�28 0 0

4. Splitting by CF and Magnetic Interaction

In what follows we make the assumption that magnetic quantities can be deduced
from the following model Hamiltonian

H = HCF +Hmag (3)

where

Hmag = �g�Bh:J (4)
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and

g�Bh = g�Bh0 + �0(g � 1)2 < J > (5)

In (4) g is the Land�e factor, �B the Bohr magneton, �0 the exchange parameter and h0

is the applied �eld; < J > is the thermal average of the angular momentum operator J.
If the eigenvalues of H are given in explicit form, the magnetic moments in the n

direction (n is a unit vector), are given by

g�B < i j J:n j i >� �dyi
dh

= �g�B dyi
d�

(6)

where h = h:n and � = g�Bh.
In what follows we take n = (1; 0; 0) and (0,0,1).
We now make use of Eq. 2, substituting H for HCF and obtain, using REDUCE,

polynomials of degree 2 J + 1, which are however very complicated. Fortunately, RE-
DUCE can factor most of the polynomials into simpler factors. For instance, for J = 5=2,
we have 6 �rst degree factor polynomials, for h along (001), and 2 third degree factor
polynomials for the direction (100).

Typical polynomial factors are presented in Appendix A for J= 5=2. All relevant
magnetic information is contained in these factor polynomials. Let P(y,Bn

m,�) be one
of the above mentioned factors, whose roots yi are the energy eigenvalues. In Section 5
we will need the roots y0i of the pure crystal �eld hamiltonian, the limits lim�!0

dy
d�

and

lim�!0
d2y
d�2

, in order to obtain the magnetic susceptibilities at high temperature. These
limits are obtained from the following relations

P (y;Bn
m; �) = 0 (7)

@P

@y

 
dy

d�

!
+
@P

@�
= 0 (8)

Py
d2y

d�2
+ [Pyy

dy

d�
+ 2P�y ]

dy

d�
+ P�� = 0 (9)

Py
d3y

d�3
+ 3[Pyy

dy

d�
+ P�y]

d2y

d�2
+ Pyyy (

dy

d�
)3 + 3[Pyy�

dy

d�
+ P��y]

dy

d�
+ P��� = 0
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5. High temperature susceptibilities

With W. G. Penney and R. Schlapp8 we begin with the basic de�nition of magnetiza-
tion (per magnetic ion)

m = �
P2J+1

i=1 (dyi=dh)exp(�yi=kBT )P2J+1
i=1 exp(�yi=kBT )

(10)

For high temperature and up to ( yi
kBT

)2

m = g�B[

P2J+1
i=1

@(y2
i
)

@�

2kBT (2J + 1)
�

P2J+1
i=1

@(y3
i
)

@�

6k2BT
2(2J + 1)

] (11)

This is the results of Penney and Schlapp8 adapted for our notation. Using (5), from (12)
we obtain

��1 �= 1

C
[T � (

C1

C
+ C�)](g�B)

�2 (12)

where � is the magnetic susceptibility and

C =
1

(2J + 1)2kB

2J+1X
i=1

lim
�!0

1

�

@(y2i )

@�
(13)

and

C1 =
1

(2J + 1)6k2B

2J+1X
i=1

lim
�!0

1

�

@(y3i )

@�
(14)

Therefore, in order to obtain the susceptibilities in di�erent directions we will need to

compute the limits as �! 0 in (14) and (15). We obtain

C =
1

(2J + 1)kB

2J+1X
i=1

[y0i (
d2yi
d�2

)0 + (
dyi
d�

)20] (15)

C1 =
1

(2J + 1)2k2B

2J+1X
i=1

y0i [y
0
i (
d2yi
d�2

)0 + 2(
dyi
d�

)20] (16)

In what follows we compute C and C1 for the case in which the magnetic interaction is
described in the molecular �eld approximation (Eqs. 4 and 5).

For the �rst case, we illustrate the computation of C and C1 for J=5/2. The polynomial

factors, the derivatives (dyi
d�
)0 and (d

2yi
d�2

)0 are given in Appendix A and y0i are given at the

beginning of Section 3. For this case C? = 35
12kB

; C?1 =
�28B0

2

3k2
B

; Ck = C? and C
k
1 =

C?

1

2 .

The procedure can be repeated for other values of J. The results are:

Ck = J(J + 1)=3kB C
k
1 = b2;0C(2J � 1)(2J + 3)=5(kB)

2 (17)

C? = Ck C?1 = � C
k
1=2 (18)
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These con�rm the formulae given by Boutron9;10, obtained through an analysis of
P

i y
n
i =

Tr(Hn) and its derivatives (with respect to the magnetic �eld) using the tools of group
theory (e.g. summation rules).

One advantage of the CA approach is that, not only it is more direct, but also it is an
easier one. Experimental studies of high temperature susceptibilities use the results9;10

to determine the B0
2 and exchange parameters, as was done by Barthem et al.11;12 in

analyzing the high temperature susceptibilities of NdNi5 and PrNi5.
The examples given here show the potentiality of CA in solving di�cult problems

involving crystal �eld and magnetic interactions.
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Appendix A

Factor polynomials of the characteristic polynomial for J= 5=2

P (y;Bn
m; �)

� = �y3 � 3y2�=2 + y[21b22;0 � 6b2;0�+ 7b24;0 � 3b4;0�+ 13(�=2)2] +

20b32;0 + 54b22;0b4;0 � 15b22;0�=2 � 20b2;0b
2
4;0 � 24b2;0b4;0� �

5b2;0�
2 � 6b34;0 � 9b24;0�=2 � 9b4;0�

2=2 � 15(�=2)3

First and second derivatives of yi (in relation to � ), for � = 0

(
dy1
d�

)0 = 0 (
dy2
d�

)0 = 0 (
dy3
d�

)0 = 3=2

(
dy4
d�

)0 = 0 (
dy5
d�

)0 = 0 (
dy6
d�

)0 = �3=2

(
d2y1
d�2

)0 =
3(11b2;0 + 19b4;0)

4(9b22;0 � 9b2;0b4;0 � 10b24;0)

(
d2y2
d�2

)0 =
5

4(3b2;0 + 2b4;0)

(
d2y3
d�2

)0 =
�4

3b2;0 � 5b4;0

(
d2y4
d�2

)0 =
3(11b2;0 + 19b4;0)

4(9b22;0 � 9b2;0b4;0 � 10b24;0)

(
d2y5
d�2

)0 =
5

4(3b2;0 + 2b4;0)

(
d2y6
d�2

)0 =
�4

3b2;0 � 5b4;0

C =
35

12
C?1 = �14b2;0

3
= �28B0

2

3
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